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Abstract. Behavioral equivalences and preorders are fundamental no-
tions to formalize indistinguishability of transition systems and provide
means to abstraction and refinement. We survey a collection of models
used to represent concurrent probabilistic real systems, the behavioral
equivalences and preorders they are equipped with and the correspond-
ing decision algorithms. These algorithms follow the standard refinement
approach and they improve their complexity by taking advantage of the
efficient algorithms developed in the optimization community to solve
optimization and flow problems.

1 Introduction

1.1 Probabilistic Systems

Probability, time, and nondeterminism. These are three main characteristics of
several real-world applications. Probability occurs every time the behavior of
the applications is not unique, either by construction or by physical properties.
For example, distributed algorithms like the Zeroconf protocol or cryptographic
protocols like SSL are based on random choices to break symmetry or to insert
uncertainty in order to achieve their goals. Each time a message is transmitted
on the network, in fact, transmission protocols have to manage the corruption
of the messages, as well as their loss, as the effect of the interference with other
concurrent transmissions or physical properties of the transmission medium. For
instance, simultaneous transmissions on the same channel of a wireless network
lead to the collision of the sent messages and their corruption.

Beside probabilities, these systems often have another source of uncertainty,
namely nondeterminism, that appears whenever an event may occur with un-
predictable behavior; for instance, the event of a host starting the transmission
in a wireless network.



Time governs the evolution of the system: with the time passing, the system
performs and reacts to actions and correspondingly changes its state, according
to its goals. Time can be considered as a discrete component (e.g., a program
running on a computer performs one operation at each tick of the digital clock)
or as a continuum behavior (e.g., the arrival and service of customers at the
information desk).

To study the properties of such real-world applications, several models have
been proposed by researchers: the basic model in the discrete time domain is the
discrete time Markov chains (DTMCs) model [26,52], where the time is discrete
(i.e., the system performs one operation per clock tick) and only probability
determines the reached states. The continuous-time counterpart is known as
the continuous-time Markov chains (CTMCs) [3, 5] model, where exponentially
distributed sojourn times distributions control the evolution of the system.

DTMCs and CTMCs are purely probabilistic, and they have been extended
with nondeterminism to permit different operations or behaviors from a specific
state. This extension results to Markov decision processes (MDPs) [10,31,32,44]
and continuous-time Markov decision processes (CTMDPs) [7,11,31,44,54], re-
spectively. These models, despite being widely used to represent and study real
systems, are not fully compositional, that is, there is no guarantee that complex
systems can be obtained by composing smaller components while preserving
the intended behavior. This property is rather important as it is usually much
easier to model and study (a set of) small systems and then combine them to-
gether rather than a single large system. Moreover, in the real world, usually
applications and protocols involve several parties each one composed by mod-
ules working together in parallel. Two models have been proposed to achieve
such compositional property: the probabilistic automata (PAs) model [47, 48]
for discrete time systems and the interactive Markov chains (IMCs) [28] model
for continuous-time systems. Recently one model has been proposed to unify
and merge all such models in a single framework: the Markov automata (MAs)
model [17, 22, 23]. This formalism is suitable for studying systems featuring
continuous-time based behaviors as well as probabilistic and nondeterministic
choices. Moreover, the Markov automata model provides the semantics to every
generalized stochastic Petri net (GSPN) [19], a popular modelling formalism for
performance and dependability analysis.

1.2 Comparing System Behaviors

Given a real world system we want to analyze, for instance by verifying whether
it satisfies a set of properties, we can model it in several ways. This analysis is
commonly known as model checking. In particular, we can decide to model it as
a DTMC or as a PA whenever we are interested in its properties as a discrete
time system; alternatively, if we want to study its behavior in continuous time,
we can use CTMCs or IMCs. The choice of the model framework depends on
the properties we are interested in and the details we want to consider.

Once the model framework has been chosen, the real system can be repre-
sented by several different models: for example, we can use different names for



the states, we can encode probabilistic choices as sequences of events or as single
events, we can detail or abstract from particular details, and so on. It is clear
that these choices affect the resulting model whose size may vary even if all these
models represent the same real system.

A possible way to abstract away from this modelling details is to use the
so called simulation and bisimulation relations that allow us to declare that
two models are similar or equivalent whenever they are related, respectively.
Intuitively, a system S1 simulates a system S2 if S1 is able to mimic whatever S2

can do; the bisimulation requires that also S2 simulates S1. Usually, a simulation
(or bisimulation) is defined as a binary relation over the states of the model and
for each pair (s1, s2), if s1 can perform a step, then s2 has to match such step
via its own steps in order to reach states that are related to the states reached
from s1. Depending on the steps s2 is allowed to perform, simulation relations
can be classified as strong (s2 has to match with exactly one step) or as weak (s2
is free to perform an arbitrary additional number of internal steps). Computing
such simulation relations is rather easy by using classical refinement algorithms,
provided that we have a procedure for deciding the existence of the matching
step from s2 given a step from s1. As we will see in Section 6, such procedure
is the only part that has to be changed in order to decide different simulations
and it is also the bottleneck of the computation and the main source of the
complexity of the decision procedure.

We are interested in systems related by a simulation relation since also the
properties they satisfy are related, so we can check whether the real world sys-
tem satisfies a given property by verifying it in one of the similar models: the
theory ensures us that the evaluation of the property does not depend on the
specific model we consider to represent the real world system. When we consider
the bisimulation relation, among all possible bisimilar models there is a unique
minimal model (up to isomorphism) that represents the original system [21]: the
quotient model. The quotient is the model with the minimum number of states
and transitions still behaving as the system we want to analyze; this minimality
mitigates the state explosion problem of the model checking [8, 14, 34] as well
as it helps in reducing the computational effort needed to verify whether the
desired properties are fulfilled. Moreover, the computation of the quotient au-
tomaton is independent on the properties we want to check, thus even if it may
be rather time consuming, the overall gain it provides to the following model
checking phase may justify it.

1.3 Optimization Problems

Optimization or mathematical programming uses mathematical techniques to
find the best solution among a set of given alternatives. More precisely, an opti-
mization problem asks for maximizing or minimizing a real valued function for
which the variables take values from a permissible set. It includes many diverse
areas such as decision theory [42], flow network optimization [1] and so on. Flow
network optimization is a subclass of linear programming that has application



in a number of domains such as computer science, logistics, transportation sys-
tems. Although flow network based models are not as wide as models that can
be formulated mathematically using linear or integer programming, they can
be solved very quickly which enables them to be a powerful tool for decision
making [1].

1.4 Probabilistic Systems vs. Optimization

To a casual observer, flow and optimization problems seem rather unrelated to
probabilistic concurrent systems. In fact, as we have seen, the former aim to op-
timize problems like resource allocation or goods transportation and distribution
while the latter model systems that run in parallel where the behavior depends
on probabilistic events as well like random failures, errors, and choices needed
to break symmetry. To a careful observer, flow and optimization problems and
probabilistic concurrent systems are not so unrelated, since the probability mass
concentrated in the initial state can be seen as a liquid that flows and distributes
in the network representing the possible evolution of the system. To highlight this
connection, in this survey we consider a selection of papers [29,30,55,57] that, to-
gether with other works in concurrency literature such as [2,4,13,15,20,21,43,45],
make use of flow and optimization problems to decide or solve efficiently the
challenges of probabilistic concurrent systems.

Organization of the paper. After the mathematical preliminaries in Section 2,
we present in Section 3 the discrete and continuous-time models, followed in
Section 4 by the simulation and bisimulation relations defined on them. We recall
in Section 5 the theory about networks and flow problems that are widely used
in Section 6 to efficiently compute simulations and bisimulations. We conclude
the paper in Section 7.

2 Mathematical Preliminaries

2.1 Functions and Relations

Given a set X and ⊥ /∈ X, we denote by X⊥ the set X ∪ {⊥}.
Let X, Y be two finite sets, f : X → R and g : X × Y → R be two functions.

For X ′ ⊆ X, we denote by f(X ′) the value f(X ′) =
∑
x∈X′ f(x); for x ∈ X

and Y ′ ⊆ Y , g(x, Y ′) =
∑
y∈Y ′ g(x, y) and similarly, for y ∈ Y and X ′ ⊆ X,

g(X ′, y) =
∑
x∈X′ g(x, y). Finally, we define for each x ∈ X and y ∈ Y the

functions g(x, · ) : Y → R and g( · , y) : X → R as g(x, · )(y′) = g(x, y′) for
each y′ ∈ Y and g( · , y)(x′) = g(x′, y) for each x′ ∈ X, respectively. Given two
functions f, g : X → R and p ∈ R, we denote by p · f : X → R the function
(p · f)(x) = p · f(x) for each x ∈ X and f + g : X → R the function (f + g)(x) =
f(x) + g(x) for each x ∈ X.

For a function f : X → R≥0, we denote by Supp(f) the support set Supp(f) =
{x ∈ X | f(x) > 0 }.



Given a relation R ⊆ X × Y and the sets X ′ ⊆ X and Y ′ ⊆ Y , we define
R(X ′) = { y ∈ Y | ∃x ∈ X ′.x R y } and R−1(Y ′) = {x ∈ X | ∃y ∈ Y ′.x R y }.

Given a relation R ⊆ X×X, we call R∩R−1 the kernel of R and we denote
by R⊥ ⊆ X⊥ ×X⊥ the relation R∪ { (⊥, x) | x ∈ X⊥ }.

2.2 Probability Distributions

For a set X, denote by Disc(X) the set of discrete probability distributions over
X, and by SubDisc(X) the set of discrete sub-probability distributions over X.
Since a discrete sub-probability distribution ρ ∈ SubDisc(X) can be seen as a
function ρ : X → [0, 1], we adopt the same terminology and operations. Given
ρ ∈ SubDisc(X), we denote by ρ(⊥) the value 1−ρ(X) where ⊥ /∈ X, and by |ρ|
the size |Supp(ρ)|. We extend ρ to a probability distribution ρ⊥ ∈ Disc(X⊥) by
defining ρ⊥(⊥) = 1− ρ(X) and ρ⊥(x) = ρ(x) for each x ∈ X. We denote by δx,
where x ∈ X⊥, the Dirac distribution such that δx(y) = 1 for y = x, 0 otherwise.
For a sub-probability distribution ρ, we also write ρ = { (x, px) | x ∈ X } where
px is the probability of x. We say that ρ is stochastic if ρ(X) = 1 and absorbing
if ρ(⊥) = δ⊥. We sometimes refer to ρ(X) as the mass of ρ.

The lifting L(R) ⊆ Disc(X) × Disc(X) [34] of a relation R ⊆ X × X to
distributions is defined as: for ρ1, ρ2 ∈ Disc(X), ρ1 L(R) ρ2 holds if there exists
a weighting function w : X ×X → [0, 1] such that

1. for each (x1, x2) ∈ X ×X, w(x1, x2) > 0 implies x1 R x2,
2. for each x1 ∈ X, w(x1, X) = ρ1(x1), and
3. for each x2 ∈ X, w(X,x2) = ρ2(x2).

This definition of lifting has been proposed for discrete systems [34, 50] and it
is indeed equivalent [55] to the definition based on R-closure introduced by [18]
for non-discrete systems: the lifting L(R) ⊆ Disc(X) × Disc(X) of a relation
R ⊆ X × X is defined as: for ρ1, ρ2 ∈ Disc(X), ρ1 L(R) ρ2 holds if for each
X ′ ⊆ X, ρ1(X ′) ≤ ρ2(R(X ′)).

