
Parameter Tuning of Evolutionary Algorithms:
Generalist vs. Specialist

S.K. Smit and A.E. Eiben

Vrije Universiteit Amsterdam
The Netherlands

{sksmit,gusz}@cs.vu.nl

http://mobat.sourceforge.net

Abstract. Finding appropriate parameter values for Evolutionary Al-
gorithms (EAs) is one of the persistent challenges of Evolutionary Com-
puting. In recent publications we showed how the REVAC (Relevance
Estimation and VAlue Calibration) method is capable to find good EA
parameter values for single problems. Here we demonstrate that REVAC
can also tune an EA to a set of problems (a whole test suite). Hereby we
obtain robust, rather than problem-tailored, parameter values and an EA
that is a ‘generalist, rather than a ‘specialist. The optimized parameter
values prove to be different from problem to problem and also different
from the values of the generalist. Furthermore, we compare the robust
parameter values optimized by REVAC with the supposedly robust con-
ventional values and see great differences. This suggests that traditional
settings might be far from optimal, even if they are meant to be robust.

Key words: parameter tuning, algorithm design, test suites, robustness

1 Background and Objectives

Finding appropriate parameter values for evolutionary algorithms (EA) is one
of the persisting grand challenges of the evolutionary computing (EC) field. As
explained by Eiben et al. in [8] this challenge can be addressed before the run
of the given EA (parameter tuning) or during the run (parameter control). In
this paper we focus on parameter tuning, that is, we are seeking good parameter
values off-line and use these values for the whole EA run. In today’s practice, this
tuning problem is usually ‘solved’ by conventions (mutation rate should be low),
ad hoc choices (why not use uniform crossover), and experimental comparisons
on a limited scale (testing combinations of three different crossover rates and
three different mutation rates). Until recently, there were not many workable
alternatives. However, by the developments over last couple of years now there
are a number of tuning methods and corresponding software packages that enable
EA practitioners to perform tuning without much effort. In particular, REVAC
[10, 13] and SPOT [3, 5, 4] are well developed and documented.

The main objective of this paper is to illustrate the advantage of using tuning
algorithms in terms of improved EA performance. To this end, we will select a set

2 Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist

Table 1

problem solving parameter tuning

Method at work evolutionary algorithm tuning procedure

Search space solution vectors parameter vectors

Quality fitness utility

Assessment evaluation testing

of test functions and compare a benchmark EA (with robust parameter values
set by ‘common wisdom’) with an EA whose parameters are tuned for this set
of functions. A second objective is to compare specialist EAs (that are tuned on
one of our test functions) with a generalist EA (that is tuned on the whole set
of test functions). For this comparison we will look at the performance of the
EAs as well as the tuned parameter values. Furthermore, we want to show what
kind of problems rise when tuning evolutionary algorithms. At the end we hope
to provide a convincing showcase justifying the use of a tuning algorithm and to
obtain novel insights regarding the good parameter values.

2 Parameters, Tuners, and Utility Landscapes

To obtain a detailed view on parameter tuning we distinguish three layers: the
application layer, the algorithm layer, and the design or tuning layer. The lower
part of this three-tier hierarchy consists of a problem on the application layer
(e.g., the traveling salesman problem) and an EA (e.g., a genetic algorithm) on
the algorithm layer trying to find an optimal solution for this problem. Simply
put, the EA is iteratively generating candidate solutions (e.g., permutations of
city names) seeking one with maximal fitness. The upper part of the hierarchy
contains a tuning method that is trying to find optimal parameter values for
the EA on the algorithm layer. Similarly to the lower part, the tuning method
is iteratively generating parameter vectors seeking one with maximal quality,
where the quality of a given parameter vector is based on the performance of
the EA using the values of it. To avoid confusion we use the term utility, rather
than fitness, to denote the quality of parameter vectors. Table 1 provides a quick
overview of the related vocabulary.

