
A generic approach to parameter control

Giorgos Karafotias, S.K. Smit, A.E. Eiben

Vrije Universiteit Amsterdam

Abstract. On-line control of EA parameters is an approach to parameter set-
ting that offers the advantage of values changing during the run. In this paper,
we investigate parameter control from a generic and parameter-independent per-
spective. We propose a generic control mechanism that is targeted to repetitive
applications, can be applied to any numeric parameter and is tailored to specific
types of problems through an off-line calibration process. We present proof-of-
concept experiments using this mechanism to control the mutation step size of an
Evolutionary Strategy (ES). Results show that our method is viable and performs
very well, compared to the tuning approach and traditional control methods.

1 Introduction

When defining an evolutionary algorithm (EA) one needs to configure various set-
tings: choose components (such as variation and selection mechanisms) and set numeric
values (e.g. the probability of mutation or the tournament size). These configurations
largely influence performance making them an important aspect of algorithm design.

The field of evolutionary computing (EC) traditionally distinguishes two approaches
for setting parameter values[4]:

– Parameter tuning, where parameter values are fixed in the initialization stage and
do not change while the EA is running.

– Parameter control, where parameter values are given an initial value when starting
the EA and undergo changes while the EA is running.

The capability of parameter control to use adequate parameter values in different
stages of the search is an advantage, because the run of an EA is an intrinsically dynamic
process. It is intuitively clear –and for some EA parameters theoretically proven– that
different values may be optimal at different stages of the evolution. This implies that the
use of static parameters is inherently inferior to changing parameter values on-the-fly.

Fig. 1. Tuning vs control

The conceptual distinction between tun-
ing and control can be lifted if we consider
the control mechanism as an integral part of
the EA. In this case the EA and its parameter
control mechanism (that may be absent) are
considered as one entity. Furthermore, this
composed entity may or may not be tuned be-
fore being applied to a new problem. The re-
sulting matrix of four options is shown in Figure 1.



The combinations in the top row have the advantage of enhanced performance at the
cost of the tuning effort [11]. The options in the left column offer the benefits of time
varying parameter values mentioned above with a tradeoff of increased complexity.

In this paper we introduce a generic control mechanism that is located in the top-
left corner of the matrix, i.e. it combines on-line parameter adjustment (control) and
off-line configuration (tuning). This means that the evolutionary algorithm incorporates
a parameter control mechanism (seen as a black box for the moment) but this controller
itself has certain parameters that can be configured for a problem through an off-line
tuning process. Such a method has both the advantage of enhanced performance, and
the possibility to be tuned to a specific problem (and is therefore most appropriate for
repetitive problems). On the other hand, this mechanism also has the disadvantages of
being complex, and the need for computational time dedicated to problem tailoring.
Hence, the questions we want to address in this paper are:

– Is such an approach viable?
– What is the added value of this approach, when compared to traditional approaches

such as static parameter-values, the 1/5th rule and self-adaptation?
– On what kind of feedback from the search process should such a parameter control

mechanism base its decisions?

2 Related work

Parameter control is an increasingly popular topic in the field of evolutionary algo-
rithms[5]. The outline of the most commonly used methods is quite similar: one of the
parameter values is altered based on some specific evidence. Most often these methods
are designed for specific parameters. The most popular parameter-specific control meth-
ods focuses on mutation probability [6], mutation step size [12] and operator selection
[17] but methods also exist for the selection pressure [18], the population-size[16], the
fitness function [9] and the encoding [13].

Some generic control methods for numeric parameters also exist. In [19] an adap-
tive mechanism is proposed that works in alternating epochs, first evaluating parameter
values in a limited set and then applying them probabilistically. In the end of every such
pair of epochs the set of possible parameter values is updated according to some heuris-
tic rule. In Lee and Takagi [8] an adaptive control mechanism based on fuzzy logic is
proposed. Instantiation of the rule set of the controller is achieved through an off-line
calibration process using a GA. Lee and Takagi concluded that such an approach was
very beneficial, and led to a much better performance than using the fixed parameter
values. However, the fixed values used in this study were the ones commonly used at
that time, based on the early work of DeJong, rather than found using parameter tuning.

A two-layer approach to control is presented in [3] and [10]: the lower layer adap-
tively controls EA parameters driven by an upper level that enforces a user-defined
schedule of diversity or exploration-exploitation balance (though these are not parame-
ters per se). The algorithm in [10] includes a built-in learning phase that calibrates the
controller to the EA and problem at hand by associating parameter values to diversity
and mean fitness using random samples. In [3], the lower control level is an adaptive op-
erator selection method that scores operators according to the diversity-fitness balance



they achieve as compared to a balance dictated by the upper level user defined schedule.
However, neither of the two make a comparison against static parameter-values found
using parameter tuning.