Extending the lifting to sub-distributions is rather easy [57]: for ρ1, ρ2 ∈
SubDisc(X), ρ1 L(R) ρ2 holds if there exists a weighting function w : X⊥×X⊥ →
[0, 1] such that

1. for each (x1, x2) ∈ X⊥ ×X⊥, w(x1, x2) > 0 implies x1 R⊥ x2,
2. for each x ∈ X⊥, w(x,X⊥) = ρ1(x), and
3. for each x ∈ X⊥, w(X⊥, x) = ρ2(x).

3 The Models

We now introduce the formal models for probabilistic concurrent systems we
consider in this survey paper. We first recall the discrete time models and then
the continuous-time models. In this work we consider only finite models, i.e.,
systems such that states, actions, and transition relations are finite.



3.1 Discrete Time Models

The first model we consider is the labelled substochastic discrete time Markov
chain model where each state enables only a transition that may reach several
states, each one with a given probability. The status of the system is represented
by a set AP of atomic propositions that are true in the given state.

Definition 1 (Substochastic discrete time Markov chain [8, 33]). A la-
belled substochastic Discrete Time Markov Chain (sDTMC) S is a tuple S =
(S, s̄,P, L) where S is a finite set of states, s̄ is the start state, P : S×S → [0, 1]
is a probability matrix such that P(s, · ) ∈ SubDisc(S) for all s ∈ S, and
L : S → 2AP is a labeling function.

Given a state s and the associated distribution µs = P(s, · ) ∈ SubDisc(S), we
call (s, µs) a transition and we say that (s, µs) is enabled by s and that µs is
the target of (s, µs).
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Figure 1: An example of substochastic discrete time Markov chain

Figure 1 shows an example of a sDTMC, where s is the initial state, denoted
by the short incoming arrow. For each state, we represent the enabled transition
by a set of arrows grouped by an arc and pointing to the target states, each
one decorated with the corresponding probability. For example, the transition
enabled by s reaches t and u with probability 1

2 and 3
10 , respectively. As usual

in this kind of representation of the model, to keep the picture clear we have
omitted the arrows reaching states with probability 0. For instance, from s there
should be also an arrow reaching v with probability 0. As labels of the states, we
take AP = S = {s, t, u, v} and we let L(z) = z for each state z ∈ S. Note that
the transitions from both s and u have as target a sub-probability distribution
that is not a probability distribution. In fact, for the transition (s, µs) the mass
of µs is 8

10 and the transition (u, µu) the mass of µu is 9
10 .

We call a state s stochastic (absorbing) if the distribution P(s, · ) is stochas-
tic (absorbing) respectively. For the sDTMC in Figure 1, t is stochastic, v is
absorbing while both s and u are neither stochastic nor absorbing. If we restrict
the states of a sDTMC to be either stochastic or absorbing, we obtain a discrete
time Markov chain:



Definition 2 (Discrete time Markov chain [26, 52]). A labelled Discrete
Time Markov Chain (DTMC) D is a labelled sDTMC D = (S, s̄,P, L) such that
for each state s ∈ S, P(s, S) ∈ {0, 1}.
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Figure 2: An example of discrete time Markov chain

Figure 2 shows an example of a DTMC. It is actually the sDTMC in Figure 1
where probability distributions have been normalized to have mass 1.

These two models are suitable for systems exhibiting only probabilistic be-
haviors, that is, they are not able to represent systems where different transitions
are available from the states. For instance, the system that is in a particular state
may react differently to different stimuli and this can be modeled by performing
different transitions leading to different distributions over the states of the sys-
tem. We call this capacity nondeterminism that is encoded, together with proba-
bility, by the following two discrete time models: Markov decision processes and
probabilistic automata. In order to have a uniform approach, for probabilistic
automata we adopt the notation of [57] instead of the one used in [47,48].

Definition 3 (Probabilistic automaton [47,48]). A Probabilistic Automa-
ton (PA) P is a tuple P = (S, s̄, Σ,→, L) where S is a finite set of states, s̄ is
the start state, Σ is a finite set of actions, → ⊆ S × Σ × Disc(S) is a finite
probabilistic transition relation, and L : S → 2AP is a labeling function.

The set Σ is divided in two sets H and E of internal (hidden) and external
actions, respectively. We remark that the definition of probabilistic automata
we are presenting here is different from the original one given by Segala in [48]
named simple probabilistic automata, but currently known as just probabilistic
automata. In fact, in such work (simple) probabilistic automata are defined as
follows (cf. [48, Section 3.1]): A Probabilistic Automaton (PA) P is a tuple
(S, s̄, Σ,→) where S is a countable set of states, s̄ ∈ S is the start state, Σ is a
countable set of actions, and → ⊆ S × Σ × Disc(S) is a probabilistic transition
relation. The main difference with Definition 3 is that in [48] there is no labeling
function. This difference can be easily bridged by defining L as L(s) = ∅ for each
s ∈ S. Figure 3 shows an example of a PA where H = {τ} and E = {a, b}.

In a probabilistic automaton P we can distinguish between two kinds of
nondeterminism: external and internal nondeterminism. We say that a state s
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Figure 3: An example of probabilistic automaton

exhibits external nondeterminism if there exist two different actions a and b such
that (s, a, µa) ∈ → and (s, b, µb) ∈ → for some µa, µb ∈ Disc(S). For instance,
this is the case for the state v of the PA in Figure 3 since we have the two
transitions (v, a, δs) and (v, b, δu). On the other hand, we say that a state s
exhibits internal nondeterminism if there exist an action a and two different
distributions µ1, µ2 ∈ Disc(S) such that (s, a, µ1) ∈ → and (s, a, µ2) ∈ →. This
happens for the state u that enables two different transitions both with action
b. Note that a state may exhibit both internal and external nondeterminism (as
happens for v) or none of them (see states s and t).

3.2 Continuous-Time Models

We now consider the continuous-time counterparts of the previous models, where
state transitions are governed by the passing of the time. Essentially, they are
defined as the discrete time models except for the probability distributions that
are replaced by transition rates, i.e., the speed of transition firing.

The first model we recall is about continuous-time Markov chains that are
just discrete time Markov chains where the probability matrix is replaced by the
rate matrix.

Definition 4 (Continuous-time Markov chain [5, 44,55]).
A labelled Continuous-Time Markov Chain (CTMC) C is a tuple C = (S, s̄,R, L)
such that S, s̄, and L are defined as for DTMC and R : S×S → R≥0 is the rate
matrix.

Note that the usual definition of CTMCs, such as the one in [3], requires that
R : S × S → R where for each s ∈ S, R(s, s′) ≥ 0 for each s′ 6= s and
R(s, s) = −

∑
s′ 6=s R(s, s′). As remarked in [5], allowing self loops neither al-

ters the transient nor the steady-state behavior of the CTMC, but it allows the
usual interpretation of the linear-time CSL operators like next-step and until.

Figure 4 shows an example of a CTMC. Greek letters λ, κ, and ρ are the
rates governing the speed of the firing of the transitions. So, for example, the λ
on the transition from s to t means that R(s, t) = λ. We omitted the transitions
with rate 0 to keep the picture clear.

The probability of performing a transition and reaching a given state can be
computed as follows: starting from the state s, the probability of performing a
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Figure 4: An example of continuous-time Markov chain

transition within time t is 1−e−R(s,S)·t and the probability of reaching the state

s′ with this transition is (1− e−R(s,S)·t) · R(s,s′)
R(s,S) .

This allows us to consider the DTMC embedded into a CTMC that captures
the system behavior after abstracting away the time:

Definition 5 (Embedded DTMC [5, 55, 57]). Let C be a CTMC. The em-
bedded DTMC D of C is defined by emb(C) = (S, s̄,P, L) where for each s, s′ ∈
S, P(s, s′) is defined as P(s, s′) = R(s,s′)

R(s,S) if R(s, S) > 0, and P(s, s′) = 0

otherwise.

Similarly to CTMCs and DTMCs, the continuous-time counterparts of PAs,
called continuous-time probabilistic automata (CTPA), are obtained by replac-
ing the transition relation with a rate matrix.

We call a function r : S → R≥0 a rate function and we denote the set of all
rate functions by Rate(S). Given the rate function r, we call r(S) the exit rate.
Given R and a state s of a CTMC C, we call R(s, · ) : S → R≥0 the rate function
associated with s and we usually denote it by rs.

Definition 6 (Continuous-time probabilistic automaton [11, 37, 44]).
A Continuous Time Probabilistic Automaton (CTPA) CP is a tuple CP =
(S, s̄, Σ,R, L), where S is a finite set of states, s̄ is the start state, Σ is a finite
set of actions, R ⊆ S × Σ × Rate(S) is a finite rate matrix, and L : S → 2AP

is a labeling function.
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Figure 5: An example of continuous-time probabilistic automaton

Figure 5 shows an example of CTPA; arrows emanating from a state with the
same label and shape belong to the same transition. For instance, state s enables



two transitions (s, a, r) and (s, a, r′) with r, r′ ∈ Rate(S) such that r(t) = σ,
r(u) = θ, and r(s) = r(v) = 0 and r′(t) = λ, r′(u) = κ, and r′(s) = r′(v) = 0,
respectively.

3.3 Mixed Discrete and Continuous-Time Models

We now present two models that merge continuous-time and discrete time be-
havior, the interactive Markov chains and the Markov automata. They exhibit
continuous-time behavior like CTMCs, where transitions are fired by the passage
of the time, as well as discrete time behavior like labelled transitions systems
where transitions are fired by actions. These two models are especially suited for
compositional reasoning over continuous-timed systems due to the separation of
action and Markovian transitions and the maximal progress assumption, that is,
if a state enables both timed transitions and internally labelled transitions, then
the latter take precedence and the former are ignored.

Definition 7 (Markov automaton [17,22,23]). A Markov Automaton (MA)
MA is a tuple MA = (S, s̄, Σ,→, R, L) where S is a finite set of states, s̄ is
the start state, Σ is a finite set of actions, → ⊆ S × Σ × Disc(S) is a finite
probabilistic transition relation, R ⊆ S × R≥0 × S is a finite set of timed
transitions, and L : S → 2AP is a labeling function.

s

t u v

τ

5
8

3
8

a

1
2

1
2

λ

b

1
2

1
2

κ

a
1

a
1

Figure 6: An example of Markov automaton

Figure 6 shows an example of a MA. As for the CTMC in Figure 4, we
use Greek letters λ and κ for the rates governing the speed of the firing of the
transitions that we represent by dashed arrows in order to distinguish them from
probabilistic transitions.

An interactive Markov chain is an MA such that each probabilistic transition
leads to a Dirac distribution, i.e., to a single state:

Definition 8 (Interactive Markov chain [28]). An Interactive Markov Chain
(IMC) I is a tuple I = (S, s̄, Σ, →,R, L) where S is a finite set of states, s̄ is
the start state, Σ is a finite set of actions, → ⊆ S × Σ × S is an interactive
transition relation, R ⊆ S × R≥0 × S is a finite set of timed transitions, and
L : S → 2AP is a labeling function.
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Figure 7 shows an example of an IMC. In particular, IMC can be seen as the
merger of labelled transitions systems and CTMCs while MA can be seen as the
merger of PAs and CTMCs. In fact, each model is an instance of the MA model
with specific restrictions on → and R (cf. [22, Section 3]). As for probabilistic
automata, the original definitions do not involve the labeling function L that
we have added for uniformity. Again, the original model can be recovered by
defining L(s) = ∅ for each s ∈ S.