Using this nomenclature we can define the utility landscape as an abstract
landscape where the locations are the parameter vectors of an EA and the height
reflects utility, based on any appropriate notion of EA performance. It is obvious
that fitness landscapes –commonly used in EC– have a lot in common with utility
landscapes as introduced here. To be specific, in both cases we have a search
space (candidate solutions vs. parameter vectors), a quality measure (fitness vs.
utility) that is conceptualized as ‘height’, and a method to assess the quality of
a point in the search space (evaluation vs. testing). Finally, we have a search
method (an evolutionary algorithm vs. a tuning procedure) that is seeking for a
point with maximum height.

Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist 3

3 Generalist EAs vs. Specialist EAs

Studying algorithm performance on different problems has led to the no-free-
lunch theorem stating that algorithms (of a certain generic type) performing
well on one type of problem, will perform worse on another [14]. This also holds
for parameter values in the sense that a parameter vector that performs good
on one type of problems, is likely to perform worse on another. However, very
little effort is spent on studying the relation between problem characteristics and
optimal parameter values. It might be argued that this situation is not a matter
of ignorance, but a consequence of an attitude favoring robust parameter values
that perform good on a wide range of different problems. Note that the term
’robust’ is also used in the literature to indicate a low variance in outcomes when
performing multiple repetitions of a run on the same problem with different
random seeds. To avoid confusion, we will use the term generalist to denote
parameter values that perform good on a wide range of problems. The opposite
of such a generalist is then a specialist, namely a parameter set that shows
excellent performance on one specific type of problems.

The notion of a generalist raises a number of issues. First, a true generalist
would perform good on all possible test functions. However, this is impossible
by the no-free-lunch theorem. So, in practice, one needs to restrict the set of test
functions a generalist must solve well and formulate the claims accordingly. For
instance, a specific test suite {F1, . . . , Fn} can be used to support such claims.

The second problem is related to the definition of utility. In simplest case,
the utility of a parameter vector #»p is the performance of the EA using the
values of #»p on a given test function F. This notion is sufficient to find specialists
for F . However, for generalists, a collection of functions {F1, . . . , Fn} should be
used. This means that the utility is not a single number, but a vector of utilities
corresponding to each of the test functions. Hence, finding a good generalist
is a multi-objective problem, for which each test-function is one objective. In
this investigation we address this issue in a straightforward way, by defining the
utility on a set {F1, . . . , Fn} as the average of utilities on the functions Fi.

4 Experimental Setup and System Description

As described earlier, the experimental setup consist of a three layer architecture.
On the application layer, we have chosen a widely used set of 10 dimensional
test-functions to be solved, namely: Ackley, Griewank, Sphere, Rastrigin, and
Rosenbrock. For Ackley, Griewank and Rosenbrock, the Evolutionary Algorithm
is allowed for 12.000 function evaluations. On Rastrigin it is allowed for 10.000
evaluations, and on the Sphere function only 8.000. This is a rather limited set
of problems, but due to a large runtime more exhaustive and complex test suites
are not yet feasible.

On the algorithm layer, we have chosen a simple genetic algorithm using
N-point crossover, bitflip mutation, k-tournament parent selection, and deter-
ministic survivor selection. These choices require 6 parameters to be defined as

4 Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist

Table 2: Parameters to be tuned, and their ranges

Parameter Min Max

Population size 2 200
Offspring size 1 200
Mutation probability 0 1
crossover points 1 149
Crossover probability 0 1
Tournament size 1 200

described in Table 2. the allowed values for most of the parameters a define by
either the population size or genome length (150). For population size, we have
chosen a maximum value of 200, which we believe is big enough for this genome
size and allowed number of evaluations.

The offspring size determines the number of individuals that are born every
generation. These newborn individual replace the worst individuals in the popu-
lation. If the offspring size is bigger than the population size, then the whole pop-
ulation is replaced by the new group of individuals, causing an increase in popula-
tion size. N-point crossover is chosen to allow for a whole range of crossover oper-
ators, such as the commonly used 1-point crossover (N=1) and 2-point crossover
(N=2). The same holds for k-tournament selection. The commonly used random
uniform selection (k=1), deterministic selection (k ≥ population-size) and every-
thing in between can be used by means of selecting k accordingly. Because the
test-functions require 10 dimensional real-valued strings as input, a 15-bit Gray
coding is used to transform the binary string of length 150, into a real-valued
string of length 10.