Extensive literature reviews on parameter control can be found in [5] and [2].

3 Parameter Control Roadmap

In this section we present a simple framework for parameter control mechanisms. The
purpose of this framework is not to provide any theoretical grounding or proofs but to
serve as a roadmap that helps in designing and positioning one’s mechanism.

We define a parameter control mechanism as a combination of three components:

1. A choice of parameters (i.e. what is to be controlled).
2. A set of observables that will be the input to the control mechanism (i.e. what

evidence is used).
3. An algorithm/technique that will map observables to parameter values (i.e. how the

control is performed).

These components are briefly described in the following paragraphs. However, they
are based on the definition of the state of an evolutionary algorithm, which is therefore
introduced first.

EA State We define the state SEA of an evolutionary algorithm as:

SEA = {G, p̄,F} (1)

where G is the set of all the genomes in the population, p̄ is the vector of current
parameter values, and F is the fitness function.

A triple SEA uniquely specifies the state of the search process for a given evolu-
tionary algorithm (the design and specific components of the EA need not be included
in the state since they are the same during the whole run) in the sense that SEA fully de-
fines the search results so far and is the only observable factor that influences the search
process from this point on (though not fully defining it, given the stochastic nature of
EA operators). Time is not part of SEA as it is irrelevant to the state itself; it introduces
an artificial uniqueness and a property that is unrelated to the evolution. Of course, state
transitions are not deterministic.

3.1 Parameters

The starting point when designing a control mechanism is the parameter to be con-
trolled (as well as choices such as when and how often the parameter is updated). The
importance of various parameters and the effect or merit of controlling each of them
are subjects that will not be treated here (we refer to [2]). Instead, here we will only
distinguish between numeric (e.g. population size, crossover probability) and symbolic
(e.g. recombination operator) parameters.



3.2 Observables

The observables are the values that serve as inputs to the controller’s algorithm. Each
observable must originate from the current state SEA of the EA since, as defined above,
it is the only observable factor defining how the search will proceed from this point on.

However, the raw data in the state itself are unwieldy: if we were to control based
on state SEA directly, that would imply that the control algorithm should be able to
map every possible SEA to proper parameter values. Consequently, preprocessing is
necessary to derive some useful abstraction, similar to the practise of dataset prepro-
cessing in the field of data mining. We define such an observable derivation process as
the following pipeline:

Source→ (Digest)→ (Derivative)→ (History)

Parentheses denote that steps can be bypassed.

i. Source: As stated above, the source of all observables is the current state of the EA,
i.e. the set of all genomes, the current parameter values and the fitness function.

ii. Digest: A function D(SEA) = v that maps an EA state to a value, e.g. best fitness
or population diversity.

iii. Derivative: Instead of using directly a value v we might be more interested in its
speed or acceleration (e.g. to make the observable independent to the absolute val-
ues of v or to determine the effect of the previous update as the change observed in
the most recent cycle).

iv. History: The last step in defining an observable is maintaining a history of size W
of the value received from the previous step. This step includes a decision on the
sliding window size W and the definition of a function FH(v1, v2, ..., vW )1 that,
given the last W values, provides a final value or vector (e.g. the minimum value,
the maximum increase between two consecutive steps, the whole history as is etc.).

The above observable derivation is meant to be a conceptual framework and not
an implementation methodology. For example, the current success ratio (in the context
of Rechenberg’s 1/5 rule) can in theory be derived from a state SEA by applying the
selection and variation operators to G and calculating the fitnesses of the results though
obviously that would be a senseless implementation.

3.3 Algorithm

Any technique that maps a vector of observable values to a vector of parameter val-
ues can be used as an algorithm for the control mechanism, e.g. a rule set, an ANN or
a function are all valid candidates. The choice of the proper algorithm seems to bear
some resemblance to choosing an appropriate machine learning technique given a spe-
cific task or dataset. Whether EA observables display specific characteristics that make
certain biases and representations more suitable is a question that needs to be investi-
gated. In any case, it is obvious that given the type of parameter controlled (i.e. numeric
or nominal) different techniques are applicable.

