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The World Wide Web is possible because a set of widely established
standards guarantees interoperability at various levels. Until now,
the Web has been designed for direct human processing, but the

next-generation Web, which Tim Berners-Lee and others call the “Seman-
tic Web,” aims at machine-processible information.1 The Semantic Web
will enable intelligent services such as information brokers, search agents,
and information filters, which offers greater functionality and interoper-
ability than current stand-alone services.

The Semantic Web will only be possible once further levels of interop-
erability have been established. Standards must be defined not only for the
syntactic form of documents, but also for their semantic content. Notable
among recent W3C standardization efforts are XML/XML schema and
RDF/RDF schema, which facilitate semantic interoperability.

In this article, we explain the role of ontologies in the architecture of
the Semantic Web. We then briefly summarize key elements of XML and
RDF, showing why using XML as a tool for semantic interoperability will
be ineffective in the long run. We argue that a further representation and
inference layer is needed on top of the Web’s current layers, and to estab-
lish such a layer, we propose a general method for encoding ontology rep-
resentation languages into RDF/RDF schema. We illustrate the extension
method by applying it to OIL, an ontology representation and inference
language.2

ONTOLOGIES: DOMAIN CONCEPTUALIZATION
Ontologies can play a crucial role in enabling Web-based knowledge pro-
cessing, sharing, and reuse between applications. Generally defined as
shared formal conceptualizations of particular domains, ontologies pro-
vide a common understanding of topics that can be communicated
between people and application systems.

Ontologies are used in e-commerce to enable machine-based commu-
nication between buyers and sellers; vertical integration of markets (such
as VerticalNet [http://www.verticalnet.com]); and description reuse
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between different marketplaces. Search engines also
use ontologies to find pages with words that are
syntactically different but semantically similar.

An ontology typically contains a hierarchy of
concepts within a domain and describes each con-
cept’s crucial properties through an attribute-value
mechanism. Further relations between concepts
might be described through additional logical sen-
tences. Finally, constants (such as “January”) are
assigned to one or more concepts (such as
“Month”) in order to assign them their proper type.

The OIL ontology consists of slot definitions
(slot-def) and class definitions (class-def). Figure 1
is an example ontology (though it omits slot defi-
nitions due to space constraints). A slot-def
describes a binary relation between two entities. A
class-def associates a class name with a class descrip-
tion and consists of the following components (any
of which can be omitted):

■ definition type can either be “defined” or “prim-

itive.” For defined types, a class is completely
specified in the class definition. For primitive
types, the conditions in the class definition are
necessary, but insufficient for determining class
membership.

■ slot constraint restricts the possible values a
slot can have when applied to an instance of
the class.

■ subclass-of relates the defined class to a list of
one or more class expressions—class names, slot
constraints, or an arbitrarily complex Boolean
combination of these. Hence, the class being
defined is a subclass of those defined by each
class expression.

The main components of a slot constraint are:

■ name—a string that delineates the slot being
constrained.

■ value-type—a list of one or more class expres-
sions for which the value of the class must be

class-def animal % animals are a class
class-def plant % plants are a class
        subclass-of NOT animal % that is disjoint from animals
class-def tree
        subclass-of plant % trees are a type of plants
class-def branch
         slot-constraint is-part-of % branches are parts of trees
               has-value tree
class-def leaf
          slot-constraint is-part-of % leafs are parts of branches
               has-value branch
class-def defined carnivore % carnivores are animals
          subclass-of animal
          slot-constraint eats % that eat only other animals
               value-type animal
class-def defined herbivore % herbivores are animals
          subclass-of animal
          slot-constraint eats % that eat only plants or parts of plants
               value-type plant 

OR (slot-constraint is-part-of has-value plant)
class-def giraffe % giraffes are herbivores
          subclass-of herbivore
          slot-constraint eats % and they eat leafs
               value-type leaf
class-def lion
           subclass-of animal % lions are also animals
           slot-constraint eats % but they eat herbivores
                value-type herbivore
class-def tasty-plant % tasty plants are plants that are eaten by
           subclass-of plant % both herbivores and carnivores
           slot-constraint eaten-by
                 has-value herbivore, carnivore

Figure 1. Example ontology defining African wildlife. The hierarchy of concepts is formulated using
the OIL syntax for class expressions.
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an instance of each class expression in the list if
an instance of the defined class has the current
slot.