3.4 Terminology and Notation

In the remaining of the paper we adopt the following terminology and notation,
given in the context of probabilistic automata [27,29,47,48,57].

We refer to each instance of the discrete and continuous-time models as
automaton and we denote it by A, that is, we use the term (discrete time)
automaton and A for the sDTMC S, the DTMC D, and the PA P as well as the
term (continuous-time) automaton and A for the CTMC C and the CTPA CP.

Given a PA P, we let s,t,u,v, and their variants with indices range over S; a, b
range over actions; and τ range over internal actions. A transition tr = (s, a, µ) ∈
→, also denoted by s a−→ µ, is said to leave from state s, to be labelled by a, and
to lead to the target distribution µ, also denoted by µtr . We denote by src(tr)
the source state s and by act(tr) the action a. We also say that s enables action
a, that action a is enabled from s, and that (s, a, µ) is enabled from s. Finally,
we let s −→ = { tr ∈ → | src(tr) = s } be the set of transitions enabled by s and
a→ = { tr ∈ → | act(tr) = a } be the set of transitions with label a.

An execution fragment of a PA P is a finite or infinite sequence of alternating
states and actions α = s0a1s1a2s2 . . . starting from a state s0, also denoted by
first(α), and, if the sequence is finite, ending with a state denoted by last(α),
such that for each i > 0 there exists a transition (si−1, ai, µi) ∈ → such that
µi(si) > 0. The length of α, denoted by len(α), is the number of occurrences of
actions in α. If α is infinite, then len(α) = ∞. Denote by frags(P) the set of
execution fragments of P and by frags∗(P) the set of finite execution fragments
of P. An execution fragment α is a prefix of an execution fragment α′, denoted
by α 6 α′, if the sequence α is a prefix of the sequence α′. The trace trace(α) of
α is the sub-sequence of external actions of α; we denote by ε the empty trace
and we define trace(a) = a for a ∈ E and trace(a) = ε for a ∈ H.



We extend the above terminology to the other models introduced so far,
when applicable; in particular, we use → to denote the transition relations P
and R of DTMCs and sDTMCs, and of CTMCs and CTPAs, respectively. For
instance, given a DTMC D, a state s, and a probability distribution µ, we still
call (s, τ, µ) a transition, denoted by s τ−→ µ, also written (s, τ, µ) ∈ P, provided
that µ = P(s, · ). Note that here τ denotes just a step since it is not an actual
action labeling the transition. Similarly, given a CTPA CP, a state s, an action
a, and a rate function r, we still write (s, a, r) ∈ → if R(s, a) = r and we call
(s, a, r) a transition, denoted by s a−→ r as well.

For a CTPA CP and a rate function r, we denote by µr ∈ SubDisc(S) the
induced sub-probability distribution defined by: if r(S) > 0, then for each s ∈ S,

µr(s) = r(s)
r(S) , and if r(S) = 0, then µr = δ⊥.

We adopt a similar notation also for CTMCs: for a CTMC C and a state s,
we denote by µrs ∈ SubDisc(S) the sub-probability distribution induced by the
rate function rs = R(s, · ), i.e., µrs = P(s, · ) for the embedded DTMC emb(C).

Given an automaton A and a state s, we denote by post(s) the set of suc-
cessors of the state s, that is, post(s) = Supp(P(s, · )) if A is a DTMC or a
sDTMC, and post(s) = { s′ ∈ S | R(s, s′) > 0 } if A is a CTMC. For a sDTMC
S and a state s, we denote by post⊥(s) the set post⊥(s) = Supp(µ⊥) where
µ = P(s, · ). Similarly, we denote by pre(s) the set of predecessors of the state
s, that is, pre(s) = { s′ ∈ S | P(s′, s) > 0 } if A is a DTMC or a sDTMC,
and pre(s) = { s′ ∈ S | R(s′, s) > 0 } if A is a CTMC. Finally, we denote by
reach(s) the states that are reachable with positive probability from s, that is,
reach(s) = { t ∈ S | ∃α ∈ frags∗(A).last(α) = t }.

4 Simulations and Bisimulations

We recall now the main behavioral preorders and equivalences that are used
for the models presented in Section 3. These relations allow us to relate system
that are syntactically different, for instance because they use different names for
the states, but exhibit equivalent behaviors. Moreover, they allow to reduce the
size of the automata without changing their properties. This is especially useful
to mitigate the state space explosion problem that usually happens in model
checking [8, 14, 34]. An empirical investigation to show the effectiveness of such
behavioral relations minimization is performed in [36]. This study indicates that
for traditional model checking, huge state space reductions (up to logarithmic)
may be acquired. It is worthwhile to mention that the definition of such relations
is based on a single automaton; however, as we will see, they are usually used
to relate two automata A1 and A2. This technical problem is easily solved by
taking the disjoint union of the two automata, that is, the automaton whose set
of states is the disjoint union of the sets of states of A1 and A2, and whose other
components are the union of the corresponding components of A1 and A2.



4.1 Strong Simulation and Bisimulation

The first relations we introduce are the strong simulation and bisimulation, that
are the natural extension to probabilistic systems of the homonymous relations
for labelled transition systems [39].

Definition 9 (Strong simulation for discrete time probabilistic automa-
ta [9, 50,56,57]). Let A be a discrete time probabilistic automaton. A relation
R on S is a strong simulation if, for each pair of states s, t ∈ S such that s R t,

– L(s) = L(t) and
– if s a−→ µs for some probability distribution µs, then there exists µt such that
t a−→ µt and µs L(R) µt.

We say that the discrete time automaton A2 strongly simulates A1 if there
exists a strong simulation R on the disjoint union S1 ] S2 such that s̄1 R s̄2
and we say that the state t strongly simulates the state s if there exists a strong
simulation R such that s R t. We denote the coarsest strong simulation, called
strong similarity, by ..

In the remaining of the paper and similarly for the following simulations, we
refer to the second condition (if s a−→ µs for some probability distribution µs,
then there exists µt such that t a−→ µt and µs L(R) µt) as the step condition
since it ensures that from two similar states s and t, each transition (or step)
from s is matched by a transition/step from t and the reached states are still
related according to the lifting of the reached distributions.
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Figure 8: Two PAs with L(x) = ∅ for each state x such that A1 . A2. The single
transition from u2 with action a, b is just a compact form for the two transitions
(u2, a, δu2) and (u2, b, δu2)

Figure 8 shows two probabilistic automata A1 and A2 such that A1 . A2.
In fact, consider the relation R = {(s1, s2), (t1, t2), (u1, u2), (v1, v2), (z1, u2)}; it
is rather easy to verify that R satisfies Definition 9: it is trivial to verify the step
condition for the pairs (t1, t2), (u1, u2), (v1, v2), and (z1, u2). The only interesting
case is the pair (s1, s2); the transition s1

a−→ µ1a with µ1a = {(t1, 12 ), (u1,
1
2 )} is

matched by s2 via the transition s2
a−→ µ2a with µ2a = {(t2, 13 ), (u2,

2
3 )} such



that µ1a L(R) µ2a. The weighting function [34,56,57] wa justifying µ1a L(R) µ2a

is defined as follows:

wa(x1, x2) =


1
3 if x1 = t1 and x2 = t2,
1
6 if x1 = t1 and x2 = u2,
1
2 if x1 = u1 and x2 = u2, and

0 otherwise.

Similarly, the transition s1
b−→ µ1b with µ1b = {(z1, 13 ), (v1,

2
3 )} is matched by s2

via the transition s2
b−→ µ2b with µ2b = {(u2, 23 ), (v2,

1
3 )} such that µ1b L(R) µ2b.

The weighting function wb justifying µ1b L(R) µ2b is:

wb(x1, x2) =


1
3 if x1 = z1 and x2 = u2,
1
3 if x1 = v1 and x2 = u2,
1
3 if x1 = v1 and x2 = v2, and

0 otherwise.

The definition of strong simulation for continuous-time automata is almost
the same, except for the fact that we require that t can move stochastically faster
than s, i.e., t has a rate higher than s:

Definition 10 (Strong simulation for continuous-time probabilistic au-
tomata [9,56,57]). Let A be a continuous-time probabilistic automaton. A re-
lation R on S is a strong simulation if, for each pair of states s, t ∈ S such that
s R t,

– L(s) = L(t) and
– if s a−→ rs for some rate function rs, then there exists a rate function rt such

that t a−→ rt, µrs L(R) µrt , and rs(S) ≤ rt(S).

We say that the continuous-time automaton A2 strongly simulates A1 if there
exists a strong simulation R on the disjoint union S1 ] S2 such that s̄1 R s̄2
and we say that the state t strongly simulates the state s if there exists a strong
simulation R such that s R t. We denote the coarsest strong simulation, called
strong similarity, by ..

Figure 9 shows two continuous time probabilistic automata A1 and A2 such
that A1 . A2. The relation R = {(s1, s2), (t1, t2), (u1, u2), (t1, u2), (u1, t2)} in-
deed justifies A1 . A2: consider for instance the pair (t1, t2); the rate func-
tion rt1 induces the probability distribution µrt1 = δu1

and the overall rate
rt1(S) = λ. For t2, we have the rate function rt2 that induces the probability
distribution µrt2 = δu2 and the overall rate rt1(S) = 3λ, thus rt1(S) ≤ rt2(S).
Since (u1, u2) ∈ R, then δu1 L(R) δu2 is trivially satisfied, hence the step con-
dition is satisfied. A similar argument shows that the step condition is satisfied
for the pairs (u1, u2), (t1, u2), and (u1, t2).

Now, consider the pair (s1, s2): we distinguish the case of the transitions with
label b and c and the transition with label a, all from s1. The transition from s1
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Figure 9: Two CTPAs with L(s1) = L(s2) = {s} and L(x) = ∅ for each remaining
state x such that A1 . A2

with label b induces the probability distribution µrbs1
= δt1 and the overall rate

rbs1(S) = 2λ. For s2, we have the rate function rbs2 that induces the probability
distribution µrbs2

= δu2
and the overall rate rbs2(S) = 4λ, thus rbs1(S) ≤ rbs2(S).

Since (t1, u2) ∈ R, then δt1 L(R) δu2 trivially holds, hence the step condition is
satisfied. The case for the label c is similar.

The last step condition we have to check involves the transition with label
a from s1. The rate function ras1 induces the probability distribution µras1 =

{(t1, λ3λ ), (u1,
2λ
3λ )} and the overall rate ras1(S) = 3λ. For s2, we have the rate

ras2 that induces the probability distribution µras2 = {(t2, λ4λ ), (u2,
3λ
4λ )} and the

overall rate ras2(S) = 4λ. Obviously, ras1(S) ≤ ras2(S); µras1
L(R) µras2

is justified
by the weighting function w defined as

w(x1, x2) =


1
4 if x1 = t1 and x2 = t2,
1
12 if x1 = t1 and x2 = u2,
2
3 if x1 = u1 and x2 = u2, and

0 otherwise

The definition of strong bisimulation and strong bisimilarity, denoted by ∼,
is obtained by requiring R to be a symmetric relation.

Definition 11 (Strong bisimulation [38]). Let A be a discrete time or a
continuous-time probabilistic automaton. A relation R on S is a strong bisimu-
lation if R is symmetric and a strong simulation.

We denote the coarsest strong bisimulation, called strong bisimilarity, by ∼.

Other definitions of strong bisimulation require R to be an equivalence relation
but it is easy to show that such definitions are equivalent to Definition 11.