1 Notice that indices have no relation to time but merely indicate a sequence of W elements



Here we distinguish between two main categories of control techniques, regardless
the algorithm and representation used, based on a fundamental characteristic of the
controller: whether it is static or it adapts itself to the evolutionary process.

i. Static: A static controller remains fixed during the run, i.e. given the same observ-
ables input it will always produce the same parameter values output. In other words,
the values produced only depend on the current observables input:

p = c(o) and o1 = o2 ⇒ c(o1) = c(o2)

where o ∈ O, p ∈ P are the vectors of observables and parameter values respec-
tively and c : O 7→ P is the mapping of the controller.

ii. Dynamic: A dynamic controller changes during the run, i.e. the same observables
input can produce different parameter values output at different times. This im-
plies that the controller is stateful and that the values produced depend on both the
current observables input and the controller’s current state:

p = cp(o, SC) and St+1
C = cS(ot, S

t
C)

where o ∈ O, p ∈ P are the vectors of observables and parameter values respec-
tively, SC ∈ S is the state of the controller and cp : O × S 7→ P , cS : O × S 7→ S
are the mappings of the controller.

According to this classification, a time-scheduled mechanism is a trivial case of a
dynamic controller; it maintains a changing state (a simple counter) but is “blind” to the
evolutionary process since it does not use any observables. It should be noted that we do
not consider control mechanisms necessarily as separate and distinct components, e.g.
we classify self-adaptation in ES as a dynamic controller since it implicitly maintains a
state influenced by the evolutionary process.

4 Experimental Setup

The experiments presented here are designed as a proof of concept for the viability
of a generic, EA-independent and parameter-independent control mechanism that is
instantiated through an off-line tuning process and targeted to repetitive applications.
That means that the present configuration belongs in the upper left square of Fig 1, i.e.
it combines on-line control of the EA parameters and off-line tuning of the controller to
a specific kind of problem.

The parameter we chose for our initial control experiments is the mutation step size
σ in evolution strategies. The specific parameter may seem a trivial choice given the
number and efficiency of existing control techniques but its simplicity and the existence
of related theory and practical experience make σ a parameter suitable for analysis.

4.1 Evolutionary algorithm

The EA used, is a (10 + λ) ES with Gaussian mutation. It has no recombination and
uses uniform random parent selection.



4.2 Parameter

As stated above, the controlled parameter is the mutation step size σ. In this experiment,
σ will be updated in every generation from the start of the run.

4.3 Observables

The observables that act as input to the controller, are based on the current parameter
values, diversity and fitness. The first input, the current σ, is input directly without go-
ing through the digest, derivative and history stages of the pipeline. The second input
is the diversity, using the Population Diversity Index (PDI) [15] as the digest function
and bypassing derivatives and history. Finally, we use two different fitness-based ob-
servables: (i) fN uses a digest of the best fitness normalized in [0, 1] and no history, (ii)
∆f uses a best fitness digest (fB) and a history with length W and the history function

FH(f1B , ..., f
W
B ) =

fWB − f
W/2
B

fWB − f1B

We choose to use this formula to measure change instead of a derivative to make the
controller robust to shifting and stretching of the fitness landscape.

We compare the two fitness-based observables on their own as well as paired with
the diversity observable. The ∆f observable is combined with the current σ observable
following the intuition that if changes in fitness are observed then changes in the pa-
rameter value should be output, thus the old value must be available. This yields four
sets of observables: {fN}, {fN , PDI}, {∆f , σ} and {∆f , PDI , σ}.

4.4 Control Method

As a control method we chose a neural network (NN) as a generic method for mapping
real valued inputs to real valued outputs. We use a simple feed-forward network without
a hidden layer. The structure of the nodes is fixed and the weights remain static during
an EA run and are set by the off-line tuning process. All inputs are, by definition, in the
range [0, 1]. The weights are tuned w ∈ [−1, 1]. We tested three different activation
functions (Table 1) with the output o ∈ [0, 1]. We also tested limiting the range of σ by
multiplying the output with 0.1 (testing traditional practise of keeping σ < 0.1).

All six activation approaches were combined with all four observable sets. All these
combinations were tested against six standard test problems[1], namely: Sphere, Corri-
dor, Rosenbrock, Ackley, Rastrigin and Fletcher & Powell . This setup was repeated for
two generation gaps: λ = 70 as a standard in numeric optimization practise and λ = 1
motivated by robotics applications [7]. Therefore, the total number of control-problem
instances is 288, see Table 1.