For
example, a class human could have a slot friend
with the slot constraint value-type human,
which means if a human has a friend, the friend
must also be a human.

■ has-value—a list of one or more class-expres-
sions in which every instance of the class
defined by the slot constraint must be related
via the slot to an instance of each class expres-
sion in the list. If the class human has a slot
friend with the slot constraint has-value
human, then every human is the friend of
another human. 

XML and RDF each have their merits as a foun-
dation for the Semantic Web, but RDF provides
more suitable mechanisms for applying ontology-
representation languages like OIL to the task of
interoperability. 

XML GRAMMARS
XML is already widely known in the Internet com-

munity, and is the basis for a rapidly growing num-
ber of software development activities.3 It is designed
for markup in documents of arbitrary structure, as
opposed to HTML, which was designed for hyper-
text documents with fixed structures.

A well-formed XML document creates a balanced
tree of nested sets of open and close tags, each of
which can include several attribute-value pairs. There
is no fixed tag vocabulary or set of allowable combi-
nations, so these can be defined for each application.
In XML 1.0 this is done using a document type defi-
nition to enforce constraints on which tags to use and
how they should be nested within a document. A
DTD defines a grammar to specify allowable com-
binations and nestings of tag names, attribute names,
and so on. Developments are well underway at W3C
to replace DTDs with XML-schema definitions.4,5

Although XML schema offer several advantages over
DTDs, their role is essentially the same: to define a
grammar for XML documents.

Figure 2 shows an example serialization of part
of the ontology from Figure 1. The basic XML data
model is a labeled tree, where each tag corresponds
to a labeled node in the model, and each nested
subtag is a child in the tree. Of course, this exam-
ple shows just one possible XML-based syntax for
the ontology. XML is foremost a means for defin-
ing grammars, and because different grammars can
be used to describe the same content, XML allows
multiple serializations. The information in the final
class definition in Figure 2, for example, could be
expressed in an entirely different form as:

<class-def>
<name>branch</name>
<slot-constraint>

<name>is-part-of</name>
<has-value>tree</has-value>

</slot-constraint>
</class-def>

XML is used to serve a range of purposes:

■ Serialization syntax for other markup languages.
For example, the Synchronized Multimedia
Integration Language (SMIL)6 is syntactically
just a particular XML DTD; it defines the
structure of a SMIL document. The DTD is
useful because it facilitates a common under-
standing of the meaning of the DTD elements
and the structure of the DTD.

■ Semantic markup of Web pages. An XML serial-
ization (such as the example above) can be used

<class-def>
     <class name="plant"/>
     <subclass-of>
           <NOT><class name="animal"/></NOT>
     </subclass-of>
</class-def>
<class-def>
<class name="tree"/>
     <subclass-of>
           <class name="plant"/>
      </subclass-of>
</class-def>
<class-def>
       <class name="branch"/>
       <slot-constraint>
               <slot name="is-part-of"/>
               <has-value>
                   <class name="tree"/>
               </has-value>
       </slot-constraint>
</class def>

Figure 2. Partial XML serialization of the example
ontology in Figure 1. This XML document contains
one possible serialization. It introduces a tag for
each part of the grammar.



T H E  S E M A N T I C  W E B

5IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ SEPTEMBER • OCTOBER 2000

in a Web page with an XSL style sheet to ren-
der the different elements appropriately.7

■ Uniform data-exchange format. An XML serial-
ization can also be transferred as a data object
between two applications.

It is important to note that a DTD only specifies
syntactic conventions; any intended semantics are
outside the realm of the XML specification.

RDF: RESOURCE METADATA
The Resource Description Framework is a recent
W3C recommendation designed to standardize the
definition and use of metadata—descriptions of
Web-based resources.8 However, RDF is equally
well suited to representing data.

RDF Foundations
The basic building block in RDF is an object-
attribute-value triple, commonly written as
A(O,V). That is, an object O has an attribute A
with value V. Another way to think of this rela-
tionship is as a labeled edge between two nodes:
[O]–A→[V].