Finally, only strong bisimulation on IMCs has been defined [28], and it is the
expected merge of the bisimulation for CTMCs and labelled transition systems:

Definition 12 (Strong bisimulation for IMCs [28]). Let I be a IMC. An
equivalence relation R on S is a strong bisimulation if, for each pair of states
s, t ∈ S such that s R t,



– L(s) = L(t),
– if s a−→ s′ for some s′ ∈ S and a ∈ Σ, then there exists t′ such that t a−→ t′

and s′ R t′, and
– if s does not enable a transition with label τ , then for each C ∈ S/R, γ(s, C) =
γ(t, C) where γ(v, C) =

∑
{λ∈R≥0|v λ−→v′,v′∈C }

λ.

We say that the IMC A2 strongly bisimulates A1 if there exists a strong
bisimulation R on the disjoint union S1 ] S2 such that s̄1 R s̄2 and we say that
the state t strongly bisimulates the state s if there exists a strong bisimulation
R such that s R t. We denote the coarsest strong bisimulation, called strong
bisimilarity, by ∼.

A simulation (and a bisimulation) can be seen as a game where in each
round the challenger, or attacker, s proposes a transition, or step, that has to
be matched by the defender t. The two states s and t are strong (bi-)similar if
the defender is always able to match the challenging transitions proposed by the
attacker, that is, the game can be played forever.

4.2 Strong Probabilistic Simulation and Bisimulation

The fact that (continuous-time) probabilistic automata may exhibit internal non-
determinism, i.e., a state can enable different transitions with the same label,
allows us to define the probabilistic counterpart of strong simulation and bisim-
ulation where each transition proposed by the challenger is matched by some
convex combination of the defender’s enabled transitions.

Given a PA P, a state s ∈ S, an action a ∈ Σ, and a distribution µ ∈ Disc(S),
we say that there exists a combined transition s a−→C µ if there exists a finite
set I of indexes, a family {pi}i∈I ⊆ [0, 1] such that

∑
i∈I pi = 1, and a family

{s a−→ µi}i∈I ⊆ → such that µ =
∑
i∈I pi · µi.

Definition 13 (Strong probabilistic simulation for PAs [49, 50]). Let A
be a PA. A relation R on S is a strong probabilistic simulation if, for each pair
of states s, t ∈ S such that s R t,

– L(s) = L(t) and
– if s a−→ µs for some probability distribution µs, then there exists µt such that
t a−→C µt and µs L(R) µt.

We say that the PA P2 strongly probabilistically simulates P1 if there exists a
strong probabilistic simulation R on the disjoint union S1]S2 such that s̄1 R s̄2
and we say that the state t strongly probabilistically simulates the state s if there
exists a strong probabilistic simulation R such that s R t. We denote the coarsest
strong probabilistic simulation, called strong probabilistic similarity, by .p.

Figure 10 shows two PAs A1 and A2 such that A1 .p A2. The relation jus-
tifying A1 .p A2 is R = { (x1, x2) | x ∈ {s, t, u} }. All cases are trivial, except
for the pair (s1, s2) and the transition s1

a−→ µ1 with µ1 = {(t1, 12 ), (u1,
1
2 )}.
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Figure 10: Two PAs with Li(xi) = {x} for each state xi, i = 1, 2 such that
A1 .p A2

This transition is matched by s2 via the combined transition s2
a−→ µ2 with

µ2 = {(t2, 12 ), (u2,
1
2 )}. Such combined transition is obtained by taking transi-

tions s2
a−→ δt2 and s2

a−→ δu2 both with probability 1
2 .

The definition of combined transition for CTPAs requires to consider for the
convex combination only transitions with the same exit rate, in order to obtain a
combined transition that is still exponentially distributed (see [57, Example 2.17]
for more details).

Given a CTPA CP, a state s ∈ S, an action a ∈ Σ, and a rate function
r : S → R≥0, we say that there exists a combined transition s a−→C r if there
exists a finite set I of indexes, a family {pi}i∈I ⊆ [0, 1] such that

∑
i∈I pi = 1,

and a family {s a−→ ri}i∈I ⊆ R such that ri(S) = rj(S) for each i, j ∈ I and
r =

∑
i∈I pi · ri.

As before, the definition of strong probabilistic simulation for CTPAs is the
obvious continuous-time counterpart of the definition for PAs:

Definition 14 (Strong probabilistic simulation for CTPAs [9, 28, 56,
57]). Let A be a CTPA. A relation R on S is a strong probabilistic simulation
if, for each pair of states s, t ∈ S such that s R t,

– L(s) = L(t) and

– if s a−→ rs for some rate rs, then there exists rt such that t a−→C rt, µrs L(R)
µrt , and rs(S) ≤ rt(S).

We say that the CTPA CP2 strongly probabilistically simulates CP1 if there
exists a strong probabilistic simulation R on the disjoint union S1]S2 such that
s̄1 R s̄2 and we say that the state t strongly probabilistically simulates the state
s if there exists a strong probabilistic simulation R such that s R t. We denote
the coarsest strong probabilistic simulation, called strong probabilistic similarity,
by .p.

As for the strong case, the definition of strong probabilistic bisimulation and
strong probabilistic bisimilarity, denoted by ∼p, is obtained by requiring R to
be a symmetric relation. Note that the two PAs in Figure 10 are actually strong
probabilistic bisimilar, not just strongly probabilistic similar.



4.3 Weak Simulation and Bisimulation

Strong (probabilistic) simulations and bisimulations require that each transition
proposed by the challenger is matched by the defender via a single (combined)
transition. If we are not interested in internal computations, but just on the
visible behavior, these relations are too restrictive. In order to abstract away in-
ternal steps, such relations have been relaxed to weak (probabilistic) simulations
and bisimulations where the defender is able to match the challenging transition
by performing several internal steps before and after having exhibited the same
visible behavior, for instance, the same external action. The simplest example
of weak transition is the one for labelled transition systems [39]: it is just the
concatenation of arbitrarily many internal steps, the external transition (if we
have to match an external challenging transition), and again arbitrarily many
internal steps.

The definition of weak transition for probabilistic systems is not so easy as we
have to take into account probabilistic choices. We first consider weak simulation
and bisimulation for Markov chains and sDTMCs, and then for probabilistic au-
tomata. We are not aware of any definition of weak simulation and bisimulation
for CTPAs where sequences of transitions are involved.

Markov Chains Before presenting the weak simulation and bisimulation for
Markov chains, we need to introduce some additional definition [55,57].

For a given pair of states (s1, s2) of the automaton A and functions γi : S →
[0, 1], we denote by Ui and Vi the sets {u ∈ post(si) | γi(u) > 0 } and { v ∈
post(si) | γi(v) < 1 }, respectively. Essentially, Ui represents the states that
can be reached with non-zero probability according to γi from si by performing
one transition while Vi represents the states that cannot be reached with prob-
ability 1 according to γi from si by performing one transition. It is, however,
worthwhile to mention that Ui and Vi are in general non-disjoint. The definition
of weak simulation for DTMCs is not so immediate, because the “weak step”
does not represent the fact that multiple transitions can be performed as in non-
probabilistic settings like CCS and π-calculus [39,40] or in the other probabilistic
models, as we will see later in the section, but that a single transition represents
a visible or stutter step to a reached state z depending on whether z is in U
or in V , respectively. More precisely we require for the visible steps (i.e., steps
reaching states in Ui) that there exists a weighting function w for the condi-

tional distributions P(s1, · )
K1

and P(s2, · )
K2

where Ki is essentially the probability to
perform a visible step. The stutter steps (i.e., steps reaching states in Vi) must
respect the weak bisimulations, that is, states in V1 are weakly simulated by s2
and s1 is weakly simulated by all states in V2, as depicted in Figure 11. Since a
state t may belong to both U and V , the functions γi take care of distributing
si over Ui and Vi. See [55, Section 4.3.1] for more details.

Definition 15 (Weak simulation for DTMCs [6, 9, 56, 57]). Let D be a
DTMC. A relation R on S is a weak simulation if, for each pair of states
s1, s2 ∈ S such that s1 R s2,



s1 s2

u1 v1 v2 u2
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Figure 11: Splitting of successor states in weak simulations for DTMCs

– L(s1) = L(s2) and

– there exist functions γi : S → [0, 1] for i ∈ {1, 2} such that

1. (a) v1 R s2 for each v1 ∈ V1 and (b) s1 R v2 for each v2 ∈ V2;

2. there exists a weighting function w : S × S → [0, 1] such that

(a) w(u1, u2) > 0 implies u1 ∈ U1, u2 ∈ U2, and u1 R u2,
(b) if K1 > 0 and K2 > 0, then for all states t ∈ S,

K1 · w(t, U2) = P(s1, t) · γ1(t) and K2 · w(U1, t) = P(s2, t) · γ2(t)

where Ki =
∑
ui∈Ui

P(si, ui) · γi(ui) for i ∈ {1, 2}; and

3. for u1 ∈ U1 there exist an execution fragment s2t1 . . . tnu2 with positive
probability such that n ∈ N, s1 R tj for 0 < j ≤ n, and u1 R u2.

We say that the DTMC D2 weakly simulates D1 if there exists a weak sim-
ulation R on the disjoint union S1 ] S2 such that s̄1 R s̄2 and we say that the
state t weakly simulates the state s if there exists a weak simulation R such that
s R t. We denote the coarsest weak simulation, called weak similarity, by /.

Figure 12 shows a DTMC for which si / tj for i, j ∈ {1, 2, 3}. For each of
these pairs we can select U1 = ∅ and V2 = ∅. Since K1 = 0, we need to check only
the Condition 1. However, since all the successor states of si are either empty
or itself, this conditions holds trivially. It holds similarly that v1 / v2.

s1 s2 t1

v1

t2

t3

v2

s3

1
1 1

1

1

Figure 12: A DTMC with L(v1) = L(v2) = {v} and L(x) = ∅ for each other
state x.



The definition of weak simulation for CTMCs is similar, where condition (3)
is replaced by K1 ·R(s1, S) ≤ K2 ·R(s2, S).

Similarly, the definition of weak simulation for sDTMCs is just a slight vari-
ation of the one for DTMCs, where we consider sub-distributions instead of
distributions: for a given pair of states (s1, s2) of the sDTMC S and functions
γi : S⊥ → [0, 1], we change the definition of Ui and Vi as follows: Ui and Vi are the
sets {u ∈ post⊥(si) | γi(u) > 0 } and { v ∈ post⊥(si) | γi(v) < 1 }, respectively.

Definition 16 (Weak simulation for sDTMCs [6, 9, 56, 57]). Let S be a
sDTMC. A relation R on S is a weak simulation if, for each pair of states
s1, s2 ∈ S such that s1 R s2,

– L(s1) = L(s2) and
– there exist functions γi : S⊥ → [0, 1] for i ∈ {1, 2} such that

1. (a) v1 R s2 for each v1 ∈ V1\{⊥} and (b) s1 R v2 for each v2 ∈ V2\{⊥};
2. there exists a function w : S⊥ × S⊥ → [0, 1] such that

(a) w(u1, u2) > 0 implies u1 ∈ U1, u2 ∈ U2, and u1 R⊥ u2,
(b) if K1 > 0 and K2 > 0, then for all states t ∈ S,

K1 · w(t, U2) = P(s1, t) · γ1(t) and K2 · w(U1, t) = P(s2, t) · γ2(t)

where Ki =
∑
ui∈Ui

P(si, ui) · γi(ui) for i ∈ {1, 2}; and
3. for u1 ∈ U1 \ {⊥} there exist an execution fragment s2t1 . . . tnu2 with

positive probability such that n ∈ N, s1 R tj for 0 < j ≤ n, and u1 R u2.

