
Generic Parameter Control with Reinforcement Learning

Giorgos Karafotias
VU University

Amsterdam, Netherlands
g.karafotias@vu.nl

Agoston Endre Eiben
VU University

Amsterdam, Netherlands
a.e.eiben@vu.nl

Mark Hoogendoorn
VU University

Amsterdam, Netherlands
m.hoogendoorn@vu.nl

ABSTRACT
Parameter control in Evolutionary Computing stands for an ap-
proach to parameter setting that changes the parameters of an Evo-
lutionary Algorithm (EA) on-the-fly during the run. In this paper
we address the issue of a generic and parameter-independent con-
troller that can be readily plugged into an existing EA and offer per-
formance improvements by varying the EA parameters during the
problem solution process. Our approach is based on a careful study
of Reinforcement Learning (RL) theory and the use of existing RL
techniques. We present experiments using various state-of-the-art
EAs solving different difficult problems. Results show that our RL
control method has very good potential in improving the quality of
the solution found without requiring additional resources or time
and with minimal effort from the designer of the application.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]: Heuris-
tic methods, Control theory

Keywords
Evolutionary algorithms; parameter control; reinforcement learn-
ing

1. INTRODUCTION
Controlling the parameters of Evolutionary Algorithms (EA) on-

the-fly has been on the research agenda of the Evolutionary Com-
puting community since the late nineties, when Eiben et al. put the
issue in the spotlight [4]. Over the last decade and a half, the field
has made great progress and several good parameter control mech-
anisms have been invented. This progress is reviewed and related
trends are identified in a recent survey [12]. However, as noted in
this survey, the field suffers from the lack of generic control meth-
ods that can be applied to (m)any parameter(s). This causes the
patchwork problem: “if one is to control more (all) parameters of
an EA, then for each parameter she has to choose from a parameter
specific set of existing methods and mix them into one system. Un-
fortunately, little is known about the joint effects of control mecha-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2662-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2576768.2598360 .

nisms, thus there are no good guidelines about how to create good
combinations. Therefore, the resulting mix is necessarily ad hoc
and likely suboptimal.”

In this paper we investigate a possible approach to mitigate this
issue. Our approach is based on using reinforcement learning (RL)
[21] [27]. The main idea is to use RL as a generic control mech-
anism that can be employed as a ‘universal plugin’ to adjust the
values of any parameter of any EA on-the-fly.

Even though it is not common in the related parameter control
literature, let us try to position this approach by discussing its pos-
sible niche, i.e., the use cases where it can (expectedly) provide
an advantage. To this end, it is important to note that the perfor-
mance of EAs can be greatly improved by tuning their parameters
before the run. Over the last decade, this issue has received much
attention and several very good parameter tuners are available, see,
for instance [5] for an overview. Such tuning techniques have their
niche in repetitive problems (cf. [Chap 13] in [6]) that occur with
little variations and the possible extensive tuning costs are com-
pensated by the repeatedly occurring performance benefits. On the
other hand, parameter control mechanisms offer benefits in cases
when tuning is not possible or not economic. For instance, in on-
line evolutionary robotics or other real-time applications, where the
problem can change and human intervention to adjust the EA is not
feasible. Or, in case of one-off problems that need to be solved by
just a few EA runs without time for tuning.

The main research question of this paper is the following:

Can an RL-based parameter controller improve the per-
formance of an off-the-shelf EA without the need for
tailoring the controller towards the given problem?

To answer this research question we develop an RL controller
and perform experiments using it as a ’plug-in’ for several EAs that
are tested on a number of different problems. To gain a good base
for conclusions we selected good and freely available EAs with
varying levels of sophistication, ranging from a straightforward ES,
through some competitive GAs and ending with the highly devel-
oped IPOP CMA-ES. As for selecting the test problems, for each
algorithm we chose problems from a collection for which the given
EA has been developed. This guaranteed that there was no triv-
ial gain for the controller. All together we use 4 EAs and 11 test
problems, including 4 real world problems.

2. RELATED WORK
Reinforcement learning has been employed for operator selec-

tion by Sakurai et al. [18], Chen et al. [2] and Pettinger and Everson
[17]. Muller et al. [16] used temporal difference learning to control
the mutation step size for real valued encodings. These methods
use feedback from the EA to define a state and choose actions that

set parameters, thus, model parameter control as a RL problem.
However, all these methods are simplistic in their approach and fur-
ther limited by the fact that they are specific to a single parameter.
A reduced version of reinforcement learning, i.e. the multi-armed
bandit approach, has been extensively used for adaptive operator
selection (for a list of such publications refer to [12]).

The only case we are aware of where RL was used for generic
parameter control is by Eiben et al. [3]. Fitness based metrics were
used to define the state while actions were mapped to set any/all pa-
rameters. However, they used an unmotivated combination of on-
policy and off-policy learning while the experimental results were
discouraging.

3. FORMULATION OF THE PROBLEM
In this section we formulate EA parameter control as a reinforce-

ment learning problem. We start by discussing the state of an EA,
how parameter control affects it and the definition of a parameter
control design. Subsequently, we map this EA parameter control
design onto an RL problem.

