
Master thesis presentation
July 16th, 2009

Erik van der Kouwe

Computer Systems Section
Department of Computer Science

Faculty of Science
Vrije Universiteit Amserdam



 Introduction to virtualization

 Introduction to QEMU

 Introduction to MINIX 3

Research questions

Porting QEMU

Testing QEMU

Performance

Conclusion



One system emulates one or more VMs
• Each runs its own guest operating system

• VMs isolated from each other and from host



Uses
• Security research
• Server farms
• Software development

Approaches
• Native execution
 Guest code run directly in reproduced environment

 Sensitive instructions are a problem

• Dynamic binary translation
 Guest code translated into safe host code

• Paravirtualization
 Guest calls hypervisor to avoid sensitive instructions



Open source virtualizer

Uses dynamic binary translation
• Alternative: direct execution with kernel module

Advantages
• General purpose full-system virtualization

• Portable across hosts and guests

• Entirely in user space

Disadvantages
• Slower than alternatives



Open source OS, built at the VU

Microkernel
• Reduce amount of high-privilege code

Advantages
• Simple and structured → suitable for education

• Small and reliable → suitable for embedded systems

Disadvantages
• Few applications and drivers → small community

• Many context switches → less performance



Can MINIX 3 run virtualization software? 
• What issues does one encounter when porting 

complex software to MINIX 3?

• Is it necessary to change MINIX 3 to be able to 

run QEMU?

 Is the microkernel design an obstacle for 

performance?

• Can bottlenecks be solved within this design?

• Is QEMU usable on MINIX in practice?



Use the right compiler

Port packages QEMU depends on

Allow QEMU to read MINIX binaries

Functionality missing in MINIX
• Add if essential for QEMU to work

• Avoid using otherwise

Debugging



Simply run many operating systems
• MINIX (3.1.2a, 3.1.4)

• Linux (Debian, Slackware)

• Windows (95, 98)

And browsers to test networking
• Mozilla Firefox

• Internet Explorer

Findings
• Clock resolution is an issue 

• Performance acceptable for all but Linux



Benchmarks for various activities
• Arithmetic, disk, display, interrupts, memory, 

network, task switching, ...

Configurations
• Tested with MINIX 3.1.2a and Linux

• Both used as host and guest (4 combinations)

• Compared with native to find slow-down

Overall slow-down just over 10×
• Slightly worse than Linux



 Bottlenecks in MINIX

• Floating point

 FPU not supported

• Disk input/output

 Small disk cache

• Graphics

 No hardware acceleration

• Interrupts

 Setjmp/longjmp

• Network throughput

 Pauses while sending

0,5

1

2

4

8

16

a
ri

th
m

e
ti

c
_
fl

o
a

t

a
ri

th
m

e
ti

c
_
in

t

b
le

n
d

e
d

_
c

o
m

p
il

e
m

in
ix

fl
o

w
_
c

a
ll

fl
o

w
_

c
o

n
d

it
io

n
a

l

fl
o

w
_
e

x
c

e
p

ti
o

n

fl
o

w
_
ju

m
p

ta
b

le

fl
o

w
_
sy

sc
a

ll

fl
o

w
_
ta

sk
sw

it
c

h

io
_

d
is

k
_

re
a

d
_

ra
n

d
o

m

io
_
d

is
k

_
re

a
d

_
se

q
u

e
n

ti
a

l

io
_

d
is

k
_

w
ri

te
_
ra

n
d

o
m

io
_

d
is

k
_

w
ri

te
_

se
q

u
e

n
ti

a
l

io
_

d
is

p
la

y

io
_

n
e

tw
o

rk
_

la
te

n
c

y

io
_

n
e

tw
o

rk
_

th
ro

u
g

h
p

u
t

m
e

m
o

ry
_

lo
a

d
_
ra

n
d

o
m

m
e

m
o

ry
_

lo
a

d
_
se

q
u

e
n

ti
a

l

m
e

m
o

ry
_

st
o

re
_
ra

n
d

o
m

m
e

m
o

ry
_

st
o

re
_

se
q

u
e

n
ti

a
l

Slow-

down of 

MINIX 

compar

ed to 

Linux 

(emulat

ing 

Linux)

Slow-

down of 

MINIX 

compar

ed to 

Linux 

(emulat

ing 

MINIX)



Yes, MINIX can run QEMU
• But modifications are desirable

Yes, performance is comparable to Linux
• Most bottlenecks are unrelated to microkernel 

design

• But: comparison based on pure binary translation

Other results of research
• Usable virtualization for MINIX

• Manual for porting software to MINIX

• List of additions/improvements desirable for MINIX