We say that the sDTMC S2 weakly simulates S1 if there exists a weak sim-
ulation R on the disjoint union S1 ] S2 such that s̄1 R s̄2 and we say that the
state t weakly simulates the state s if there exists a weak simulation R such that
s R t. We denote the coarsest weak simulation, called weak similarity, by /.

As for the strong bisimulation, the definition of weak bisimulation and weak
bisimilarity, denoted by ≈, is obtained by requiringR to be a symmetric relation.

Remark 1. The definition of weak simulation for sDTMC we present here is nei-
ther sound nor complete for the liveness fragment of PCTL without the next
operator [33]. To fix this problem, [33] proposes a new definition of weak simu-
lation for sDTMC that is sound and conjectured to be complete. However, the
associated technical report shows that completeness does not hold as well.

We have decided to maintain the definition from [55,57] instead of switching
to the definition proposed in [33] because the latter currently lacks of a published
decision algorithm while such algorithm is available for the former.

Interactive Markov Chains The definition of weak bisimulation for IMC is
rather simple, since it is the obvious extension to the weak case of the strong
bisimulation. Given an IMC I, two state s and t, and an action a, we denote
by s a=⇒ t the sequence of transitions s τ=⇒ s′ a−→ t′ τ=⇒ t for some state s′

and t′ where s τ=⇒ s′ is the reflexive and transitive closure of τ−→, as defined
for labelled transition systems [40]. For an IMC I, we recall that γ(v, C) =∑
{λ∈R≥0|v λ−→v′,v′∈C }

λ.



Definition 17 (Weak bisimulation for IMCs [28]). Let I be a IMC. An
equivalence relation R on S is a weak bisimulation if, for each pair of states
s, t ∈ S such that s R t,

– L(s) = L(t),
– if s a=⇒ s′ for some s′ ∈ S and a ∈ Σ, then there exists t′ such that t a=⇒ t′

and s′ R t′, and
– if s τ=⇒ s′ and s′ does not enable a transition with label τ , then there exists
t′ such that t′ does not enable a transition with label τ , t τ=⇒ t′, and for each
C ∈ S/R, γ(s′, Cτ ) = γ(t′, Cτ ) where Cτ = {u | ∃v ∈ C.u τ=⇒ v }.

We say that the IMC A2 weakly bisimulates A1 if there exists a weak bisim-
ulation R on the disjoint union S1 ] S2 such that s̄1 R s̄2 and we say that the
state t weakly bisimulates the state s if there exists a weak bisimulation R such
that s R t. We denote the coarsest weak bisimulation, called weak bisimilarity,
by ≈.
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Figure 13: Two IMCs with Li(x) = ∅ for each state x except for Li(ti) = {t},
i = 1, 2, such that I1 ≈ I2

Figure 13 shows two IMCs that are weak bisimilar. This is justified by
the equivalence relation whose classes are Cs = {s1, s2}, Ct = {t1, t2}, and
Co = {u1, u2, v1, v2}. The first two conditions about labeling and interactive
transitions are trivial for all pairs of related states; in particular, classes Ct and
Co (or Cs) cannot be merged since labels are different: for instance, L(t1) = {t} 6=
∅ = L(u1), so the first condition would be violated. Consider the classes Co and
Cs: they have the same labeling (each state in them has label ∅) but they cannot
be merged since for instance the state u1 ∈ Co enables an a weak transition
reaching s1 that cannot be matched by the state s2 ∈ Cs, so the second condi-
tion would not be satisfied. The third condition about rates is obvious as well for
pairs of states in the classes Ct and Co since none of their states enables a timed
transition, so γ(x, Cτ ) is 0 for each x ∈ Ct ∪ Co and C ∈ {Cs, Ct, Co}. The only
non-trivial case is the pair (s1, s2) (the symmetric case is analogous). The only
weak transitions with label τ enabled by s1 and s2 are s1

τ=⇒ s1 and s2
τ=⇒ s2,

since neither s1 nor s2 enables a transition with label τ ; s1 R s2 trivially holds.
γ(s1, Cτs ) = 0 = γ(s2, Cτs ) since Cτs = Cs and there is no timed transition reaching



Cs; γ(s1, Cτt ) = λ = γ(s2, Cτt ) since Cτt = Ct and both s1 and s2 have a single
timed transition with rate λ reaching Ct; finally, γ(s1, Cτo ) = 5λ = γ(s2, Cτo ) since
Cτo = Co ∪ Ct.

Probabilistic Automata Before introducing the weak (combined) transition
for probabilistic automata, we need some preliminary definition.

A scheduler for a PA P is a function σ : frags∗(P)→ SubDisc(→) such that
for each α ∈ frags∗(P), σ(α) ∈ SubDisc({ tr ∈ → | src(tr) = last(α) }). Given
a scheduler σ and a finite execution fragment α, the distribution σ(α) describes
how transitions are chosen to move on from last(α). We say that a scheduler
σ is a Dirac scheduler if for each α ∈ frags∗(P), σ(α) is a Dirac distribution
and we say that σ is a determinate scheduler if for each α, α′ ∈ frags∗(P), if
trace(α) = trace(α′) and last(α) = last(α′), then σ(α) = σ(α′). A scheduler σ
and a state s induce a probability distribution µσ,s over execution fragments as
follows. The basic measurable events are the cones of finite execution fragments,
where the cone of α, denoted by Cα, is the set {α′ ∈ frags(P) | α 6 α′ }. The
probability µσ,s of a cone Cα is defined recursively as follows:

µσ,s(Cα) =


0 if α = t for a state t 6= s,

1 if α = s,

µσ,s(Cα′) ·
∑

tr∈ a→ σ(α′)(tr) · µtr (t) if α = α′at.

Standard measure theoretical arguments ensure that µσ,s extends uniquely to
the σ-field generated by cones. We call the resulting measure µσ,s a probabilistic
execution fragment of P and we say that it is generated by σ from s. Given a
finite execution fragment α, we define µσ,s(α) as µσ,s(α) = µσ,s(Cα) · σ(α)(⊥),
where σ(α)(⊥) is the probability of terminating the computation after α has
occurred.

We say that there is a weak combined transition from s ∈ S to µ ∈ Disc(S)
labelled by a ∈ Σ, denoted by s a=⇒C µ, if there exists a scheduler σ such that
the following holds for the induced probabilistic execution fragment µσ,s:

1. µσ,s(frags∗(P)) = 1;
2. for each α ∈ frags∗(P), if µσ,s(α) > 0 then trace(α) = trace(a);
3. for each state t, µσ,s({α ∈ frags∗(P) | last(α) = t }) = µ(t).

In this case, we say that the weak combined transition s a=⇒C µ is induced by
σ. When σ is a Dirac scheduler, then we say that it induces a weak transition
from s ∈ S to µ ∈ Disc(S) labelled by a ∈ Σ, denoted by s a=⇒ µ.

Albeit the definition of weak (combined) transitions is somewhat intricate,
this definition is just the obvious extension of weak transitions on labelled tran-
sition systems to the setting with probabilities. See [48] for more details on weak
combined transitions.

As an example of weak combined transition, consider the PA in Figure 14. We
now show that there exists a scheduler inducing the weak combined transition
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Figure 14: A probabilistic automaton

s a=⇒C µ where µ = {( , 4
18 ), ( , 7

18 ), ( , 7
18 )}. Let µs be {(t, 13 ), (u, 13 ), (v, 13 )}

and consider the scheduler σ defined as follows:

σ(α) =



δ
s
τ−→µs

if last(α) = s,

{(t τ−→ δs,
1
2 ), (t a−→ δ , 12 )} if α = sτt,

δ
t
a−→δ

if α = sτtτsτt,

δ
u

a−→δ
if last(α) = u,

δ
v
a−→δ

if last(α) = v, and

δ⊥ otherwise.

It is easy to show that indeed σ induces s a=⇒C µ. For instance, consider the state
; in fact, µσ,s({α ∈ frags∗(P) | last(α) = }) = µσ,s({sτta , sτtτsτta }) +

µσ,s({α ∈ frags∗(P) | last(α) = } \ {sτta , sτtτsτta }) = µσ,s(sτta ) +
µσ,s(sτtτsτta ) + 0 = 1 · 1 · 13 ·

1
2 · 1 · 1 + 1 · 1 · 13 ·

1
2 · 1 · 1 ·

1
3 · 1 · 1 · 1 = 4

18 = µ( ).
Note that σ is neither Dirac nor determinate; moreover it is not the only

scheduler inducing s a=⇒C µ: in fact, also the determinate scheduler σ′ defined
as follows induces s a=⇒C µ.

σ′(α) =



δ
s
τ−→µs

if last(α) = s,

{(t τ−→ δs,
3
7 ), (t a−→ δ , 47 )} if last(α) = t,

δ
u

a−→δ
if last(α) = u,

δ
v
a−→δ

if last(α) = v, and

δ⊥ otherwise.

Definition 18 (Weak (probabilistic) simulation on PAs [6,9,43,51,56,
57]). Let P be a PA. A relation R on S is a weak (probabilistic) simulation if,
for each pair of states s, t ∈ S such that s R t,

– L(s) = L(t) and
– if s a−→ µs for some probability distribution µs, then there exists µt such that
t a=⇒ µt (t a=⇒C µt) and µs L(R) µt.

We say that the PA P2 weakly (probabilistically) simulates P1 if there exists a
weak (probabilistic) simulation R on the disjoint union S1]S2 such that s̄1 R s̄2



and we say that the state t weakly (probabilistically) simulates the state s if there
exists a weak (probabilistic) simulation R such that s R t. We denote the coarsest
weak (probabilistic) simulation, called weak (probabilistic) similarity, by / (/p).

As usual, the weak (probabilistic) bisimulations [27,29,43,51], denoted by ≈
(≈p), are obtained by requiring R to be a symmetric relation.

P1 P2

s1

t1 u1

1
4

τ

1
4

1
2

1c

1
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s2

t2 u2
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τ

2
5

1
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1
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Figure 15: Two PAs with Li(xi) = {x} for each state xi, i = 1, 2 such that
P1 ≈p P2

Figure 15 shows two PAs that are weak probabilistic bisimilar. The rela-
tion justifying P1 ≈p P2 is the equivalence relation whose classes are {s1, s2},
{t1, t2}, and {u1, u2}. Checking the pairs in {t1, t2} and {u1, u2} is trivial,
so consider for instance the pair (s1, s2) and the transition s1

τ−→ µ1 where
µ1 = {(s1, 12 ), (t1,

1
4 ), (u1,

1
4 )}. s2 can match such transition via the weak com-

bined transition s2
τ=⇒C µ where µ = {(s2, 12 ), (t2,

1
4 ), (u2,

1
4 )} induced by the

scheduler σ defined as

σ(α) =

{
{(s2 τ−→ µ2,

5
8 ), (⊥, 38 )} if α = s2 and

δ⊥ otherwise,

where µ2 = {(s2, 15 ), (t2,
2
5 ), (u2,

2
5 )}. The transition s2

τ−→ µ2 can be matched
by s1 via the weak combined transition s1

τ=⇒C µ
′ where µ′ is the distribution

{(s1, 15 ), (t1,
2
5 ), (u1,

2
5 )}, transition that is induced by the scheduler σ′ defined

as

σ′(α) =


δ
s1

τ−→µ1
if α = s1 or α = s1τs1,

{(s1 τ−→ µ1,
2
5 ), (⊥, 35 )} if α = s1τs1τs1, and

δ⊥ otherwise.