The complete state of an EA can be defined as:

SEA = {G, p̄} (1)

where G is the set of all the genomes in the population and p̄ is the
vector of current parameter values. A pair SEA uniquely specifies
the state of the search process for a given evolutionary algorithm
(the design and specific components of the EA need not be included
in the state since they are the same during the whole run) in the
sense that SEA fully defines the search results so far and is the
only observable factor that influences the search process from this
point on (though not fully defining it, given the stochastic nature
of EA operators). Time is not part of SEA as it is irrelevant to the
state itself; it introduces an artificial uniqueness and a property that
is unrelated to the evolution. Of course, state transitions are not
deterministic.

The state of the EA, and in extension the outcome of the search
process, can be affected by changing G or p̄. Evolutionary op-
erators change G; every time variation or selection is applied the
genotypes in the population change. Controlling the parameters
changes p̄, thus also affecting the next state(s) of the EA. The goal
of such control is to maximize the final performance (at the end of
a number of available evaluations). However, the long term effects
of a certain p̄ applied cannot be known, only the current SEA.

The definition of an EA parameter control method requires three
components [13]: (i) the choice of parameters (including the fre-
quency and time of updates), (ii) the observables that are derived
from the search state SEA and are used as input to the controller
and (iii) the specific mechanism/algorithm (either static or dynamic)
that maps the current observables’ values to parameter values.

There is an apparent analogy between the EA parameter control
problem and the full RL problem and a Markov Decision Process
(MDP). The EA state observables suggest a state space, the pa-
rameters controlled and their ranges point to an action space while
a dynamic control mechanism component could be implemented
by a specific RL algorithm. Although this high level mapping is
straightforward, the exact formulation of the RL problem is far
from trivial. To define an MDP we need to define a state space,
an action space, a transition function and a reward function [21]
[23]. These are explained below.

The most important and challenging is the formulation of the
state space. Ideally, we would like our state definition to give our

process the Markov property, i.e.:

P (st+1, rt+1|st, rt, st−1, rt−1, ..., s1, r1, s0) =

P (st+1, rt+1|st, rt)
(2)

Such a state definition would entirely contain all the necessary in-
formation for deciding the most appropriate action without taking
into account the complete history [23].

Defining the state of the RL problem directly as SEA is prob-
lematic. On one hand, using SEA directly is impractical and not
useful; it is unlikely such a state will be repeated, thus whatever
is learned there is useless, while approximations of a state value
function seem rather difficult. On the other hand, if we choose our
observations to be other more compact measures derived from SEA

we are considering a Partially Observable MDP (PO-MDP) setting
because multiple SEA states can give the same observable values
[20]. The alternative would be to define the state space using de-
rived observables as its dimensions. The likely risk in this case
is that the Markov property is lost and the problem becomes non-
stationary. If the observables used are too simple or weak then not
only the current state will not contain enough information but also
the optimal actions for a state will quickly change. Furthermore,
since such observables would probably be continuous, so will the
state space. Prior discretization of the state space can be highly
inefficient since the distribution of values of the observables can-
not be known beforehand. Consequently, special techniques are
required to deal with the continuous state space [8].

Regardless the exact definition of the state space, the transition
function is of course unknown because of the unknown effect of
parameter values and noise due to the influence of the stochastic
operators on the state of the EA.

Second, we must define the actions of the RL problem that will
give parameter values. There are two general options for approach-
ing this: (i) actions that increase or decrease (or maintain) the cur-
rent parameter value and (ii) actions that set a specific value to the
parameter. These options pose a tradeoff. Defining actions to in-
crease/decrease the current parameter values makes the next val-
ues dependent on the current ones. Subsequently, we should ex-
pand the state definition to include the current parameter vector or
we should cope with another source of uncertainty about the cur-
rent state making the PO-MDP problem described earlier stronger.
On the other hand, actions that define direct values for parameters
mean that the action space must be the Cartesian product of the do-
mains of all parameters controlled. Such an action space also poses
the problem of continuity since actions correspond to values of con-
tinuous parameters. However, unlike the state space, discretisation
of the action space may be reasonable. Though we can expect that
certain regions of parameter values may deserve more attention and
finer granularity, some parameter have wide “good areas” of values
(e.g. crossover rate of GAs). Even so, a reasonable amount of dis-
cretisation intervals would be required resulting in a higher number
of total actions than if we used option (i), thus slowing down learn-
ing because more exploration would be required.

Finally, we define reward. According to Sutton and Barto [21]
reward must indicate what we want accomplished without being
biased by the designer’s intuition about the “how”. The difference
between the previous and the current fitness would be an obvious
option but it would result in disproportionate rewards: an EA tends
to make large steps in the beginning even if parameters are not good
while near the end very small fine-tuning improvements are very
hard to achieve. This could be solved if we know the target fit-
ness of the problem but we cannot make this assumption in general.
Consequently, we try to alleviate the problem by defining reward as
the ratio of the previous fitness to the current (for a minimisation

problem). Since the population and offspring sizes may be among
the parameters controlled, a reward should be normalised accord-
ing to the effort (number of evaluations) spent for the improvement
made. Thus, we make the following definition for the reward:

R(st, at) = C ·
ft+1
b
ft
b

− 1

Evalst+1 − Evalst
(3)

where f i
b is the best fitness at time i, Evalsi is the number of eval-

uations spent until time i and C is a scaling constant.
A model of the reward function is not available because of the

unknown effect of parameter values and the stochastic nature of
the evolutionary operators.

4. A GENERIC RL CONTROLLER
In this section we present a concrete design of a generic parame-

ter controller based on reinforcement learning to tackle the problem
as defined in the previous section. First we present a concrete list
of observables for defining state, subsequently the manner actions
are treated and, finally, the specific algorithm used for learning.