On the design layer, REVAC [9] is used for tuning the parameters of the
Evolutionary Algorithm. Technically, REVAC is a heuristic generate-and-test
method that is iteratively searching for the set of parameter vectors of a given
EA with a maximum performance. In each iteration a new parameter vector
is generated and its performance is tested. Testing a parameter vector is done
by executing the EA with the given parameter values and measuring the EA
performance. EA performance can be defined by any appropriate performance
measure and the results will reflect the utility of the parameter vector in question.
Because of the stochastic nature of EAs, in general a number of runs is advisable
to obtain better statistics. A detailed explanation of REVAC can be found in
[13] and [11].

REVAC itself has some parameters too, which need to be specified. The
REVAC-parameter values used in these experiments are the default settings,
and can be found in Table 3.

4.1 Human Expert

Tuning an algorithm requires a lot of computer power, while some people argue
that this is a waste of time. General rules of thumb as a population size of

Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist 5

Table 3: REVAC Parameters

Population Size 80
Best Size 40
Smoothing coefficient 10
Repetitions per vector 10
Maximum number of vectors tested 2500

100 and low mutation probabilities are supposed to perform reasonably well.
The question rises how beneficial tuning, and more specific automated tuning,
is even to experienced practitioners. For quick assessment of the added value of
algorithmic tuning, we have tested the EA using parameter values defined by
‘common wisdom’ (Table 4).

4.2 Performance Measures

The quality of a certain parameter vector, is measured two times. First, the
estimated utility is used to asses a performance to the parameter-vector during
the tuning procedure. This estimated utility is calculated by taking the Mean
Best Fitness of 10 independent runs using these parameter-values. Secondly,
after the tuning procedure is finished, a validated utility is calculated for the 5
parameter vectors with the best estimated utility. This validated utility is based
on 25 independent runs instead of 10, and is therefore supposed to be a better
estimate of the true utility of the parameter vector.

After this validation step, we define the ‘best parameter values’ as the param-
eter vector with the highest validated utility. Furthermore, we tried to indicate
good ranges for each of the parameters. Such a range is defined by taking the
value of .25 and .75 quantile of the 25 parameter vectors with the highest esti-
mated utility. This removes outliers that are caused by parameters vectors that
were ‘lucky’, and received a estimated utility that is much higher than their true
utility.

4.3 System Description

The complete experiment is defined in MOBAT[12] (Meta-Heuristic Optimizer
Benchmark and Analysis Toolbox), a toolbox for defining, tuning and evaluating
Evolutionary Algorithms on a distributed system. The default package of MO-
BAT contains all the components for composing the evolutionary algorithm used
in these experiments, the test-functions and REVAC. MOBAT is open source
and freely available via SourceForge.net.

The experiments are ran on a single 2.93 GHz Intel Core 2 Duo processor with
4GB of memory. A specialist tuning-session took on average 8 hours to finish,
while the generalist experiment on our testsuite of 5 test functions finished in
40 hours.

6 Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist

5 Results

5.1 Performance

In this section we present the outcomes of our experiments. As explained in
section 3, our goal is to find the best parameter vectors for both specialists and
generalists. Furthermore, we stated that a good generalist, is the one with the
best average performance. From the results in Table 4 we can immediately see
the effect of this choice. The Rosenbrock function appeared to be much harder
to solve than the other functions, causing big differences in utility. Therefore the
best generalist, was the one that performed very well on the Rosenbrock function,
without losing too much performance on the other functions. From Table 5, it
is even clear that there is no significant difference in multi-function performance
between the three best performing instances on the Rosenbrock function (based
on a t-test with α = 0.1). Furthermore, we can observe that the generalist is only
outperformed by a specialist on the Sphere function. However, focusing more on
the sphere function makes hardly any difference in the average performance, due
to the small function values on this problem. The parameter values chosen by
‘common wisdom’ are, except on the Sphere function, significantly outperformed
by the other parameter vectors.