4.4 Markov Automata

Finally, we discuss simulations and bisimulations for Markov Automata. For the
strong (probabilistic) simulations and bisimulations, they are just the merge of
the corresponding definitions for PAs and CTMCs, where the timed transitions
are considered only if the states do not enable internal transitions, as happens
for IMCs.



For the weak (probabilistic) simulations and bisimulations, the approach is
quite different from the previous definitions since they relate distributions in-
stead of states. This makes the definition quite involved and out of the scope of
this survey, also by considering that the exponential decision algorithms [20,46]
for these bisimulations just make use of the algorithm for PA weak combined
transitions we will see in Section 6.2 as a black box.

We refer the interested reader to [20, 46] for the technical details and the-
oretical considerations that allow to define a state-based bisimulation that is
equivalent to the distribution-based one as defined in [17,22,23].

5 Networks and Maximum Flow Problem

Given a set V , we say that (V,E) is a directed graph with vertices V and edges
E if E ⊆ V × V . A network N is a tuple (V,E,M,H, c) where (V,E) is a finite
directed graph, M and H are distinguished vertices called source and sink, respec-
tively, and c : E → R≥0 ∪ {∞} is a total function called edge capacity function.
The capacity function, however, can be generalized to all pairs of vertexes by
defining c(u, v) = 0 for each (u, v) /∈ E.

Definition 19 (Flow [1, 12]). A flow f on N is a function f : V × V → R
such that:

1. f(u, v) ≤ c(u, v) for each (u, v) ∈ V × V capacity constraints
2. f(u, v) = −f(v, u) for each (u, v) ∈ V × V antisymmetry constraint
3. f(V, v) = 0 for each v ∈ V \ {M,H} conservation rule

The value of a flow function is computed as f(M, V ), also denoted by |f |. A
flow of maximum value is called a maximum flow.

5.1 Computing the Maximum Flow

A preflow [1] is a function f : V × V → R that satisfies the first two conditions
above and the following relaxation of the last condition: f(V, v) ≥ 0 for each
v ∈ V \ {M}.

For each vertex v, its excess e(v) is defined by f(V, v). A vertex v ∈ V \{M,H}
is called active if e(v) > 0. It is easy to check that when no vertex v ∈ V \{M,H}
is active, the preflow function is actually a flow function. A pair (u, v) is said to
be a residual edge of f if f(u, v) < c(u, v). We denote the set of residual edges
with regard to f by Ef . Corresponding to each residual edge (u, v) we define
the residual capacity cf (u, v) as c(u, v)− f(u, v). We say that the edge (u, v) is
saturated if it is not a residual edge. A valid distance function d (also known as
valid labeling [25]) is a function d : V → N∪{∞} such that d(M) = |V |, d(H) = 0,
and d(u) ≤ d(v) + 1 for each residual edge (u, v). A residual edge (u, v) is called
admissible if d(u) = d(v) + 1.

The maximal flow can be computed by means of preflow as follows: the
algorithm initializes the preflow f by defining f(u, v) = 0 for each (u, v) ∈



V × V except for f(M, v) = c(M, v) for each v ∈ V . The distance function d
has initial values d(M) = |V | and d(v) = 0 for each other vertex v ∈ V . In
order to maintain the validity of the preflow f and of the distance function d,
the algorithm looks for active vertices in the network. If there exists an active
vertex v and a residual edge (v, u) that is admissible, then, we push through
(v, u) the amount of flow χ = min{e(v), cf (v, u)}. This is done by increasing
f(v, u) (and decreasing f(u, v)) by χ and similarly, the excesses of v and u
are updated by setting e(v) = e(v) − χ and e(u) = e(u) + χ. If v is active
but there is no admissible edge leaving it, the algorithm relabels v by defining
d(v) = min{ d(u) + 1 | (v, u) ∈ Ef }. Pushing and relabeling are repeated until
all vertexes are not active. It can be proved that the resulting ultimate flow f
is a maximum flow [1, 25]. The generic preflow-push algorithm terminates after
O(n2m) iterations where n and m are the number of nodes and the number of
arcs of the network G, respectively.

5.2 Relation between Lifting and Maximum Flow

As we have seen in Section 2, the lifting L(R) ⊆ Disc(X)×Disc(X) of a relation
R ⊆ X ×X has two different characterizations: via weighting functions and via
R-closure. It can be indeed characterized also via the maximum flow in a network
as follows. First, we construct the network induced by the relation R and the two
(sub-)probability distributions ρ1 and ρ2 and then we compute the maximum
flow for such network. Given a set X, let X be the set X = {x | x ∈ X }.

Definition 20 ( [4, 57]). Let ρ1, ρ2 ∈ Disc(X) and R ⊆ X ×X. The induced
network N (R, ρ1, ρ2) = (V,E,M,H, c) is defined by

– V = X ∪X ∪ {M,H},
– E = { (x, y) | (x, y) ∈ R} ∪ { (M, x) | x ∈ X } ∪ { (y,H) | y ∈ X }, and

– c(M, x) = ρ1(x), c(y,H) = ρ2(y), and c(x, y) = 1 for all x, y ∈ X.

As shown in [55], ρ1 L(R) ρ2 if and only if the maximum flow of the induced
network N (R, ρ1, ρ2) is 1.

It is worthwhile to note that for each x /∈ Supp(ρ1), c(M, x) = 0 (and similarly,
for each y /∈ Supp(ρ2), c(y,H) = 0), thus the flow along the edge (M, x) is
always 0. Therefore the induced network can be equivalently simplified as follows:
let ρ1, ρ2 ∈ Disc(X) and R ⊆ X × X. The induced network N (R, ρ1, ρ2) =
(V,E,M,H, c) is defined by

– V = Supp(ρ1) ∪ Supp(ρ2) ∪ {M,H},
– E = { (x, y) | (x, y) ∈ R, x ∈ Supp(ρ1), y ∈ Supp(ρ2) } ∪ { (M, x) | x ∈

Supp(ρ1) } ∪ { (y,H) | y ∈ Supp(ρ2) }, and

– c(M, x) = ρ1(x), c(y,H) = ρ2(y), and c(x, y) = 1 for all x, y ∈ X.

In the remaining of the paper we use the more appropriate definition of induced
network without further mentioning which one we are considering.



Sim(4,A)

1: i← 0; Ri ← { (s1, s2) ∈ S × S | L(s1) = L(s2) };
2: repeat
3: Ri+1 ← Ri;
4: for all s1

a−→ ρ1 ∈ s1 −→ do
5: for all s2 ∈ S such that s1Ris2 do
6: if there does not exist s2

a−→4 ρ2 satisfying the step condition
7: Ri+1 ←Ri+1 \ {(s1, s2)};
8: i← i+ 1;
9: until Ri = Ri−1;

10: return Ri;

Figure 16: Algorithm for computing simulation

6 The Algorithms

We now consider the algorithms and their complexity that are used to decide
the simulations and the bisimulations introduced in Section 4. In the following,
we denote by s a−→4 ρ the matching transition involved in the step condition
of the relation 4. For instance, when 4 is ., then s a−→4 ρ stands for s a−→ ρ
while when 4 is /p, then s a−→4 ρ stands for s a=⇒C ρ.

6.1 The General Algorithms for Simulations and Bisimulations

Simulation algorithm Figure 16 depicts the algorithm Sim, proposed for instance
in [4], that computes the simulation 4 for the automaton A. The procedure
begins with the initial relation R0 = { (s1, s2) ∈ S×S | L(s1) = L(s2) } which is
coarser than 4. In each iteration i of the main loop, the relation Ri, initialized
with Ri−1, is refined by deleting each pair (s1, s2) such that s2 is not able to
exhibit the transition s2

a−→4 ρ2 such that ρ1 L(Ri−1) ρ2 required by the step
condition of 4. The main loop terminates when all pairs of Ri satisfy the step
condition, that is, when Ri = Ri−1. The resulting similarity 4 is then Ri.

It is immediate to see that the core of this algorithm is the check for the
existence of the step condition for s1 and s2, and that this is also the main
source of the complexity of the algorithm. In fact, if we denote by N the size of
the automaton, i.e., N = max{|S|, |→|}, it is easy to derive that the complexity
of the algorithm is O(N4 ·C) where C is the complexity of deciding the existence
of the matching transition s2

a−→4 ρ2.

Bisimulation algorithm In order to compute the bisimulation � for the automa-
ton A we can follow the standard partition refinement approach [13, 20, 29, 35,
41,43] depicted in Figure 17: the procedure Bisim takes as parameter the bisim-
ulation � and the automaton A and iteratively constructs the set S/�, the
set of equivalence classes of states S under �, starting with the partitioning
W = { (s1, s2) ∈ S × S | L(s1) = L(s2) } and refining it until W satisfies the



Bisim(�,A)

1: W ← { (s1, s2) ∈ S × S | L(s1) = L(s2) };
2: repeat
3: W ′ ←W;
4: (C, a, ρ)← FindSplit(A,W);
5: W ← Refine(C, a, ρ);
6: until W ←W ′
7: return W

FindSplit(A,W)

1: for all (s1, a, ρ1) ∈ → do
2: for all s2 ∈ [s1]W do
3: if there does not exist s2

a−→� ρ2 satisfying the step condition
4: return ([s1]W , a, ρ1)
5: return (∅, τ, δ⊥)

Figure 17: Algorithm for computing bisimulation

definition of � and thus the resulting partitioning is the coarsest one, i.e., the
algorithm computes �. In the refinement phase, the algorithm checks for each
partition whether all pairs respect the step condition; if a pair (s1, s2) fails, then
such partition is split in two partitions: one containing s1 and all states satisfy-
ing the step condition with respect to transitions from s, the other containing
the remaining states, including s2. On termination, the partitioning W is the
bisimilarity �.

As happens for Sim, it is immediate to see that the core of this algorithm
is the check whether the step condition for s1 and s2 holds, and that this is
also the main source of the complexity of the algorithm. In fact, as done for
the simulation procedure, if we denote by N the size of the automaton, i.e.,
N = max{|S|, |→|}, it is easy to derive that the complexity of the algorithm is
O(N3 · C) where C is the complexity of deciding the existence of the matching
transition s2

a−→� ρ2.

6.2 The Specialized Algorithms

Strong Simulation We now present an improved algorithm [57] for the strong
simulation on sDTMCs, DTMCs, and CTMCs, respectively, based on the prop-
erties of the network flow setting.

Let A be either a sDTMC or a DTMC. Since for sDTMCs and DTMCs
every state s enables a single transition, checking the existence of the matching
transition s2

τ−→. µ2 reduces to check whether µ1 L(Ri) µ2 where µ1 = P(s1, · )
and µ2 = P(s2, · ). As we have seen in Section 5.2, µ1 L(Ri) µ2 is equivalent
to check whether the induced network N (Ri, µ1, µ2) has 1 as maximum flow.

Since finding the maximum flow has complexity O( N3

logN ), thus the resulting

complexity of Sim(.,A) is O( N7

logN ) [4, 57].