The choice of observables that will define the state of the EA is
a challenging issue as was explained in the previous section. So
far there has been almost no research exploring the usefulness of
different observables - the only exceptions we are aware of are by
Veerapen et al. [25] and Whitacre et al. [26] - while almost all con-
trollers found in literature use fitness and/or a form of diversity as
feedback from the EA without providing any motivation or justifi-
cation for this choice [12]. A systematic approach for the definition
of observables was suggested by Karafotias et al. [13].

For our initial design of a generic controller we have chosen a set
of simple observables that we consider appropriate and intuitively
useful (since as we explained a better informed decision is impos-
sible at the moment):

1. Genotypic diversity
2. Phenotypic diversity (when different from genotypic)
3. Fitness standard deviation
4. Fitness improvement
5. Stagnation counter

When looking at the observables, two types can be distinguished:
those that measure the current state of the population (the first three
items) and the ones measuring the progress made over a number of
generations (the last two). As for the first type, the first two regard
diversity which is generally accepted as an important descriptor of
the state of an EA (see [12]). However, not only is the measurement
of diversity dependent on the representation used by the EA but the
concept of diversity is itself not well-defined [24]. For this pa-
per, we conducted experiments with numeric optimisation, thus we
used Euclidean distance for measuring diversity, though there are
alternative options (see for example [19] and [15]). The standard
deviation of fitness values in the population is used as a secondary
measure of diversity and convergence. The observables measur-
ing the progress include the fitness improvement and the stagnation
counter. The fitness improvement is the only real fitness measure
we use (defined the same as the reward (3)). The reason we did
not include absolute fitness values is that such observables would
be less useful to a non-restarting EA: states defined by absolute fit-
ness values are not likely to occur again making anything learned
from those states unusable in the future. The number of generations
that have passed without any improvement is a metric that might be
related to taking drastic exploratory action.

Control actions are defined as setting each controlled parameter
to a certain value. To simplify our design we cope with the continu-
ous action space by discretising parameter ranges to equal intervals.

The number of discretisation intervals is the same for all parame-
ters, regardless of the parameter’s range. When the controller picks
an interval to set a parameter’s value, the exact value is taken uni-
formly randomly from within that interval. Values of symbolic pa-
rameters are treated each separately. Each action of the controller
specifies the intervals for all numeric parameters and the values for
all symbolic parameters. Consequently, the total number of control
actions is equal to the product of the numbers of intervals/values
of all parameters. Depending on the EA controlled, the number of
parameters will change. The granularity of the discretisation is im-
portant here. The smaller the intervals, the more fine-grained the
controller can set parameter values, but the larger the action space
requiring more time to explore. The number of discretisation bins
decides the number of actions; it is left as a choice for each specific
application depending on the EA (i.e. how many parameters it has)
and problem at hand (i.e. how long a run is possible).

The core of the controller is based on Temporal Difference (TD)
learning with dynamic state space segmentation and eligibility traces.
The dynamic state segmentation method used is based on the work
by Uther and Veloso [22]. The controller represents states as a bi-
nary decision tree. Internal nodes are decision nodes; they segment
space with an inequality on one of the observables. Leaf nodes
represent actual discrete states. Each such state node Si includes
Q(Si, aj) values and eligibility traces e(Si, aj) for all actions aj

and a V (Si) value of the state itself. Q(Si, aj) denotes the es-
timated state-action value, i.e. the expected long-term return of
taking action aj when in state Si. These Q values are used when
the controller selects actions. Eligibility traces are a way to as-
sign credit (or blame) to actions when their influence can extend to
several steps after they are taken. At each time t, every state-action
pair Si, aj has an eligibility trace e(Si, aj) ∈ [0, 1] that shows how
much responsibility action aj from state Si is taking for the reward
R(t) that is presently received. The more recently action aj was
taken from state Si the higher e(Si, aj) is and vice versa.

At each control step (which can occur every one or more gener-
ations of the EA) the controller receives a set of observables values
!o(t) (as defined earlier) and a reward R(t) (as defined in (3)). It
derives the corresponding current discrete state by starting at the
root of the state tree and traversing the decision nodes based on the
observables values down to a state node S(t). It then selects the
current action a(t) using an ε-greedy strategy: with probability ε
a random action is chosen, otherwise it selects the action with the
highest Q value: a(t) = argmaxjQ(S(t), aj). It then calculates
the target value δ for the update of the previous action based on
the reward R(t) received. The target δ is derived according to the
SARSA on-policy rule [21]:

δ = R(t) + γ ·Q(S(t), a(t))−Q(S(t− 1), a(t− 1)) (4)

where γ is the discount rate. Before applying the δ target, the el-
igibility trace of the previous action is updated to one: e(S(t −
1), a(t − 1)) = 1. Subsequently, all eligible state-action pairs are
updated according to target δ:

Q(Si, aj) = Q(Si, aj) + αt · δ · e(Si, aj),

∀Si, aj : e(Si, aj) > emin

αt =

{
α0 R(t) = 0

α otherwise

(5)

where emin is the minimum eligibility and α is the step-size pa-
rameter. The value of α decides how much influence the target δ
will have on the current Q values. Because rewards (fitness im-
provements) tend to be zero a lot of the time, we use a different
(and much lower) α0 to avoid Q values quickly dropping to zeros.