In all cases, the search for good controllers (NN weights) was performed using
BONESA [14], which is a state-of-the-art parameter tuning method for tuning real val-
ued parameters. After each tuning session, the EA was ran 100 times using the best
found controller instance, to validate its performance. These are then compared to out-
comes of 100 runs with:



– a static σ, that is also tuned using BONESA, using the same computational budget
as for finding the controller instance

– the Rechenberg’s 1/5 rule applied to a global σ using the success ratio of all muta-
tions in the population

– a self-adaptation approach using a single σ
– the theoretical optimum derived by Rechenberg [12] (applicable only to the Sphere

and Corridor functions)

Table 1. Experimental Setup

λ 1, 70
Observables {fN},

{fN , PDI},
{∆f , σ},
{∆f , PDI, σ}

Activations a1(x) = x
a2(x) = 1/(1 + e−6x)
a3(x) = tanh 3x

Problems Sphere, Corridor, Ackley, Rosenbrock, Rastrigin, Fletcher& Powell
EA (10 + λ)-ES with: Gaussian mutation, no recombination

and uniform random parent selection, limit of 10000 evaluations
Instantiation BONESA with a budget of 3000 tests to calibrate weights wi ∈ [−1, 1]

5 Results

The performance results of the calibrated control mechanisms and the benchmarks are
presented in Table 2.

First, we consider the performance of control over the test problems by examining
the results column-wise. We can observe that the calibrated control mechanisms are
able to perform well (or comparably to the benchmarks) on all problems. Comparing
our control to the tuned static approach, we find that on all problems except F&P, there
are multiple control settings that are significantly better. For the F&P function there are
control settings with no significant difference in average. Compared to self-adaptation,
our control mechanism is overwhelmingly better on the Corridor, Ackley and Rastrigin
problems while, for the other test functions, there are several settings that result in a tie.
Control is always able to outperform the theoretical optimum (notice that this optimum
was derived for a (1 + 1)ES).

Second, we consider control settings separately (by examining the results row-wise)
to determine what observables and activation functions are better, and if there is a com-
bination that consistently performs well. From this perspective, using a hypertangent
activation is always the best option: performance is always significantly better than
static for most problems, while it is significantly better than self-adaptation in three out
of six problems and at least as good in four. The best choice of observables is either
{fN} or {∆f , σ}.

Though choosing between fN or ∆f is mostly a matter of feasibility (calculating
normalized fitness is not possible if the bounds of the fitness values are not known



beforehand), including a diversity observable or not, is a more fundamental question.
Contrary to our initial expectations, adding diversity to the input does not always offer
an advantage even for multimodal problems (including the irregular and asymmetric
Fletcher&Powell function). Keeping all other factors fixed, using diversity as an input
produces a significant improvement in 23.6% of all cases and only in 8.3% of the cases
that are using the hypertangent activation. This advantage of using diversity combined
with the hypertangent activation is only observed for the Rosenbrock problem that is
asymmetric but still unimodal. Our assumption is that the ineffectiveness of observing
diversity is due to the survivor selection mechanism. Diversity could be useful as feed-
back if σ control aimed at maintaining a diverse population. However, (µ+λ) selection
negates such an effort since any new ”explorative” individuals will have inferior fitness
and will be immedeately discarded. Thus, including diversity in the observables when
a strong selection pressure is used is not useful (or even deleterious if we consider the
increase in the weights space).

Table 2. Performances results. For each problem, we mark the control mechanisms that are sig-
nificantly better than static (underlined), significantly better than self-adaptation (bold) and not
significantly different than self-adaptation (italic). All problems are to be minimized.

λ = 1 λ = 70
Sphere Corridor Rsnbk Ackley Rsgn FletchP Sphere Corridor Rsnbk Ackley Rsgn FletchP

{fN ,PDI}
lin 0.01504 3.174 7.906 1.639 35.35 9355 0.01525 3.175 7.898 1.004 36.36 9141

lin.1 0.0326 9.124 5.001 14.25 61.08 1.008e+04 0.04045 9.133 11.62 16.18 57.73 1.251e+04
sig 0.0963 1.694 6.626 2.081 34.73 9880 0.1009 1.696 7.219 2.104 35.28 1.09e+04

sig.1 0.0126 9.124 5.969 5.634 61.41 8969 0.04751 8.938 6.666 7.454 59.9 1.002e+04
tanh 0.03605 1.682 4.709 0.07069 35.79 8618 0.04408 1.684 7.129 0.3 35.09 1.013e+04