This notation is useful
because RDF allows objects and values to be inter-
changed. Thus, any object can play the role of a
value, which amounts to chaining two labeled
edges in a graphic representation. The graph in Fig-
ure 3, for example, expresses the following three
relationships in A(O,V) format:

hasName
(‘http://www.w3.org/employee/id1321’,
”Jim Lerners”)

authorOf
(‘http://www.w3.org/employee/id1321’,
’http://www.books.org/ISBN0012515866’)

hasPrice
(‘http://www.books.org/ISBN0012515866’,
“$62”).

RDF also allows a form of reification in which
any RDF statement can be the object or value of a
triple, which means graphs can be nested as well as
chained. On the Web this allows us, for example,
to express doubt or support of statements created
by other people. Finally, it is possible to indicate
that a given object is of a certain type, such as stat-
ing that “ISBN0012515866” is of the rdf:type
book, by creating a type arc referring to the book
definition in an RDF schema:

<rdf:Description about=“www.books.org/
ISBN0012515866”>

<rdf:type resource=“http://description.org/
schema/book”>

</rdf:Description>

It is important to note that RDF is designed to
provide a basic object-attribute-value data model
for metadata. Other than this intentional seman-
tics—described only informally in the standard—
RDF makes no data-modeling commitments. In
particular, no reserved terms are defined for further
data modeling. As with XML, the RDF data model
provides no mechanisms for declaring property
names that are to be used.

RDF Schema
Just as XML schema provides a vocabulary-definition
facility, RDF schema lets developers define a partic-
ular vocabulary for RDF data (such as authorOf) and
specify the kinds of object to which these attributes
can be applied.9 In other words, the RDF schema
mechanism provides a basic type system for RDF
models. This type system uses some predefined terms,
such as Class, subPropertyOf, and subClassOf, for
application-specific schema. RDF schema expressions
are also valid RDF expressions (just as XML schema
expressions are valid XML).

RDF objects can be defined as instances of one or

Jim Lerners

$62http://www.w3.org/
employee/id132

s:hasName

s:authorOf www.books.org/
ISBN0012515866

s:hasPrice

Figure 3. RDF graph.
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more classes using the type property. The subClassOf
property allows the developer to specify the hierar-
chical organization of such classes, and subPropertyOf
does the same for properties. Constraints on proper-
ties can also be specified using domain and range con-
structs, which can be used to extend both the vocab-
ulary and the intended interpretation of RDF
expressions. This is the mechanism we used to trans-
late an ontology representation language to RDF.

KNOWLEDGE REPRESENTATION
The Web is the first widely exploited many-to-
many data-interchange medium, and it poses new
requirements for any exchange format:

■ Universal expressive power. Because it is not pos-
sible to anticipate all potential uses, a Web-
based exchange format must be able to express
any form of data.

■ Syntactic interoperability. Applications must be
able to read the data and get a representation
that can be exploited. Software components like
parsers or query APIs, for instance, should be
as reusable as possible among different applica-
tions. Syntactic interoperability is high when

the parsers and APIs needed to manipulate data
are readily available.

■ Semantic interoperability. One of the most
important requirements for an exchange format
is that data be understandable. Whereas syn-
tactic interoperability is about parsing data,
semantic interoperability is about defining
mappings between terms within the data,
which requires content analysis.

Using XML
XML fulfills the universal expressive power require-
ment because anything for which a grammar can be
defined can be encoded in XML. It also fulfills the
syntactic interoperability requirement because an
XML parser can parse any XML data, and is usually
a reusable component. When it comes to semantic
interoperability, however, XML has disadvantages.

XML’s major limitation is that it just describes
grammars. There is no way to recognize a semantic
unit from a particular domain because XML aims at
document structure and imposes no common inter-
pretation of the data contained in the document.
Although this limitation is at the heart of the
“schema-wars” currently raging at forums such as

XML-based 
communication
using DTD A

Translation

<xsd:schema xmlns:xsd="http://...">
     <xsd:annotation>
    </xsd:...
</xsd:schema>

Conceptual
domain model

DTD or XML schema

Deployment

Sender Recipient

XML-
parser

Parse
 tree

Application 2Application 1

Figure 4. DTD development and point-to-point communication with XML. The conceptual domain
model has to be translated to a DTD or XML schema before it can be deployed for ...
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Biztalk.com and RosettaNet.org,
it is not yet widely recognized.