The value of the state is updated to be the maximum action value
within that state:

V (Si) = maxQ(Si, aj) (6)

Finally, the eligibility traces of all state-action pairs are updated:

e(Si, aj) = e(Si, aj) · γ · λ (7)

where γ is the discount rate and λ is the trace decay parameter.
After the next action is selected and all updates are performed the

state tree is updated. The state tree starts with only one root node
which is a state node representing one universal state; any possible
observables !o will map to that state. Every time a control step is
made a transition occurs from an observation and action to a reward
and a new observation Tt = (!o(t), a(t), R(t+1),!o(t+1)). Every
state maintains an archive of such transitions and at each control
step the transition Tt is added to the archive of state S(t). If the
state’s archive is larger than a threshold Am and with probability ps
the state is checked for splitting into two new states, which means
that the current node becomes an internal decision node and two
new state nodes are added as its children. To convert the state node
into a decision node a choice of observable and a splitting value are
required to form the corresponding inequality.

The purpose of this process is to divide a state into two parts with
significantly different value estimates. First, each transition in the
state’s archive is assigned a value equal to the reward of the tran-
sition plus the current value estimation of the state that currently
corresponds to the end observation of the transition (the !o(t + 1)
for Tt). Subsequently, all observables are checked as candidates for
the splitting criterion. For each observable:

• Transitions in the archive are sorted according to the current
observable in the transition’s starting observation (the !o(t)
for Tt).

• Taking the sorted list of transitions we consider the values of
the current observable. The mid-point between the observ-
able values of every two subsequent transitions in the sorted
list is a candidate for a splitting point1. Splitting points are
only considered if they split a transition list to fractions that
are larger than a Af .

• Given the split point, the values of the transitions of the two
parts form two samples. A Kolmogorov-Smirnov double test
is run with these two samples and the resulting D value of
the test is saved.

• The above process is repeated for all observables.
After all observables are checked, the smallest D value is taken. If
it is smaller than Dmax then the node is split at the corresponding
observable and splitting point. Two new state nodes are created and
their Q, V and e values are set to the values of the parent node as an
initial estimation. The archive of the parent node is split according
to the chosen split point and the parts are given to the corresponding
children nodes. The parent node becomes a decision node with an
inequality using the observable and split point derived above.

The RL controller has ten parameters due to the TD learning rule,
the dynamic state tree and the eligibility traces. These parameters
and their default values are shown in Table 1.

5. EXPERIMENTAL SETUP
The experiments presented in this section aim at evaluating the

RL controller described earlier. To this end, we selected four dif-
ferent EAs (described later) and four different parameter control
mechanisms: none (using the default parameter values of the given
1If the transitions are too many then only 100 equally spaced points
are checked

Table 1: Controller Parameters
TD State tree Traces

Parameter Value Parameter Value Parameter Value
ε 0.1 Am 60 λ 0.8
γ 0.8 Af 0.2 emin 0.001
α 0.9 Dmax 0.05
α0 0.2 ps 0.1

EA), PRAM [28], our RL, and a mechanism that changes parameter
values randomly. In order to get results as realistic and meaningful
as possible, each EA was tested with functions it was designed for
or is considered competent solving.

5.1 EAs to be controlled
We decided to use algorithms and problems from the classic nu-

meric optimisation domain which do originate from real world ap-
plications but are also widely used and understood in the research
community. This also allows us to study a wide range of problems
as well as the impact of the level of sophistication of the algorithm
upon the performance of the RL controller. For our experiments
we selected four different EAs ranging in sophistication from very
simple to state-of-the-art. In particular we used:

1. A simple self-coded Evolution Strategy (ES) with real val-
ued representation, Gaussian mutation with one σ, uniform
crossover and tournament selection for both parents and sur-
vivors. The parameters controlled are the population size
µ, the generation gap g (the ratio of offspring to population
size), the mutation step size σ and the tournament size for
survivor selection ks (the parent tournament size is fixed to
two). Being an unspecialised “naive” algorithm, the Simple
ES was tested with three of the standard numeric optimisa-
tion test functions frequently used in literature: Rastrigin,
Schaffer and Fletcher & Powell.

2. The Cellular GA [1] implemented for the BBOB20132 com-
petition by Holtschulte and Moses [9] 3. The parameters con-
trolled are the choice of crossover (two-point or arithmetic),
the crossover probability pc, the choice of mutation (Gaus-
sian, uniform, decreasing Gaussian or alternating uniform
and Gaussian), the mutation rate pm and the mutation vari-
ance mvar . The parent and survivor selection operators are
fixed (ranking and select best) and not parameterisable. The
Cellular GA was implemented for the BBOB contest thus we
tested it with BBOB functions 21 through 24 (we chose the
harder functions that would justify long runs and resemble
the real functions tackled in one-off applications).

3. The GA MPC (GA with Multi-Parent Crossover) by Elsayed
et al. [7] that was the winner of the CEC2011 competition on
real world applications4. The parameters controlled are the
population size µ, the maximum size of the parent tourna-
ment kmax, the randomisation probability pr , the percentage
of the population that is put in the archive fa and the mean
βm and standard deviation βstd of the normal distribution
used to draw the β weight used in the multi-parent crossover.
The survivor selection is “select best” and involves no pa-
rameters. The GA MPC was tested with the test suite it was

2http://coco.gforge.inria.fr/doku.php?id=bbob-2013
3The source code was acquired directly from the authors
4http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC11-
RWP/CEC11-RWP.htm. The source code of GA MPC is available
at the same competition page.

designed for (CEC2011); we used two problems it performed
very well and two for which it performed poorly (12/13 and
7/11.8 respectively).