tanh.1 0.07144 9.124 5.56 4.755 57.09 8538 0.07844 8.938 6.698 7.758 57.16 1.054e+04
{fN}

lin 9.704e-07 1.514 57.22 9.114e-07 46.62 8481 9.003e-06 1.638 181.8 8.978e-07 49.22 1.589e+04
lin.1 0.01152 9.22 371.5 7.964 60.97 2.704e+04 1.438 9.135 869.5 11.7 59.86 7.54e+04

sig 0.538 1.593 11.18 4.908 36.21 7669 0.472 1.701 11.45 13.52 36.25 6675
sig.1 0.05019 9.124 5.27 9.725 60.87 1.016e+04 0.05714 8.938 7.228 7.091 58.87 1.087e+04
tanh 9.223e-07 1.512 18.75 9.156e-07 20.93 7714 8.889e-07 1.602 74.1 8.789e-07 23.64 1.026e+04

tanh.1 9.903e-07 9.13 150.9 2.573 57.89 1.572e+04 0.09544 8.864 469.4 4.896 59.55 3.421e+04
{∆f , PDI, σ}

lin 0.003837 6.519 6.283 2.608 35.2 7992 0.02674 6.519 8.136 3.467 46.99 8631
lin.1 0.02484 9.124 5.382 18.48 61.07 9401 0.04189 9.217 19.49 18.43 58.27 1.276e+04

sig 0.1092 1.787 7.007 7.269 35.46 9850 0.1147 1.792 7.022 5.597 36.75 8892
sig.1 0.01506 9.124 6.031 8.065 61.02 1.104e+04 0.03794 9.218 6.706 10.7 58.4 9969
tanh 0.007184 2.147 6.834 0.4822 34.35 6159 0.003973 2.15 7.499 0.8447 38.72 8217

tanh.1 0.009213 9.124 5.645 9.314 58.3 8622 0.06944 8.938 6.86 14.35 60.08 1.008e+04
{∆f , σ}

lin 0.0027 6.24 5.379 1.4 49.95 8757 0.002984 6.24 8.11 7.87 36 7489
lin.1 0.01787 9.129 5.369 18.51 60.48 1.081e+04 0.04558 9.22 12.19 18.45 58.82 1.182e+04

sig 0.06929 1.79 7.485 6.75 32.44 9914 0.06655 1.792 7.895 8.002 37.46 8917
sig.1 0.01255 8.938 5.966 6.929 61.2 9806 0.04192 9.217 6.651 11.44 59.57 1.032e+04
tanh 0.002631 1.963 5.715 0.762 32.2 6467 0.0008254 1.964 6.282 0.9197 36.67 6759

tanh.1 0.002881 8.938 5.726 8.473 57.99 8137 0.05975 8.938 6.8 11.41 59.08 1.006e+04

static 0.01721 4.659 6.721 9.383 39.31 1.073e+04 0.06903 3.378 7.254 9.234 37.07 9313
15rule 6.414 9.221 1212 18.44 85.84 1.85e+05 0.5263 9.124 34.34 18.28 56.29 1.828e+04

sssa 9.256e-07 8.938 7.203 15.04 57.65 8740 8.887e-07 8.938 7.458 15.65 55.34 6781
rechopt 0.002939 4.659 21.49 7.887 39.2 8712 1.027 4.659 21.73 7.863 39.2 8631



6 Conclusions and Future Work

Based on our results, the questions stated in the introduction can be easily answered.
The main conclusion that can be drawn is that the generic approach taken in this paper is
viable and fruitful. In contrast to previous work, we were able to find a problem-tailored
control mechanism that outperforms the tuned (but static) parameter values for each of
the problems. More specific, the combination of {fN}, or {∆f , σ}, as observables and
a hypertangent activation function of the neural network, outperforms the tuned param-
eter values in most problems. Even more promising is the fact that this combination
performed equally well or better than the traditional methods for controlling a single
σ, such as the 1/5th rule and self-adaptation. However, in contrast to these methods,
our generic approach has the possibility to be extended to other parameters, possibly
leading to an increased performance. Although this comes with the added cost of spe-
cific problem-tailoring, the benefits, especially in case of repetitive problems, can be
significant.

Inevitably, this conclusion depends on the experimenters design decisions. In our
case, the most important factors (beyond the underlying algorithm itself) are the fol-
lowing:

– The observables chosen as inputs to the control strategy.
– The parameters to be controlled
– The technique that maps a vector of observable values to a vector of parameter

values

Changing either of these can, in principle, lead to a different conclusion. With re-
spect to the observables chosen, we can conclude that these indeed highly influence
the results. Remarkably, adding diversity as an input appears to have hardly any added
value for controlling σ, possibly due to the selection mechanism used. The normalized
fitness and {∆f , σ} appear to be the best choices for input. Note that calculating the
normalized fitness is not always possible, and is most probably the less robust choice.