Fixed vs. flexible communication.
Figure 4 shows two applications
trying to communicate with each
other. Both agree on the use and
intended meaning of the docu-
ment structure given by DTD A,
but a model of the domain of
interest must be built to clarify the
kind of data being sent before the
data can be exchanged. (This
model is usually described in
terms of objects and relations, as
it is in Unified Modeling Lan-
guage10 or entity-relationship
modeling.11) A DTD or an XML
schema is then constructed from
the domain model—usually in an
ad-hoc way.

Figure 5a shows a simple bina-
ry relationship, principal (owner),
between two concepts, purchase
order and company. Figure 5b
shows several possibilities for
encoding the relationship in
XML. A DTD just describes a
grammar, and there are multiple
ways to encode any given domain
model into a DTD, so no direct
connection remains between
them. It is impossible to deter-
mine from the DTDs the con-
cepts and relation between them,
and significantly more encoding
options exist when there are, for
example, multiple ordered relationships. It is thus
difficult to reengineer the domain model from the
DTDs. (Note, however, that the relationship depict-
ed in Figure 5a represents a valid RDF model.)

The advantage of using XML in this case is lim-
ited to the reusability of the parsing software com-
ponents. This is certainly useful, but this scenario
deals with a one-on-one communication between
parties with an advance agreement. It neglects the
reality of the Web, which requires communicating
with multiple partners that change frequently.

Not the silver bullet. XML is useful for data inter-
change between applications that both know what
the data is, but not for situations where new com-
munication partners are frequently added. On the

Web, new information sources continually become
available and new business partners join existing
relationships. It is thus important to reduce the
costs of adding communication partners as much
as possible. As the steps in Figure 6 show, however,
using XML and DTDs (or schema) for this opera-
tion requires much more effort than necessary.

One domain model cannot be mapped to anoth-
er because they are both encoded in DTDs. A direct
mapping based on the different DTDs is not possi-
ble as the task is not to map grammars to each other,
but to map objects and relations between domains
of interest. Therefore, we must reengineer the orig-
inal domain models and define the mappings
between the concepts and relationships. (Tech-
niques developed in knowledge engineering and

Encoding DTD Example XML Instance Data

<!ELEMENT PurchaseOrder (principal)>
<!ATTLIST PurchaseOrder
            id ID #REQUIRED>
<!ELEMENT principal (Company)>
<!ATTLIST Company
            id ID #IMPLIED>

<PurchaseOrder id="X">
  <principal>
    <Company id="Y"/>
  </principal>
<PurchaseOrder>

<!ELEMENT principal (PurchaseOrder,
Company)>
<!ELEMENT PurchaseOrder (#CDATA)>
<!ELEMENT Company (#CDATA)>

<principal>
  <PurchaseOrder>X</PurchaseOrder>
  <Company>Y</Company>
</principal>

<!ELEMENT PurchaseOrder (id, principal)>
<!ELEMENT id (#CDATA)>
<!ELEMENT principal (Company)>
<!ELEMENT Company (id)>

<PurchaseOrder>
  <id>X</id>
  <principal>
    <Company>
      <id>Y</id>
    </Company>
  </principal>

</PurchaseOrder>

<!ELEMENT rel EMPTY>
<!ATTLIST rel
            src CDATA #REQUIRED
            type CDATA #REQUIRED
            dest CDATA #REQUIRED>

<rel
   src="X"
   type="principal"
   dest="Y"/>

<!ELEMENT PurchaseOrderInfo (Company)>
<!ATTLIST PurchaseOrderInfo
            orderID ID #REQUIRED>
<!ELEMENT Company (#CDATA)>

<PurchaseOrderInfo orderID="X">
   <Company>Y</Company>
</PurchaseOrderInfo>

CompanyPurchase
order

Principal

(a)

(b)

Figure 5. Binary relationship (a) and XML encoding possibilities (b).
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database research are often helpful for this task.12,13)
Afterwards, the additional step of defining the map-
ping between DTDs must be performed.

To exchange XML documents, the domain map-
pings must be translated using mapping procedures
such as XSL Transformations (XSLT) for grammars.
This is again a high-effort task and depends on the
encoding used to construct the initial DTDs. Addi-
tional effort is required in translating the reengi-
neered domain model into an XML DTD and gen-
erating mapping procedures for XML documents
based on established domain mappings. Using a
more suitable formalism than pure XML for data
transfer can save much of this additional effort.