4. A recent CMA ES variant: the IPOP-10DDr CMA-ES by
Liao and Stützle [14] that took part in the BBOB 2013 com-
petition5. The parameters controlled are the backward time
horizon for distribution cumulation cc, the step size cumula-
tion cs, the step size damping parameter d, the mixing be-
tween rank-one and rank-mu update µcov and the recombi-
nation type (equal, linearly decreasing or super-linearly de-
creasing weights). The population and offspring sizes are
controlled at restart by the IPOP-10DDr mechanism and can-
not be changed during actual runtime. The restart conditions
were kept to defaults. We used the BBOB test suite where
the CMA ES variants are especially competent; we chose the
same functions as the Cellular GA (for the same reason).

5.2 Control mechanisms used
Each algorithm was run in combination with four different con-

trol mechanisms. The baseline mechanism was the use of no con-
trol, that is, using static parameters set to default values as provided
in the source codes or specified in the relevant publications listed
above. (For our Simple ES we set parameters to “standard” values).

All algorithms were also run with the RL controller. The param-
eters of the RL controller were set to the default values shown in
Table 1 for all experiments. The only option of the RL controller
changed was the number of discretisation bins: since the number
of parameters and the length of runs differ among EA and prob-
lem settings, the amount of discretisation bins was chosen for each
experiment separately to yield a reasonable number of control ac-
tions.

Third, we run all algorithms with one of the few existing generic
controllers, the Probabilistic Rule-driven Adaptive Model (PRAM)
by Wong et al. [28]. PRAM can only handle numeric parame-
ters, thus, any symbolic parameters were kept static to their default
values when running with PRAM. For all PRAM experiments the
epoch length was set to 150, 20% of which was the training phase.
PRAM’s step sizes were separately adjusted for each algorithm and
parameter since parameter ranges differ drastically.

Finally, we also run all algorithms with their parameters being
randomly varied (see [10] for the motivation). In these tests the
ranges of parameters were the same as for the RL controller but
values were drawn uniformly randomly.

Each algorithm/problem/control mode combination was run 30
times. Table 2 summarises the experimental setup6 showing all al-
gorithms, their parameters and their ranges and default values, the
test problems for each algorithm, the number of action discretisa-
tion bins used for the RL controller and the step sizes of the PRAM.

6. RESULTS AND ANALYSIS
The results of all experiments are shown in Table 4. The RL

controller significantly improves over the static mode in 8 out of
15 cases while it has a better best run in additional 3 cases. For
PRAM these number are 6 and 0 and for random 8 and 2. The
RL controller and random modes are both significantly better than
static in 8 cases, in 3 of these the RL control is significantly better
than random and in additional 3 it has a better best run.
5The source code for the (IPOP) CMA-ES was acquired from
https://www.lri.fr/~hansen/cmaes_inmatlab.html. The 10DDr vari-
ation was added manually.
6The source code for this experiment is available for download at
http://www.few.vu.nl/~gks290/resources/gecco2014.tar.gz

In several cases the performance of the EA is improved when us-
ing the RL controller compared to the static mode while there are
only two cases where performance is significantly worsened with
RL control. Furthermore, as we stated in Section 5, the settings of
the RL controller were the same across all experiments (with the
trivial exception of the number of action bins). Based on these
results we can conclude that an RL-based controller can indeed
improve the performance of an off-the-shelf EA with no need of
tailoring to the given problem.

Looking at the results of Table 4 we can see that the RL con-
troller has a much better effect for some EAs (notably the Simple
ES) while it is not particularly advantageous for others such as the
CMA-ES. One way to interpret this is by considering the margin
of improvement for each algorithm when solving a specific prob-
lem, i.e. how well tailored is the algorithm to the problem at hand.
The Simple ES is very crude while the Cellular GA, though more
complex, is certainly not a competent numeric optimiser. Neither
of them is particularly fit for the problems they are solving. On
the other hand, the GA MPC is an efficient optimiser (winner of
the CEC 2011 competition) but notice that it ranked low for the
first two problems while it ranked first and second for the last two
problems. Finally, the CMA-ES is considered the most competent
numeric optimiser and consistently performs well for the BBOB
competitions. Table 3 summarises7 these observations along with a
simple comparison between the static mode and the RL control. It
shows that when there is margin for improvement for the specific
EA/problem combination, the RL controller will exploit it.

Another factor that may contribute to the performance differ-
ences among EAs when using the RL controller is monotonicity
(decided by restarting and elitism). The Simple ES is the only
non-elitistic. The Cellular GA and GA MPC are elitistic and do
not restart while the IPOP-10DDr CMA-ES typically restarted only
four or five times per run. This is relevant if we look into the ob-
servables’ values (we cannot provide graphs due to lack of space8).
It is frequently seen that, during a run, observables will follow a
monotonous increasing or decreasing curve (unless the EA restarts
or is non-elitistic). This means that specific observations only occur
once, thus, states do not repeat unless the EA is restarted9. Conse-
quently, elitism combined with no restarting could mean that any-
thing learned during a run is never actually used and the controller
degenerates to solving a dynamic multi-armed bandit problem.

Looking at the parameter values set by the RL controller we
could not discern any obvious pattern. Even when looking at one
of the best performing runs for the RL control (Simple ES with
the Rastrigin problem) in Figure 1 no apparent trends can be seen.
However, that is not necessarily a problem considering the com-
bined effect of multiple observables, the dynamic segmentation of
the state space and the effects of exploratory actions.

