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 Introduction to virtualization

 Introduction to QEMU

 Introduction to MINIX 3

Research questions

Porting QEMU

Testing QEMU

Performance

Conclusion



One system emulates one or more VMs
• Each runs its own guest operating system

• VMs isolated from each other and from host



Uses
• Security research
• Server farms
• Software development

Approaches
• Native execution
 Guest code run directly in reproduced environment

 Sensitive instructions are a problem

• Dynamic binary translation
 Guest code translated into safe host code

• Paravirtualization
 Guest calls hypervisor to avoid sensitive instructions



Open source virtualizer

Uses dynamic binary translation
• Alternative: direct execution with kernel module

Advantages
• General purpose full-system virtualization

• Portable across hosts and guests

• Entirely in user space

Disadvantages
• Slower than alternatives



Open source OS, built at the VU

Microkernel
• Reduce amount of high-privilege code

Advantages
• Simple and structured → suitable for education

• Small and reliable → suitable for embedded systems

Disadvantages
• Few applications and drivers → small community

• Many context switches → less performance



Can MINIX 3 run virtualization software? 
• What issues does one encounter when porting 

complex software to MINIX 3?

• Is it necessary to change MINIX 3 to be able to 

run QEMU?

 Is the microkernel design an obstacle for 

performance?

• Can bottlenecks be solved within this design?

• Is QEMU usable on MINIX in practice?



Use the right compiler

Port packages QEMU depends on

Allow QEMU to read MINIX binaries

Functionality missing in MINIX
• Add if essential for QEMU to work

• Avoid using otherwise

Debugging



Simply run many operating systems
• MINIX (3.1.2a, 3.1.4)

• Linux (Debian, Slackware)

• Windows (95, 98)

And browsers to test networking
• Mozilla Firefox

• Internet Explorer

Findings
• Clock resolution is an issue 

• Performance acceptable for all but Linux



Benchmarks for various activities
• Arithmetic, disk, display, interrupts, memory, 

network, task switching, ...

Configurations
• Tested with MINIX 3.1.2a and Linux

• Both used as host and guest (4 combinations)

• Compared with native to find slow-down

Overall slow-down just over 10×
• Slightly worse than Linux



 Bottlenecks in MINIX

• Floating point

 FPU not supported

• Disk input/output

 Small disk cache

• Graphics

 No hardware acceleration

• Interrupts

 Setjmp/longjmp

• Network throughput

 Pauses while sending
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Yes, MINIX can run QEMU
• But modifications are desirable

Yes, performance is comparable to Linux
• Most bottlenecks are unrelated to microkernel 

design

• But: comparison based on pure binary translation

Other results of research
• Usable virtualization for MINIX

• Manual for porting software to MINIX

• List of additions/improvements desirable for MINIX