Regarding the future, we expect more studies along these ideas, exploring the other
possible implementations of the most important factors. Most enticing is the possibil-
ity of applying it to the other parameters of the evolutionary algorithm. This has the
prospect of delivering high quality control methods that can adapt the underlying algo-
rithm to the different stages of the search process.

References

1. T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University Press, Oxford,
UK, 1996.

2. K. De Jong. Parameter setting in EAs: a 30 year perspective. In F. Lobo, C. Lima,
and Z. Michalewicz, editors, Parameter Setting in Evolutionary Algorithms, pages 1–18.
Springer, 2007.

3. G. di Tollo, F. Lardeux, J. Maturana, and F. Saubion. From adaptive to more dynamic control
in evolutionary algorithms. In Proceedings of the 11th European conference on Evolutionary
computation in combinatorial optimization, EvoCOP’11, pages 130–141. Springer-Verlag,
2011.



4. A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter Control in Evolutionary Algo-
rithms. IEEE Transactions on Evolutionary Computation, 3(2):124–141, 1999.

5. A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E. Smith. Parameter control in evolu-
tionary algorithms. In Parameter Setting in Evolutionary Algorithms, pages 19–46. 2007.

6. T. C. Fogarty. Varying the probability of mutation in the genetic algorithm. In Proceedings
of the third international conference on Genetic algorithms, pages 104–109, San Francisco,
CA, USA, 1989. Morgan Kaufmann Publishers Inc.

7. G. Karafotias, E. Haasdijk, and A. E. Eiben. An algorithm for distributed on-line, on-board
evolutionary robotics. In Proceedings of the 13th annual conference on Genetic and evolu-
tionary computation, GECCO ’11, pages 171–178. ACM, 2011.

8. M. A. Lee and H. Takagi. Dynamic control of genetic algorithms using fuzzy logic tech-
niques. In PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON GE-
NETIC ALGORITHMS, pages 76–83. Morgan Kaufmann, 1993.

9. M. Majig and M. Fukushima. Adaptive fitness function for evolutionary algorithm and its
applications. Informatics Research for Development of Knowledge Society Infrastructure,
International Conference on, pages 119–124, 2008.

10. J. Maturana and F. Saubion. On the design of adaptive control strategies for evolutionary
algorithms. In Artificial Evolution, volume 4926 of Lecture Notes in Computer Science,
pages 303–315. Springer, 2008.

11. V. Nannen, S. Smit, and A. Eiben. Costs and benefits of tuning parameters of evolutionary
algorithms. In G. R. et al, editor, Proceedings of the 10th international conference on Parallel
Problem Solving from Nature (PPSN X), volume 5199 of Lecture Notes in Computer Science,
pages 528–538. Springer, 2008.

12. I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des
Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.

13. N. N. Schraudolph and R. K. Belew. Dynamic parameter encoding for genetic algorithms.
Machine Learning, 9:9–21, 1992.

14. S. Smit and A. Eiben. Multi-problem parameter tuning using bonesa. In J. Hao, P. Legrand,
P. Collet, N. Monmarché, E. Lutton, and M. Schoenauer, editors, Artificial Evolution, pages
222–233, 2011.

15. S. K. Smit, Z. Szláavik, and Á. E. Eiben. Population diversity index: a new measure for
population diversity. In GECCO (Companion), pages 269–270, 2011.

16. R. Smith and E. Smuda. Adaptively resizing populations: Algorithm, analysis and first re-
sults. Complex Systems, 9(1):47–72, 1995.

17. W. M. Spears. Adapting crossover in evolutionary algorithms. In Proceedings of the Fourth
Annual Conference on Evolutionary Programming, pages 367–384. MIT Press, 1995.

18. P. Vajda, A. E. Eiben, and W. Hordijk. Parameter Control Methods for Selection Operators
in Genetic Algorithms. pages 620–630.

19. Y.-Y. Wong, K.-H. Lee, K.-S. Leung, and C.-W. Ho. A novel approach in parameter adapta-
tion and diversity maintenance for genetic algorithms. Soft Computing - A Fusion of Foun-
dations, Methodologies and Applications, 7:506–515, 2003.