For all experiments, the settings of the RL controller were fixed
to the default values shown in Table 1 without making any further
adjustments or tests. Though that is not enough to derive conclu-
sions about the robustness of the RL controller, it shows that any
improvements in performance reported in this paper were achieved
with no additional effort for applying the RL controller to the EAs.

When comparing the performance with PRAM, the benchmark
parameter controller, it can be seen that the RL controller outper-
forms PRAM in most cases, although for each algorithm there is

7Directly derived from the raw data in Table 4.
8All graphs are available for download at
http://www.few.vu.nl/~gks290/resources/gecco2014.tar.gz
9Non-elitism can result in “weak” restarting with the diversity and
fitness hopping to large/small values every time the best individuals
do not survive.

Table 2: Experimental Setup
EA Parameters, ranges, default values Problems RL Control settings PRAM settings

Simple ES

µ ∈ [10, 80], µ = 20
g ∈ (0, 7], g = 2
σ ∈ (0, 2], σ = 0.8
ks ∈ [2, 80], ks = 2

Rastrigin,
Fletcher&Powell,
Schaffer, Schwefel in
10 dimensions

Action bins: 5

s(µ) = 8
s(g) = 0.25
s(σ) = 0.1
s(ks) = 3

Cellular GA

xover ∈ {2p,Ar}, xover = 2p
pc ∈ [0.6, 1], pc = 0.9
mut ∈ {G,U,Gd, C}, mut = G
pm ∈ (0, 0.4], pm = 0.1
mvar ∈ (0, 0.4], mvar = 0.2

BBOB2013 f21, f22,
f23, f24 in 40 dimen-
sions

Action bins: 4
s(pc) = 0.04
s(pm) = 0.04
s(mvar) = 0.04

GA MPC

µ ∈ [50, 130], µ = 90
kmax ∈ [3, 15], kmax = 3
βm ∈ [0.3, 1.1], βm = 0.7
βstd ∈ (0, 0.5], βstd = 0.1
pr ∈ (0, 0.4], pr = 0.1
fa ∈ [0.3, 0.7], fa = 0.5

CEC2011 f7, f11.8,
f21, f22

Action bins: 4

s(µ) = 6
s(kmax) = 1
s(βm) = 0.05
s(βstd) = 0.05
s(p) = 0.04
s(fa) = 0.04

IPOP-
10DDr
CMA ES

cc ∈ [0, 1], cc = 0.0909
cs ∈ [0, 1], cs = 0.1375
d ∈ [1, 5], d = 1.1375
µcov ∈ [1, 20], µcov = 4.5409
xover ∈ {E,Dl, Dsl}, xover = Dsl

BBOB2013 f21, f22,
f23, f24 in 40 dimen-
sions

Action bins: 4

s(cc) = 0.1
s(cs) = 0.1
s(d) = 0.5
s(µcov) = 2

a problem where PRAM has superior performance to the RL con-
troller. Finally, it is noteworthy that random variation of parameter
values had, in many cases, a positive effect on performance, even
for the more complex GA MPC. Such an effect has been observed
before [11],[10] and is again confirmed here.

Table 3: RL Control vs static: ++ (or - -) shows that the ABF is
significantly better (or worse) while + (or -) shows that ABF is
not significantly different but the result of the best run is better
(or worse). A 0 means no difference. Grey cells denote that the
EA is particularly fit to the specific problem (see explanation in
the text).

Simple ES ++ ++ ++
Cellular GA ++ ++ ++ +
GA MPC ++ ++ + --
CMA ES 0 0 -- +

7. CONCLUSIONS
In this paper, we presented an RL-based generic parameter con-

troller for EAs. The controller can easily be applied to any EA
by simply specifying the parameters to be controlled, their ranges
and the desired level of precision. We conducted experiments with
four different EAs and 15 problems. The results show that the RL
controller can enhance performance without the need for tweaking
its parameters. A detailed analysis shows that the RL controller
can exploit an existing margin of improvement, i.e. when the EA
has not been fully tailored towards the particular problem at hand.
Compared to two benchmark controllers (PRAM and random vari-
ation) the RL controller generally outperforms both of them. An
analysis of values selected by the controller shows that, though the
controller is able to improve performance, a pattern in the selection
of parameter values is hard to discern. A surprising - but in retro-
spect logical - observation is that the EA’s monotonicity can have
an influence on the efficiency of the RL controller. Finally, another
interesting observation is that random variation of parameter values
can enhance the performance compared to static default values.

Regarding future work, we believe that a systematic exploration
and evaluation of different observables is important. Currently,
very little is known about the information contained in observ-
ables and their usefulness for controlling parameter values. In this
work, we have selected observables that are frequently used in liter-
ature but with no underlying argumentation. Analysis of our results
shows that these observables are inappropriate unless certain con-
ditions hold (non-elitism or frequent restarts). Other future work
includes the improvement of the design of the controller, an anal-
ysis of the sensitivity of the controller to its own parameters and
to noise in observables as well as more rigorous testing with other
EA/problem combinations.

8. REFERENCES
[1] E. Alba and B. Dorronsoro. Cellular Genetic Algorithms.

Springer, Berlin, Heidelberg, New York, 1st edition, 2008.
[2] F. Chen, Y. Gao, Z. Chen, and S. Chen. SCGA: Controlling

genetic algorithms with Sarsa(0). In Computational
Intelligence for Modelling, Control and Automation, 2005
and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce, International
Conference on, volume 1, pages 1177–1183, 2005.