When looking at the specialists, we can observe some interesting phenomena.
It is apparently very easy to tune parameters in such a way that they are purely
specialized on the Sphere function. This specialist is the only one that solves
its problem perfectly, but on the downside, it performs very bad on the others
functions. The Ackley specialist, on the other hand, does not only perform best
on its ’own’ function, but also outperforms most others on the Rastrigin func-
tion. Interestingly, the Rosenbrock and Griewank specialists show very similar
behavior on all functions, however it is remarkable that the Griewank specialist
has only an average performance on the function it is tuned to.

Estimated Utility vs Validated Utility: One of the causes of such sub-
optimal performance on its ’own’ function, is a difference between the estimated
utility, that is used during tuning, and the validated utility, as shown in the
results. In some cases, these validated utilities are twice as bad as the estimated
utility. These differences can be explained by looking at the fitness landscapes
of the functions.

In most cases, a fitness landscape consists of multiple local optima and a
global optimum, with certain bases of attraction. It is likely that an evolutionary
algorithm will terminate with a value that is (close to) a local or global optimum,
because it will continue to climb the hill it is currently on, using small mutations
until it gets stuck. The utility vector, therefore consists of values that are all close
to an optima. For example, the utility vector of the ‘common wisdom’ parameter
values on the Ackley function has 58% of the values close to the global optimum.
35 % of the values is between 3 and 4, which are exactly the values on the first
ring of local optima surrounding the global optimum. Finally 7 % of the fitness
values at termination, is between 5 and 7, which is equal to value of the second

Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist 7

Table 4: Best Parameter Values and their Mean Best Fitness (to be minimized). Stan-
dard deviations shown within brackets.

Common Generalist Specialist

Ackley Griewank Sphere Rastrigin Rosenbrock

Pop. size 100 173 125 12 34 148 107
Offspring size 2 18 67 83 5 9 94
Mutation prob. 0.006 0.0453 0.0405 0.0261 0.0077 0.0301 0.0393
N-point crossover 2 96 115 19 71 18 27
Crossover prob. 1 0.7733 0.4136 0.8153 0.9236 0.7516 0.9762
Tournament size 5 186 30 53 19 104 118

Ackley 1.755 (1.747) 0.127 (0.539) 0.026 (0.013) 0.113 (0.542) 2.005 (2.312) 0.244 (0.753) 0.243 (0.782)
Griewank 0.089 (0.038) 0.059 (0.023) 0.082 (0.040) 0.081 (0.032) 0.083 (0.056) 0.070 (0.037) 0.079 (0.030)
Sphere 0.007 (0.028) 0.021 (0.015) 0.087 (0.056) 0.01 (0.012) 0.000 (0.000) 0.002 (0.003) 0.029 (0.022)
Rastrigin 14.57 (10.48) 6.92 (4.70) 7.28 (3.65) 10.40 (5.97) 16.23 (11.71) 7.60 (4.99) 9.85 (4.91)
Rosenbrock 134.3 (395.0) 64.2 (110.4) 125.2 (129.4) 68.4 (126.5) 151.7 (229.8) 103.8 (195.2) 62.5 (123.4)

Average 30.1328 14.2726 26.5324 15.7996 34.0037 22.3373 14.5420

Table 5: The specialists/generalist (colums) that show significantly better performance
(α = 0.1) on a certain problem(rows), based on the results from Table 4

Common Generalist Specialist

Ackley Griewank Sphere Rastrigin Rosenbrock

(1) (2) (3) (4) (5) (6) (7)

Ackley 1,5 1,5,6,7 1,5 1,5 1,5
Griewank All
Sphere 2,3,7 3,7 2,3,7 All 1,2,3,4,7 3
Rastrigin 1,4,5,7 1,4,5,7 1,5 1,4,5,7 1,5
Rosenbrock 1,3,5 1,3,5 1,3,5

Average 1,3,5 1,3,5 1,3,5

ring of local optima. Such a distribution can disturb the tuning run heavily, for
example in 7.5% of the cases the estimated utility, based on 10 runs, of this
set of parameter values will be lower than 0.2, which is nine times lower than
the ’true’ utility. Such a lucky one can therefore steer evolution into the wrong
direction.