Improved algorithm for sDTMCs Consider the Sim(.,A) procedure and a pair
of states (s1, s2) ∈ R1. Let µ1 = P(s1, · ) and µ2 = P(s2, · ) and suppose that
(s1, s2) belongs toR1, . . . ,Rk during the whole of the iterations i = 1, . . . , k until
the pair either violates the step condition with respect to Rk or the algorithm
terminates after iteration k. This means that the maximum flow algorithm is used
k times for this pair. As a matter of fact, the induced networks N (Ri, µ1, µ2)
built in successive iterations are very similar, and may often be the same across
iterations. From iteration to iteration, in fact, they differ only for the removal of
some edge (t1, t2) induced by Ri ← Ri \ {(t1, t2)} but this does not change the
network when t1 /∈ Supp(µ1) or t2 /∈ Supp(µ2). This observation, inspired by [24],
is the key point of [57] for improving the basic algorithm. In fact, the authors
reuse the previous computed maximum flow in the sense that whatever happens
to the network is good: if the network N (Ri, µ1, µ2) is equal to N (Ri−1, µ1, µ2),
then the maximum flow is the same as the one in the previous iteration. On the
other hand, if the two networks are different, then the preflow algorithm can be
adapted to compute the new maximum flow using the previous maximum flow
and distance function as a starting point.

Smfinit(i,Ri, µ1, µ2)

1: Initialize the network N (Ri, µ1, µ2);
2: Apply the preflow algorithm to compute the maximum flow for N (Ri, µ1, µ2);
3: return (|fi| = 1,N (Ri, µ1, µ2), fi, di);

Smf(i,N (Ri−1, µ1, µ2), fi−1, di−1, Di−1)

1: N (Ri, µ1, µ2)← N (Ri−1 \Di−1, µ1, µ2); fi ← fi−1; di ← di−1;
2: for all (v1, v2) ∈ Di−1 do
3: fi(v2,H)← fi(v2,H)− fi(v1, v2);
4: fi(v1, v2)← 0;
5: Apply the preflow algorithm initialized with fi and di to compute the maximum

flow for N (Ri, µ1, µ2);
6: return (|fi| = 1,N (Ri, µ1, µ2), fi, di);

Figure 18: Algorithm for computing a sequence of maximum flows

To explain this approach in more detail, consider the network N (R1, µ1, µ2)
and let D1, . . . , Dk be pairwise disjoint subsets of R1 that correspond to the
pairs deleted from R1 in iteration i, i.e., Ri+1 = Ri \ Di for 1 ≤ i ≤ k. Let

f
(s1,s2)
i be the flow and d

(s1,s2)
i the distance function of the networkN (Ri, µ1, µ2)

where 0 ≤ i ≤ k, respectively. The algorithm for updating the sequences of
maximum flows and distances of the network N (Ri, µ1, µ2) where 1 ≤ i ≤
k is depicted in Figure 18 and it works as follows: starting from the network
N (Ri−1\Di−1, µ1, µ2) with flow fi−1 and distance di−1, it computes for each pair
(v1, v2) ∈ Di−1 the flow fi(v2,H) by decreasing the previous value fi−1(v2,H) by
the value of the flow fi−1(v1, v2) and then forces fi(v1, v2) to be 0. Then it calls



the preflow algorithm initialized with the updated flow and distance function to
compute the maximum flow for the new network and returns the network, the
updated flow and distance functions, and a boolean representing whether the
maximum flow is 1.

The Smf(i,N (Ri−1, µ1, µ2), fi−1, di−1, Di−1) algorithm is the building block
for the improved algorithm SimsDTMC(.,S) that computes the strong simulation
on sDTMCs, depicted in Figure 19.

SimsDTMC(., sDTMC)

1: R1 ← { (s1, s2) ∈ S × S | L(s1) = L(s2) }; i← 1;
2: R2 ← ∅;
3: for all (s1, s2) ∈ R1 do
4: Listener(s1, s2)← { (u1, u2) | u1 ∈ pre(s1), u2 ∈ pre(s2), L(u1) = L(u2) };
5: (match,N (R1, µ1, µ2), f

(s1,s2)
1 , d

(s1,s2)
1 )← Smfinit(1,R1, µ1, µ2)

6: if match
7: R2 ←R2 ∪ {(s1, s2)};
8: while Ri+1 6= Ri do
9: i← i+ 1; Ri+1 ← ∅; Di−1 ←Ri−1 \ Ri;

10: for all (s1, s2) ∈ Ri do
11: D

(s1,s2)
i−1 ← ∅;

12: for all (s1, s2) ∈ Di−1, (u1, u2) ∈ Listener(s1, s2) ∩Ri−1 do

13: D
(u1,u2)
i−1 ← D

(u1,u2)
i−1 ∪ {(s1, s2)};

14: for all (s1, s2) ∈ Ri do
15: (match,N (Ri, µ1, µ2), f

(s1,s2)
i , d

(s1,s2)
i )

← Smf(i,N (Ri−1, µ1, µ2), f
(s1,s2)
i−1 , d

(s1,s2)
i−1 , D

(s1,s2)
i−1 );

16: if match
17: Ri+1 ←Ri+1 ∪ {(s1, s2)};
18: return Ri;
where µ1 = P(s1, · ) and µ2 = P(s2, · )

Figure 19: Improved algorithm for deciding strong simulation for sDTMCs.

The first part of the algorithm, from line 1 to 7 is essentially the same as in
Sim(., sDTMC), except for line 4 where the set

Listener(s1, s2) = { (u1, u2) | u1 ∈ pre(s1), u2 ∈ pre(s2), L(u1) = L(u2) }

is computed for the remainder of the procedure. In particular, this set contains
all pairs (u1, u2) such that (s1, s2) is an edge of N (R0,P(u1, · ),P(u2, · )).

In each iteration i of the loop at lines 8–17, the procedure generates Ri+1

from Ri by performing several steps: first, with the loop at line 12, it collects

in D
(u1,u2)
i−1 the edges that should be removed from N (Ri−1,P(u1, · ),P(u2, · )).

Then, at line 15, the algorithm Smf builds the maximum flow by using informa-

tion from the previous iteration i − 1. Basically, N (Ri−1, µ1, µ2), f
(s1,s2)
i−1 , and



d
(s1,s2)
i−1 are updated according to the set D

(s1,s2)
i−1 ; this generates the new maxi-

mum flow f
(s1,s2)
i for the network N (Ri, µ1, µ2) and if such flow is 1 (i.e., match

is true), then (s1, s2) is added to Ri+1 and survives this iteration. Eventually the
while loop terminates and the last candidate simulation Ri is actually a strong
bisimilarity.

The correctness and time complexity of this algorithm is stated in [57, The-
orem 4.5 and 4.6], respectively. In particular, the time complexity is O(m2 ·N +

N2), where m =
∑
s∈S |post(s)|, that is significantly smaller than O( N7

logN ) of

the general algorithm Sim(., sDTMC).

Strong Simulation for DTMCs and CTMCs We now take into account DTMCs
and CTMCs. Since every DTMC D is a sDTMC, we can use directly the algo-
rithm SimsDTMC(.,D). For CTMCs, we have to take care of the rate condition;
this is easily obtained by replacing the assignment to R1 at the line 1 of the
algorithm with

R1 ← { (s1, s2) ∈ S × S | L(s1) = L(s2),R(s1, S) ≤ R(s2, S) }

It is immediate to see that this change does not increase the complexity of the
algorithm; in particular, the time complexity may be reduced, since there may
be fewer pairs satisfying the rate condition as well.

Strong Probabilistic Simulation and Bisimulation Strong probabilistic
simulation and bisimulation are defined only for PAs and CTPAs since they are
the only models that exhibit internal nondeterminism, thus they allow to com-
bine transitions with the same label (and the same rate, for CTPAs). Checking
the step condition thus requires to find such combined transition. One possibility
is to check, for every possible combined transition, whether it satisfies the step
condition; however this approach is not practical since given two transitions,
there are uncountable many different convex combinations of them. The other
possibility is to check whether there exists a choice for the coefficients of the
convex combination by solving a linear programming problem encoding convex
combination and lifting [57].

For a PA P, the LP problem relative to relation R, transition s1
a−→ µ and

state s2 is: ∑k
i=1 ci = 1

0 ≤ ci ≤ 1 for 1 ≤ i ≤ k
0 ≤ fu,v ≤ 1 for each (u, v) ∈ R⊥
µ(s) =

∑
t∈R⊥(s) fs,t for each s ∈ S⊥∑

s∈R−1
⊥ (t) fs,t =

∑k
i=1 ciρi(t) for each t ∈ S⊥

where {ρ1, . . . , ρk} = { ρ | (s2, a, ρ) ∈ →}.



For a CTPA CP, the LP problem relative to relation R, transition s1
a−→ r

and state s2 is similar:∑k
i=1 ci = 1

0 ≤ ci ≤ 1 for 1 ≤ i ≤ k
0 ≤ fu,v ≤ 1 for each (u, v) ∈ R⊥
r(s) = r(S) ·

∑
t∈R⊥(s) fs,t for each s ∈ S⊥

E ·
∑
s∈R−1

⊥ (t) fs,t =
∑k
i=1 ciri(t) for each t ∈ S⊥

for some E ∈ { r′(S) | (s2, a, r
′) ∈ R }, E ≥ r(S) where {r1, . . . , rk} = { r′ |

(s2, a, r
′) ∈ R, r′(S) = E }.

The complexity of the Sim(.p,A) and Bisim(∼p,A) algorithms is then poly-
nomial and directly depends on the polynomial complexity [53] of solving the
above LP problems, each one with at most O(N2) constraints.

It is worthwhile to note that by combining a preflow approach, as the one
adopted for Smf, and abstract interpretation techniques, the complexity can be
reduced to O(N3) for simulation and O(N2 · logN) for bisimulation [15].

Weak Simulation and Bisimulation for DTMCs and CTMCs Now, we
focus our attention to weak simulations. As it was the case for strong simulations,
the core of the algorithm is to check the step condition with respect to the current
relation R. Based on the definition of weak simulation, for fixed characteristic
functions γi for i = 1, 2, maximum flow algorithms can be used in order to check
condition (2) in definition 15. In order to improve this check, we can make use of
the parametric maximum flow algorithm in order to determine whether functions
γi exist, with the aid of breakpoints, as we will see in the following.

As shown in [57], checking the step condition of the weak simulation for the
pair of states (s1, s2) for both DTMCs and CTMCs is equivalent to finding the
parameter ψ that makes a parametric network valid. In particular, the considered
parametric network is Nψ(R, µ1, µ2) that is defined as N (R, µ1, ψ · µ2); this
means that N (R, µ1, ψ ·µ2) is the network N (R, µ1, µ2) where the capacities for
the edges leading to the sink are c(t,H) = ψ · µ2(t). The network Nψ(R, µ1, µ2)
is valid if there exists a flow f that saturates all edges (M, u1) and (u2,H) where
u1 belongs to the set MU 1 = post(s1) \ PV 1 with PV 1 = post(s1) ∩ R−1(s2)
and u2 belongs to the set MU 2 = post(s2) \PV 2 with PV 2 = post(s2)∩R(s1).

Sets MU i and PV i are strictly related to the sets Ui and Vi used for the
strong simulation algorithm. Indeed, MU i stands for “must be in Ui” while PV i

stands for “potentially in Vi”. Functions γi are extended as expected by γi(u) = 1
for u ∈ MU i, i ∈ {1, 2}.