[3] A. Eiben, M. Horvath, W. Kowalczyk, and M. Schut.
Reinforcement learning for online control of evolutionary
algorithms. In Brueckner, Hassas, Jelasity, and Yamins,
editors, Proceedings of the 4th International Workshop on
Engineering Self-Organizing Applications (ESOA’06),
volume 4335, pages 151–160. Springer, 2006.

[4] A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter
Control in Evolutionary Algorithms. IEEE Transactions on
Evolutionary Computation, 3(2):124–141, 1999.

[5] A. E. Eiben and S. K. Smit. Parameter tuning for configuring
and analyzing evolutionary algorithms. Swarm and
Evolutionary Computation, 1(1):19–31, 2011.

[6] A. E. Eiben and J. Smith. Introduction to Evolutionary
Computing. Springer, Berlin Heidelberg, 2003.

[7] S. Elsayed, R. Sarker, and D. Essam. GA with a new
multi-parent crossover for solving IEEE-CEC2011
competition problems. In Proceedings of the 2011 IEEE

0 200 400 600

20

40

60

80

(a) µ
0 200 400 6000

2

4

6

(b) g
0 200 400 6000

0.5

1

1.5

2

(c) σ

Figure 1: Parameter values over time for the best run of the Simple ES solving the Rastrigin function with RL control.

Congress on Evolutionary Computation, pages 1034–1040,
New Orleans, USA, 2011. IEEE Press.

[8] H. Hasselt. Reinforcement learning in continuous state and
action spaces. In Wiering and Otterlo [27], pages 207–251.

[9] N. J. Holtschulte and M. Moses. Benchmarking cellular
genetic algorithms on the BBOB noiseless testbed. In
Proceeding of the Fifteenth Annual Conference Companion
on Genetic and Evolutionary Computation Conference
Companion, GECCO ’13 Companion, pages 1201–1208.
ACM, 2013.

[10] G. Karafotias, M. Hoogendoorn, and A. Eiben. Why
parameter control mechanisms should be benchmarked
against random variation. In Proceedings of the 2013 IEEE
Congress on Evolutionary Computation, pages 349–355,
Cancun, Mexico, 2013. IEEE Press.

[11] G. Karafotias, M. Hoogendoorn, and A. E. Eiben. Parameter
control: strategy or luck? pages 215–216, New York, NY,
USA, 2013. ACM.

[12] G. Karafotias, M. Hoogendoorn, and A. E. Eiben. Parameter
control in evolutionary algorithms: Trends and challenges.
IEEE Transactions on Evolutionary Computation, to appear,
2014.

[13] G. Karafotias, S. Smit, and A. Eiben. A generic approach to
parameter control. In C. Di Chio et al, editor, Proceedings of
EvoApplications 2012: Applications of Evolutionary
Computation, number 7248 in Lecture Notes in Computer
Science, pages 366–375. Springer, Berlin, Heidelberg, New
York, 2012.

[14] T. Liao and T. Stützle. Bounding the population size of
IPOP-CMA-ES on the noiseless BBOB testbed. In
Proceeding of the Fifteenth Annual Conference Companion
on Genetic and Evolutionary Computation Conference
Companion, pages 1161–1168. ACM, 2013.

[15] B. McGinley, J. Maher, C. O’Riordan, and F. Morgan.
Maintaining healthy population diversity using adaptive
crossover, mutation, and selection. Evolutionary
Computation, IEEE Transactions on, 15(5):692 –714, 2011.

[16] S. Muller, N. Schraudolph, and P. Koumoutsakos. Step size
adaptation in evolution strategies using reinforcement
learning. In 2002 Congress on Evolutionary Computation
(CEC’2002), pages 151–156, Honolulu, USA, 12-17 May
2002. IEEE Press, Piscataway, NJ.

[17] J. Pettinger and R. Everson. Controlling genetic algorithms
with reinforcement learning. In W. Langdon et al, editor,
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2002), pages 692–. Morgan
Kaufmann, San Francisco, 9-13 July 2002.

[18] Y. Sakurai, K. Takada, T. Kawabe, and S. Tsuruta. A method
to control parameters of evolutionary algorithms by using
reinforcement learning. In Signal-Image Technology and
Internet-Based Systems (SITIS), 2010 Sixth International
Conference on, pages 74–79, 2010.

[19] S. Smit and A. E. Eiben. Population diversity index: A new
measure for population diversity. In Proceedings of the
Genetic and Evolutionary Computation Conference. ACM,
2011.

[20] M. Spaan. Partially observable markov decision processes. In
M. Wiering and M. Otterlo, editors, Reinforcement Learning,
volume 12 of Adaptation, Learning, and Optimization, pages
387–414. Springer Berlin Heidelberg, 2012.

[21] R. S. Sutton and A. G. Barto. Introduction to Reinforcement
Learning. MIT Press, Cambridge, MA, USA, 1998.

[22] W. B. Uther and M. Veloso. Tree based discretization for
continuous state space reinforcement learning. In
Proceedings of the fifteenth national/tenth conference on
Artificial intelligence/Innovative applications of artificial
intelligence, AAAI ’98/IAAI ’98, pages 769–774. American
Association for Artificial Intelligence, 1998.

[23] M. van Otterlo and M. Wiering. Reinforcement learning and
Markov Decision Processes. In Wiering and Otterlo [27],
pages 3–42.