5.2 Best Parameter Values

To get better insight into the best parameter ranges, we have chosen not to use
the single best solution, but the 1% of the best performing parameters values
during the tuning phase. Figure 1 shows the .25 and .75 quantile of those values
for each of the specialists and the generalist relative to the parameter ranges. The
most obvious conclusion that can be drawn from these charts, is that mutation
should be low, in order to get a good performance. However, there are also some
less standard conclusions. One of the most interesting results is that, although

8 Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist

pop

gengap

mutprob

n

xover

toursize

(a) Generalist

pop

gengap

mutprob

n

xover

toursize

(b) Ackley

pop

gengap

mutprob

n

xover

toursize

(c) Griewank

pop

gengap

mutprob

n

xover

toursize

(d) Sphere

pop

gengap

mutprob

n

xover

toursize

(e) Rastrigin

pop

gengap

mutprob

n

xover

toursize

(f) Rosenbrock

Fig. 1: The good parameter ranges for each of the parameters on each test function,
and the combined set. The parameter ranges from Table 2 are scaled to [0, r]

the ranges for population-size are quite different for each of the functions, the
’guesstimate’ of population-size equals 100 is not that bad after all. To be more
specific, on all five problems, a population-size of 100 lies within the .25 and .75
quantile. However, most other parameter values are completely different than
the ’common wisdom’ ones. For example the N parameter of N-Point crossover
is much higher than 2, which indicated that uniform crossover like crossover,
outperforms common 1 or 2-point crossover on these problems. This is probably
due to the separable (Sphere, Rastrigin and Ackley) or partially separable nature
of the test functions.

Furthermore, we can observe a much higher selection pressure than nor-
mally used. Tournament sizes are almost equal to the population size, causing
the evolutionary algorithm to rapidly converge towards the best individuals in
the population. However, such behavior can be explained by the limited num-
ber of evaluations that the evolutionary algorithm was allowed to perform. The
question rises, if such a fast-converging algorithm is always preferred over a
slow-but-accurate instance. In some cases it is, while in other cases it might not
be the preferred behavior. Therefore, we emphasize that the ’best parameter
values’ presented here are highly related to the choices that are made in the
experimental setup.

Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist 9

6 Conclusions and Outlook

In this paper we have shown that REVAC is not only capable to find good EA
parameter values for a single problem (test function), but also for a set of prob-
lems (test functions). The parameter values we found for our generalist, differ
greatly from the ’common wisdom’ values that are supposed to be robust. The
‘optimal’ selection pressure for these problems, appears to be much higher than
commonly used. Furthermore, a many-point crossover operator outperforms the
commonly used 1 -and 2-point crossover on all five problems. On the other hand,
a population-size of 100 turned out to be not that bad after all. The scope of
these conclusions is limited, we do not advocate them as being the new best
general parameters, because different test-suites, aggregation functions and per-
formance measures will lead to different ‘optimal’ parameters. The best generalist
will therefore always depend upon the choices that are made to define it. Based
on the definition of generalist in this paper, our generalist performed quite good
on most problems. However, the results on the Sphere function confirm that the
no-free-lunch theorem also holds on a parameter vector level.

Furthermore, the experiments revealed some major issues for parameter tun-
ing in general. Estimating the utility has a key role in parameter tuning, both for
specialists and generalists. Our experiments revealed how the number of runs per
vector can influence the outcome of the experiments. Too many runs lead to high
computational costs, while too few lead to an inaccurate estimated utility and
therefore inaccurate results. Therefore we advocate the use of racing [2, 6, 15, 13]
and sharpening [4, 13] to deal with this issue. This, on the one hand sharpens the
estimate of the utility, and on the other hand reduces the computational effort.

Tuning for a generalist raises specific problems. In general, it is not clear how
a good generalist should be defined. In the area of multi-objective optimization
several approaches are known. One approach is to use aggregation methods, like
the simple average that we used here. From the results we can observe the effect
of such choices; it is more effective to focus on the ’hard’ problems that can lead
to high deviation in the average utility, rather than searching for a generalist
that performs good on all functions. When defining tuning sessions, one have to
be aware of the fact that a tuner will optimize on the problem that is defined,
rather than the problem they wished to be solved.