Using RDF
RDF’s nested object-attribute-value structure sat-
isfies our universal expressive power requirement
for an exchange format, although this is not easy to
see. Application-independent RDF parsers are also
available, so RDF fulfills our syntactic interoper-
ability requirement as well.

When it comes to semantic interoperability,
RDF has significant advantages over XML: The
object-attribute structure provides natural semantic
units because all objects are independent entities. A
domain model—defining objects and relation-
ships—can be represented naturally in RDF, so

translation steps are not necessary as they are with
XML. To find mappings between two RDF descrip-
tions, techniques from research in knowledge rep-
resentation are directly applicable. Of course, this
does not solve the general interoperability problem
of finding semantics-preserving mappings between
objects, but using RDF for data interchange raises
the level of potential reuse of software components
much beyond parser reuse, which is all XML offers.
Furthermore, the RDF model (and software using
the RDF model) can still be used even if the current
XML syntax changes or disappears because RDF
describes a layer independent of XML.

Ideally, we would like a universal shared knowl-
edge-representation language to support the
Semantic Web, but for a variety of pragmatic and
technological reasons, this is unachievable in prac-
tice. Instead, we will have to live with a multitude
of metadata representations. RDF contains as much
knowledge-representation technology as can be
shared between widely varying metadata languages.
Furthermore, the RDF schema language is power-
ful enough to define richer languages on top of
RDF’s limited primitives.

ENRICHING RDF
Before showing how RDF can be enriched to
define sophisticated data models, we recall Brach-

<xsd:schema xmlns:xsd="http://...">
    <xsd:annotation>A-Schema
   </xsd:...
</xsd:schema>

<xsd:schema xmlns:xsd="http://...">
    <xsd:annotation>B-Schema
   </xsd:...
</xsd:schema>

<xsl:stylesheet version="1.0”
   xmlns:xsl="http://....Transform"
  <xsl:template match="/">
     ....
   </xsl:template>
</xsl:stylesheet>

<xsl:stylesheet version="1.0”
  xmlns:xsl="http://....Transform"
 <xsl:template match="/">
    ....
  </xsl:template>
</xsl:stylesheet>

Matching

Step 1:
Reengineer
conceptual model

Step 2:
Match
domain model rules 
to XML document
translation rules

DTD A DTD B

Step 3:
Translate 
XSLT document from
DTD A to DTD B
(and B to A)

Figure 6. Alignment of conceptual models. Several additional steps are necessary in XML to add new communication
partners to an existing communication, including the reengineering of the conceptual model used to construct the DTDs.
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man’s distinction of the three layers in a knowledge
representation system14:

■ the implementation level consists of data struc-
tures for a particular implementation;

■ the logic level defines, in an abstract way, the
inferences that are performed by the system; and

■ the epistemological level defines adequate repre-
sentation primitives for expressing knowledge
in a convenient way—usually those used by a
knowledge engineer.

The epistemological level is usually defined by a
grammar that defines the language of interest, but
the representation primitives can also be regarded
as an ontology—as objects of a particular domain.
Using this view, domain-modeling techniques are
again suitable for defining a knowledge representa-
tion language. Thus, the epistemological level is
itself an ontology that defines the terms of the rep-
resentation language. Defining an ontology in RDF
means defining an RDF schema, which specifies all
the concepts and relationships of the particular lan-
guage. (One example of a language definition as an
ontology is the RDF schema, which is defined in
terms of itself.9)

Defining a More Expressive
Ontology Language
Figure 7 (next page) shows how the RDF schema
mechanism can be used to define elements of OIL.
The shaded ellipses are elements that must be added
to the existing schema definition to obtain a schema
for OIL.

We illustrate this principle with an example
from the ontology in Figure 1. The definition of
herbivore uses the subclass-of modeling primitive,
which is a relation that identifies the two argu-
ments as objects: the class (herbivore) and a sophis-
ticated class expression (animal AND NOT carni-
vore). The class expression can justifiably be
viewed as an object because the expression animal
AND NOT carnivore indeed defines a new
(unnamed) class.