[24] M. Črepinšek, S.-H. Liu, and M. Mernik. Exploration and
exploitation in evolutionary algorithms: A survey. ACM
Comput. Surv., 45(3):35:1–35:33, 2013.

[25] N. Veerapen, J. Maturana, and F. Saubion. A comparison of
operator utility measures for on-line operator selection in
local search. In Proceedings of the 6th international
conference on Learning and Intelligent Optimization,
LION’12, pages 497–502. Springer-Verlag, 2012.

[26] J. Whitacre, T. Pham, and R. Sarker. Use of statistical outlier
detection method in adaptive evolutionary algorithms. In
M. Keijzer, editor, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2006),
pages 1345–1352. Morgan Kaufmann, San Francisco, 2006.

[27] M. Wiering and M. Otterlo, editors. Reinforcement Learning,
volume 12 of Adaptation, Learning, and Optimization.
Springer Berlin Heidelberg, 2012.

[28] Y.-Y. Wong, K.-H. Lee, K.-S. Leung, and C.-W. Ho. A novel
approach in parameter adaptation and diversity maintenance
for genetic algorithms. Soft Computing - A Fusion of
Foundations, Methodologies and Applications, 7:506–515,
2003.

Table 4: Results of all experiments. There are four sections, one for each algorithm. Every section includes three or four subtables
with the results for each test problem. Subtables show the performance of the algorithm with that problem with four parameter
modes: static default, controlled with the RL controller, controlled with PRAM, and randomly varied. Performance is shown in
terms of final fitness averaged over all repeats (ABF), final fitness of the best and worst runs and the number of evaluations until the
best fitness of the run is reached averaged over all repeats (AEB). In the ABF and AEB columns underlined values are significantly
better than static and bold values denote the winner(s) (not significantly worse than the best). Significant difference was decided when
a two-sided Kolmogorov-Smirnov test with α = 0.05 rejected the null hypothesis that two samples came from the same distribution.
All problems are minimisation.

Simple ES
Rastrigin Schaffer Fletcher & Powell

ABF Best Worst AEB ABF Best Worst AEB ABF Best Worst AEB
static 27.681 20.718 34.808 510033 22.036 6.934 42.749 664785 7935.4 1982.5 11004 505854
RL 0.672 0.039 2.423 491921 9.851 1.079 29.226 579073 166.211 3.424 726.75 586305
PRAM 11.762 2.184 32.039 533587 4.253 0.908 16.492 708175 1022.72 15.557 7548.2 752212
random 4.645 1.630 8.325 591095 3.071 1.982 10.527 667068 420.260 187.938 768.02 575475

Cellular GA
BBOB f21 BBOB f22 BBOB f23

ABF Best Worst AEB ABF Best Worst AEB ABF Best Worst AEB
static 40.891 40.805 41.139 973913 -998.82 -999.08 -998.49 979100 9.062 8.573 9.472 764053
RL 40.800 40.784 40.863 998730 -999.18 -999.26 -999.05 999350 8.486 8.148 8.906 906923
PRAM 40.780 40.780 40.781 943080 -999.29 -999.49 -999.20 900960 9.282 8.443 9.999 495420
random 40.843 40.795 40.973 999210 -998.91 -999.11 -998.69 999220 8.643 8.296 9.094 923773

BBOB f24
ABF Best Worst AEB

static 471.809 435.148 511.297 899713
RL 484.621 412.925 565.928 986693
PRAM 493.931 412.911 598.025 502450
random 490.169 422.008 544.902 996706

GA MPC
CEC2011 f7 CEC2011 f11.8 CEC2011 f12

ABF Best Worst AEB ABF Best Worst AEB ABF Best Worst AEB
static 1.677 0.837 2.028 100626 1952741 1510399 2505116 87535 16.300 14.110 22.675 149491
RL 0.963 0.627 1.396 124440 947843 941267 955770 119430 16.443 12.589 20.512 149829
PRAM 1.552 0.586 1.969 95914 1562083 941087 3438794 98474 16.213 14.232 17.678 149968
random 0.893 0.584 1.219 142052 946728 939736 957187 132381 16.541 13.718 20.338 149698

CEC2011 f13
ABF Best Worst AEB

static 15.211 8.609 22.207 149335
RL 19.329 14.119 26.764 149873
PRAM 17.342 8.861 25.672 148652
random 17.797 8.787 24.957 149828

IPOP-10DDr CMA ES
BBOB f21 BBOB f22 BBOB f23

ABF Best Worst AEB ABF Best Worst AEB ABF Best Worst AEB
static 41.390 40.780 43.252 163539 -997.666 -999.308 -985.415 115916 6.889 6.870 6.977 604791
RL 41.689 40.780 43.252 312667 -997.753 -999.308 -981.711 193861 6.902 6.875 6.980 673839
PRAM 41.985 40.780 43.949 196793 -997.626 -999.308 -981.711 184533 6.910 6.874 6.974 705917
random 41.751 40.780 43.949 396004 -997.876 -999.308 -985.415 238268 6.942 6.871 7.268 568693

BBOB f24
ABF Best Worst AEB

static 131.541 108.027 150.419 416381
RL 128.907 106.931 152.292 483242
PRAM 137.570 109.712 187.557 594935
random 126.457 107.754 153.392 561017

	FBE1FD1F-DFFE-41CC-975C-6C64B7AC7C31: Off