Future work can overcome this issue, by using an approach known from
multi-objective optimization, namely searching for the Pareto front. Rather than
aggregating the results based on choices made beforehand, such an approach
allows the researcher to study the effect of a certain design choice afterwards. In
[7] such an approach is used to show which parameter values are optimal, when
comparing on both algorithm speed and algorithm accuracy at the same time,
without specifying weights for those two objective beforehand. This approach can
easily be extended to multi-function optimization, which can give insight into
the the ranges of parameter-values that are most efficient on a certain problem,
a class of problems, or on a whole test suite.

By means of one extensive run, one can identify specialists, class-specialist,
or a true generalist without defining those terms beforehand. Based on such

10 Parameter Tuning of Evolutionary Algorithms: Generalist vs. Specialist

studies, one no longer has to rely on ’common wisdom’ in order to choose their
parameter values wisely but can select one that fits their needs.

References

1. Proceedings of the 2009 IEEE Congress on Evolutionary Computation, Trondheim,
May 18-21 2009. IEEE Press.

2. Prasanna Balaprakash, Mauro Birattari, and Thomas Stützle. Improvement strate-
gies for the f-race algorithm: Sampling design and iterative refinement. In Hybrid
Metaheuristics, pages 108–122, 2007.

3. T. Bartz-Beielstein, C.W.G. Lasarczyk, and M. Preuss. Sequential parameter op-
timization. In David Corne et al., editors, Proceedings of the 2005 IEEE Congress
on Evolutionary Computation IEEE Congress on Evolutionary Computation, vol-
ume 1, pages 773–780 Vol.1, Edinburgh, UK, Sept. 2005. IEEE Press.

4. T. Bartz-Beielstein, K.E. Parsopoulos, and M.N. Vrahatis. Analysis of Particle
Swarm Optimization Using Computational Statistics. In Chalkis, editor, Proceed-
ings of the International Conference of Numerical Analysis and Applied Mathe-
matics (ICNAAM 2004), pages 34–37, 2004.

5. Thomas Bartz-Beielstein and Sandor Markon. Tuning search algorithms for real-
world applications: A regression tree based approach. Technical Report of the
Collaborative Research Centre 531 Computational Intelligence CI-172/04, Univer-
sity of Dortmund, March 2004.

6. M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for
configuring metaheuristics. In W.B. Langdon, editor, GECCO 2002: Proceedings of
the Genetic and Evolutionary Computation Conference, pages 11–18, San Francisco
CA, 2002. Morgan Kaufmann.

7. Johann Dréo. Using performance fronts for parameter setting of stochastic meta-
heuristics. In Franz Rothlauf, editor, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2009), pages 2197–2200. ACM, 2009.

8. A.E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter Control in Evolutionary
Algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124–141, 1999.

9. V. Nannen and A. E. Eiben. Relevance Estimation and Value Calibration of Evo-
lutionary Algorithm Parameters. In Manuela M. Veloso, editor, Proceedings of
the 20th International Joint Conference on Artificial Intelligence (IJCAI), pages
1034–1039, 2007.

10. V. Nannen and A.E. Eiben. A Method for Parameter Calibration and Relevance
Estimation in Evolutionary Algorithms. In M. Keijzer, editor, Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2006), pages 183–
190. Morgan Kaufmann, San Francisco, 2006.

11. V. Nannen, S.K. Smit, and A.E. Eiben. Costs and benefits of tuning parameters
of evolutionary algorithms. In Günter Rudolph et al., editors, PPSN, volume 5199
of Lecture Notes in Computer Science, pages 528–538. Springer, 2008.

12. S.K. Smit. MOBAT. http://mobat.sourceforge.net, 2009.
13. S.K. Smit and A.E. Eiben. Comparing parameter tuning methods for evolutionary

algorithms. In [1].
14. David H. Wolpert and William G. Macready. No free lunch theorems for optimiza-

tion. IEEE Transaction on Evolutionary Computation, 1(1):67–82, 1997.
15. B. Yuan and M. Gallagher. Combining Meta-EAs and Racing for Difficult EA

Parameter Tuning Tasks. In F.G. Lobo, C.F. Lima, and Z. Michalewicz, editors,
Parameter Setting in Evolutionary Algorithms, pages 121–142. Springer, 2007.