If we fix ψ ∈ R≥0, then checking whether Nψ(R, µ1, µ2) is valid reduces to
verify the feasibility of a flow problem (f has to saturate edges to MU 1 and
from MU 2); this can be done by applying a simple transformation to the graph
(in time O(|MU 1|+ |MU 2|)), solving the maximum flow problem for the trans-
formed graph, and checking whether the flow saturates all edges from the new
source [1]. So now the problem is to find a good ψ that makes Nψ(R, µ1, µ2)



StepCondition/(D,R, s1, s2)

1: if post(s1) ⊆ R−1(s2)
2: return true
3: if post(s2) ⊆ R(s1)
4: U1 ← { s′1 ∈ post(s1) | s′1 /∈ R−1(s2) }
5: return ∀u1 ∈ U1.∃s ∈ post(reach(s2)) ∩R(s1).s ∈ R(u1)
6: Compute all of the breakpoints ψ1 < ψ2 < · · · < ψj of Nψ(R, µ1, µ2)
7: return ∃i ∈ {1, . . . , j}.ψi is valid for Nψj (R, µ1, µ2)

where µ1 = P(s1, · ) and µ2 = P(s2, · )

Figure 20: Algorithm to check whether s2 weakly simulates s1 with respect to R

valid, but there are uncountably many of such ψ we may check for. However,
the candidates that really matter are finite, not uncountably many, and are
called breakpoints. In particular, breakpoints can be identified by solving one
more parametric maximum flow problem: Let κ(ψ) be the minimum cut capac-
ity function for the parameter ψ, that is, the capacity of a minimum cut of
Nψ(R, µ1, µ2) as a function of ψ. Based on the Max flow Min cut theorem [1],
the capacity of a minimum cut equals the value of a maximum flow. On the
other hand, if the edge capacities in the network are linear functions of ψ, κ(ψ)
is a piecewise linear concave function with at most |V | − 2 breakpoints [24]. In
particular, |V | − 1 or fewer line segments of the graph of κ(ψ) are equivalent
to |V | − 1 or fewer distinct minimal cuts. For some ψ∗, the capacity of a min-
imum cut gives an equation that leads to a line segment to the function κ(ψ)
at ψ = ψ∗. Furthermore, this line segment attaches the two points (ψ1, κ(ψ1))
and (ψ2, κ(ψ2)), where ψ1, ψ2 are the nearest breakpoints to the left and right,
respectively. Therefore, as it would be expected, it is enough to examine only
the breakpoints of Nψ(R, µ1, µ2): there exists a valid ψ for Nψ(R, µ1, µ2) if and
only if one of the breakpoints of Nψ(R, µ1, µ2) is valid.

For a fixed breakpoint, it is adequate to solve one feasible flow problem to
check if it is valid. In the network Nψ(R, µ1, µ2) the capacities of the edges
going to the sink are increasing functions of the real-valued parameter ψ. If
Nψ(R, µ1, µ2) is reversed, a parametric network that satisfies the conditions
in [24] can be derived: the capacities emanating from M are non-decreasing func-
tions of ψ. Therefore, the breakpoint algorithm [24] can be applied to compute
the breakpoints of Nψ(R, µ1, µ2).

The Algorithm for DTMCs We are now able to provide the decision algorithm
for the DTMC weak simulation: we just consider the Sim(/,D) where the step
condition is verified by invoking the algorithm in Figure 20 that, given two states
s1 and s2, it actually computes whether s1 / s2.

By using this approach, the resulting complexity of the algorithm that com-
putes the weak simulation for DTMCs is O(N5). This complexity can be im-
proved in practice by exploiting the network Nψ(R, µ1, µ2) whenever it can be



parted into sub-networks. We refer the reader interested in this approach to [57,
Section 5.1.4]

An Algorithm for CTMCs The algorithm for computing weak simulation on
CTMCs is very close to the one for DTMCs since the only difference is the last
requirement of the step condition: “K1 ·R(s1, S) ≤ K2 ·R(s2, S)” instead of “for
u1 ∈ U1 there exist an execution fragment s2t1 . . . tnu2 with positive probability
such that n ∈ N, s1 R tj for 0 < j ≤ n, and u1 R u2”.

This makes the algorithm for C simpler: if K1 > 0 and K2 = 0, then s1 6Rs2
for the rate condition. Therefore, the reachability condition does not need to
be checked and the lines 3–5 of the algorithm StepCondition/(D,R, s1, s2)
can be omitted. In general, the rate condition can be verified by checking the
validity of the network Nψ(R, µ1, µ2) induced in the embedded DTMC emb(C).
In particular, the step condition holds if and only if there exists ψ ≤ R(s2,S)

R(s1,S)
such

that ψ is valid for Nψ(R, µ1, µ2). This means that we can replace the returned
value

∃i ∈ {1, . . . , j}.ψi is valid for Nψj (R, µ1, µ2)

of line 7 of StepCondition/(D,R, s1, s2) with

∃i ∈ {1, . . . , j}.ψi ≤
R(s2, S)

R(s1, S)
∧ ψi is valid for Nψj

(R, µ1, µ2).

These improvements do not change the worst case complexity of the algo-
rithm, but they improve it in practice, in particular when merged with the
improved algorithm for DTMCs.

Weak Probabilistic Simulation and Bisimulation for PAs To complete
the survey on the simulations and bisimulations defined on PAs, we consider
the weak probabilistic (bi)simulation and the weak (bi)simulation. The latter
relation is a restriction of the former where the step condition for the pair (s, t)
requires that t matches the challenging transition proposed by s via a weak
transition instead of a weak combined transition. By using the PAs proposed
by [16], it is possible to show that both weak simulation and bisimulation are not
transitive, so we omit them. On the contrary, both weak probabilistic simulation
and bisimulation are transitive [47] and they can be used whenever we want to
abstract away from the internal computation of a probabilistic automaton.

The decidability of weak probabilistic bisimulation has been stated in [13]
and it is based on the standard partition refinement approach. The complexity
of such algorithm is exponential in the number of transitions and only recently
it has been improved to polynomial [29]. Indeed, [29] reduces the complexity to
polynomial by constructing a flow network enriched with side constraints that
admits a valid flow if and only if there exists a determinate scheduler that induces
the desired weak combined transition.

With some inspiration from network flow problems, authors of [29, 30] were
able to see a transition t a=⇒C µt of the PA P as a flow where the initial probabil-
ity mass δt flows and splits along internal transitions (and exactly one transition
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Figure 22: The network graph G(t, a, δz,R) for the automaton A

with label a for each stream when a 6= τ) according to the transition target
distributions and the scheduler resolution of the nondeterminism. The resulting
flow problem is then translated into an LP extended with balancing constraints
that encode the need to respect transition probability distributions. To describe
the structure of the LP problem, we first recall the original definition of the
network graph corresponding to a weak combined transition.

Given a PA P = (S, s̄, Σ,→) and a relation R ⊆ S×S, for a ∈ E, the network
G(t, a, µ,R) = (V,E,M,H, c) has the set of vertices V = {M,H} ∪ S ∪ Str ∪ Sa ∪
Str
a ∪ SR where

Str = { vtr | tr = v b−→ ρ ∈ →, b ∈ {a, τ} },
Sa = { va | v ∈ S },
Str
a = { vtra | vtr ∈ Str }, and

SR = { sR | s ∈ S }

and the set of edges

E = {(M, t)} ∪ { (va, uR), (uR,H) | u ∈ S, v R u }
∪ { (v, vtr ), (vtr , v′), (va, v

tr
a ), (vtra , v

′
a) | tr = v τ−→ ρ ∈ →, v′ ∈ Supp(ρ) }

∪ { (v, vtra ), (vtra , v
′
a) | tr = v a−→ ρ ∈ →, v′ ∈ Supp(ρ) }.

For each (u, v) ∈ E, c(u, v) = ∞. When a ∈ H, the definition is similar:
V = {M,H} ∪ S ∪ Str ∪ SR and E = {(M, t)} ∪ { (v, uR), (uR,H) | u ∈ S, v R
u } ∪ { (v, vtr ), (vtr , v′) | tr = v τ−→ ρ ∈ →, v′ ∈ Supp(ρ) }. As a concrete exam-
ple to illustrate the construction of the flow network, consider the probabilistic
automaton P given in Figure 21. The flow network G(t, a, δz,R) is depicted
in Figure 22, where R is the equivalence relation inducing classes {t, u, v} and
{x, y, z}.



As pointed out in [29], the fact that the network admits a flow that respects
the probability distribution µt does not imply the existence of a corresponding
weak combined transition, because the flow may not respect probability ratios.
Moreover, in order to define a flow problem, we need to define the capacity for
each arc. There are several possibilities for doing this: the first possibility is to
use as capacity for the arc (vtr , u) corresponding to the transition tr = s τ−→ ρ
with u ∈ Supp(ρ) the probability ρ(u); the capacity of the remaining arcs is 1.
As we will see, such capacity in general is not suitable for arcs that are part of
cycles. Another possibility is to use as capacity the value 1

1−ρ(u) for arcs of the

kind (vtr , u), max{ 1
1−ρ(u) | u ∈ Supp(µ) } for the arc (v, vtr ), and 1 for other

arcs; in this case such capacity is suitable for the arcs involved in cycles, but still
it does not force to respect probability ratios. Finally, arcs have infinite capacity;
this is the simplest choice that has been adopted in [29]. Therefore, the network
is converted into a linear programming problem for which the feasibility is shown
to be equivalent to the existence of the desired weak combined transition. The
idea is to convert the flow network into the canonical LP problem and then to add
the balancing constraints that force the “flow” to split according to transition
probability distributions.

Definition 21 (cf. [30, Definition 1]). Given a PA P, R ⊆ S × S, µ ∈
Disc(S), and t ∈ S, for a ∈ E we define the t a=⇒C �· L(R) µ LP problem associ-
ated to the network graph (V,E) = G(t, a, µ,R) as follows:

max
∑

(x,y)∈E −fx,y
under constraints
fu,v ≥ 0 for each (u, v) ∈ E
fM,t = 1
fvR,H = µ(v) for each v ∈ SR∑
u∈{ x|(x,v)∈E } fu,v −

∑
u∈{ y|(v,y)∈E } fv,u = 0 for each v ∈ V \ {M,H}

fvtr ,v′ − ρ(v′)fv,vtr = 0 for each tr = v τ−→ ρ ∈ → and v′ ∈ Supp(ρ)
fvtra ,v′a − ρ(v′)fva,vtra = 0 for each tr = v τ−→ ρ ∈ → and v′ ∈ Supp(ρ)
fvtra ,v′a − ρ(v′)fv,vtra = 0 for each tr = v a−→ ρ ∈ → and v′ ∈ Supp(ρ)

When a is τ , the LP problem t τ=⇒C �· L(R) µ associated to G(t, τ, µ,R) is de-
fined as above without the last two groups of constraints.

Since it is possible to solve a linear programming problem in polynomial
time [53], so it is to find a feasible solution for t a=⇒C �· L(R) µ (cf. [29, Theo-
rem 7]), hence computing the weak probabilistic similarity and bisimilarity for
probabilistic automata is polynomial as well. A comprehensive efficiency analysis
about deciding weak probabilistic bisimulation on PAs is presented in [27].

6.3 The Algorithms for Mixed Time Models Relations

We do not present explicitly the algorithms for the simulations and bisimulations
defined on IMCs and MAs: the former just makes use of the algorithms for
CTMCs and graph visiting (as a depth first search) [28], while the latter just
takes the LP problem for finding a weak transition in a PA as a blackbox [20,46].



7 Conclusion

In this survey we have presented several discrete and continuous time systems
with external and/or internal nondeterminism and investigated the models of
CTMCs, DTMCs, PAs, and CTPAs, and discussed IMCs and MAs. For these
models, we have recalled the behavioral relations they are equipped with like
simulations and bisimulations and we have described the corresponding decision
algorithms. These procedures follow the standard refinement approach and they
improve their complexity by using algorithms for optimization and flow net-
work problems. We omitted some of the technical details but provided extensive
references to the original literature.
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