Defining the language primitives as an ontology
results in the RDF graph depicted in Figure 7, which
defines several properties and classes. The class
oil:ClassExpression is a placeholder class that groups
various types of class expressions for definitional pur-
poses. oil:AND and oil:NOT are two particular types
of class expressions. The property oil:hasOperand is
an auxiliary property needed to connect an operator-
type class expression with another class expression.

Modeling Semantics

There are two main approaches to modeling semantics in
computer science: declarative and procedural semantics.

With declarative semantics, an expression E is given
meaning by mapping it to another well-understood for-
malism, or by stating the conclusions or properties that fol-
low from E. The expression can be understood without ref-
erence to any specific computational procedure, which is
why this approach is dubbed “declarative.”

Using procedural semantics, expression E is given mean-
ing by referring to the behavior that some real or virtual
procedure (or program, or machine) will exhibit on E. Often
the only way to obtain the expression’s meaning using pro-
cedural semantics is to simply execute the procedure and
observe the outcome.

This difference between declarative and procedural
semantics loosely coincides with the difference between the
XML and RDF approaches to Web-page semantics. As
we’ve argued, an XML expression has no inherent seman-
tics, and its meaning is only determined by the actions that
one or more programs undertake on it (whether tag-nest-
ing is interpreted as part-of, or as a subtype-of, for
instance). An RDF expression, on the other hand, has a spe-

cific declarative semantics (such as the intended meaning
of subClassOf), and this is specified independently of any
RDF processor; that is, all RDF processors must conform to
the intended semantics.

Together with the W3C, we stand in a long tradition in
Computer Science and AI, which argues that the declara-
tive approach to semantics leads to more shareable and
extensible information and knowledge sources. The argu-
ments about XML vs. RDF do not change substantially when
XML schema is used instead of XML DTDs for specifying
XML document structure. Readers might be tempted to com-
pare XML schema’s “type-extension” mechanism with the
“subclassOf” mechanism in RDF schema, but the similarity
between them is only superficial. In fact, the type-extension
mechanism cannot be used to model ontological subtypes at
all: in XML schema, if type T´ is derived from type T, then
elements of the derived type T´ are not necessarily mem-
bers of the original type T. In the subClassOf relationship in
RDF schema, on the other hand, a member of a subclass is
also a member of the original super-class. As a result, sub-
ClassOf can be used to model ontological subtyping,
whereas XML schema’s type extension cannot.
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The existing description of the primitive rdfs:sub-
ClassOf is extended: the range now includes oil:Clas-
sExpression (instead of just rdfs:Class). Also, the exist-
ing description of rdfs:Class is extended: It is also a
subclass of oil:ClassExpression (because it is consid-
ered a particular type of class expression).

Using the graph in Figure 7, the expression:

class-def defined herbivore subclass-of animal,
NOT carnivore 

can be described in RDF as depicted in Figure 8.
Because every ontology (RDF schema) uses its

own namespace (we chose the prefix oil), terms
from different ontologies can be mixed in one RDF
document without confusion.3 RDF defines a clear
object structure, so it is possible to make assertions
with one language about an object defined in terms
of another language. For example, we could mix the
ontology with behavior statements about different
animal classes using a finite-state automaton lan-
guage.15 This is not possible in XML because a tag’s
meaning (object, attribute, value, and so on) is not
defined, and nothing can be assumed about the
object structure.

Using OIL
The domain ontology defines a vocabulary—prop-
erties and classes—that can be used to write
instance information in RDF. We propose a mech-
anism for extending the RDF data model with
modeling primitives from any ontology language.
Our approach for using the primitives from ontol-
ogy language L to describe a particular domain has
three steps:

■ Step 1. Describe language L’s modeling primi-
tives using RDF schema (effectively writing the
meta-ontology of L in RDF Schema).

■ Step 2. Describe a specific ontology in L using
the resulting RDF schema document.

■ Step 3. Use the RDF schema documents to
describe instances of the specific L ontology
modeled in step 2.

Table 1 lists the expression types for each step.

This three-step approach sug-
gests an additional requirement for an ontology
language L: Because RDF schema is already an
ontology definition language, L must be compati-
ble with it. Thus, existing RDF schema processors
can make maximum use of ontologies defined in L.
The same tools are applicable for all possible Ls,
which leads to flexibility in designing customized
languages.

MERGING AN ONTOLOGY
LANGUAGE WITH RDF SCHEMA
Defining an ontology language as an extension of
RDF schema means every RDF-schema ontology
is valid in the new language (for example, an OIL
processor will also understand RDF schema).
However, by defining the new language as closely
as possible to RDF schema, we also maximize reuse
of existing RDF schema-based applications and
tools. Because the ontology language usually con-
tains vocabulary the RDF schema processor does
not know, however, 100-percent compatibility is
not possible.

In OIL, a class can be a subclass of a Boolean class

rdf:Property

rdf:type

rdf:type

rdf:type
rdf:type

rdf:type
oil:ClassExpressionoil:hasOperand

rdf:subClassOf

rdf:subClassOf

rdf:subClassOf

rdfs:Class 

oil:NOToil:AND

rdfs:domain

rdfs:domain

rdfs:range

rdfs:range

Figure 7. RDF graph for several OILproperties and classes. 



expression, but the original RDF subclass statement
only allows primitive classes as values. We thus had
to extend the OIL subclass statement definition. We
also introduced oil:SlotConstraint to allow restrictions
on slots in class definitions—another aspect of OIL
that is unavailable in RDFS.  To maintain maximum
compatibility with existing applications, however, it
is recommended to use the RDF schema vocabulary
wherever possible (for a case study on how to do this
with OIL, see Broekstra et al.16).

RDF follows an object-attribute-value model, so
we made a basic design decision that every OIL
expression would be an object. To allow subexpres-
sions, we introduced auxiliary attributes that do not
correspond to any original OIL vocabulary

(oil:hasOperand, oil:hasClass, and oil:hasProperty).
Another difference is how slot expressions are han-
dled: Slots are separate entities in RDF, so we had
to treat slot expressions as subclass expressions, as in
the underlying description logic framework.

The major integration points between
RDF/RDFS and OIL are defined by the abstract
OIL class ClassExpression. Furthermore, OIL-slots
are realized as instances of rdf:Property or as sub-
properties of the original rdf:Property. The subslot
relationship is also expressed by original RDF-
means—namely, the rdfs:subPropertyOf relationship.
rdf:Property is enriched by several properties that
specify inverse and transitive roles and cardinality
constraints, which were not originally possible in

Table 1. Steps in the OIL approach to using an ontology language to extend RDF.

Step Expression Type Example Encoding
1 Modeling primitives oil:AND, oil:NOT, … RDF: Metaontology in RDF schema

of ontology language L

2 Specific ontology Class-def giraffe RDF: Ontology (using metaontology
expressed in L Subclass of herbivore and RDF schema)

Slot-constraint eats
Value-type leaf

3 Instances of the specific animal12-eats-leaf34… RDF (RDF schema, metaontology,
ontology and ontology)
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RDF/RDFS (for details, see Horrocks et al.2).
Class definitions are inherited from the original

rdfs:Resource from the RDF schema specification.
Classes can be related with arbitrary class expres-
sions via subclass or equivalence relationships. By
doing this, existing classes from RDFS vocabular-
ies can be accessed and refined in OIL descriptions.
Table 2 contains some of the OIL mappings.

We have implemented an inference engine for
OIL based on the description logic inference engine,
FaCT (http://www.cs.man.ac.uk/~horrocks/FaCT/).
We have also performed several case studies, includ-
ing modeling an ontology for the CIA world fact
book (see http://www.ontoknowledge.org/oil), to test
the overall framework’s flexibility. Furthermore, the
DARPA Agent Markup Language (http://www.
daml.org) uses the principles of OIL as well.

CHALLENGES
The Web community currently regards XML as the
most important step towards semantic integration,
but we argue that this is not true in the long run.
Semantic interoperability will be a sine qua non for
the semantic Web, but it must be achieved by
exploiting the current RDF proposals, rather than
XML labeling. The RDF data model is sound, and
approaches from artificial intelligence and knowl-
edge engineering for establishing semantic inter-
operability are directly applicable to extending it.

Our experience with OIL shows this proposal is
feasible, and a similar strategy should apply to any
knowledge-modeling language. The challenge is
now for the Web and AI communities to expand
this generic method for Web-enabling arbitrary
knowledge-representation languages. ■
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