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Abstract. In this paper the issue of relating a specification of the internal processes within an 
agent to a specification of the behaviour of the agent is addressed. A previously proposed 
approach for automated generation of behavioural specifications from an internal specification 
was limited to stratified specifications of internal processes. Therefore, it cannot be applied to 
mutually interacting cognitive and affective processes described by interacting loops. However, 
such processes are not rare in agent models addressing integration of cognitive and affective 
processes and agent learning. In this paper a novel approach is proposed which addresses this 
issue. The proposed technique for loop abstraction is based on identifying dependencies of 
equilibrium states for interacting loops. The technique is illustrated by an example of an 
internal agent model with interdependent processes of believing, feeling, and trusting. 
 

1   Introduction 
Dynamics of an agent are usually modelled by an internal agent model specifying 
relations between mental states of the agent. Often such agent models are specified in 
an executable format following a noncyclic causal graph (e.g., [12]). However, for 
more complex and adaptive types of agents, such agent models may have a format of 
dynamical systems including internal loops. Such cyclic interactions are well-known 
from the neurological and brain research areas. For example, agents in which as-if 
body loops [5] are used to model the interaction between feelings and other mental 
states (e.g., [9]). Thus, although the noncyclic graph assumption behind most existing 
agent models (as, for example in [12] ) may be useful for the design of software 
agents, it seriously limits applicability for modelling more realistic neurologically 
founded processes in natural or human-like agents. 
 To perform simulations with agents it is often only the behaviour of the agents that 
matters, and the internal states can be kept out of the simulation model. Other work 
shows that automated transformations are possible (1) to obtain an executable internal 
model for a given behavioural specification (e.g., [13]), and (2) to obtain a 
behavioural specification from an executable internal model. The approach available 
for the second type of transformation (cf. [12]) has a severe limitation, as an 
executable internal model is assumed which has a noncyclic, stratified form. This 
limitation excludes the approach from being applied to agent models addressing more 
complex internal processes in which internal loops play a crucial role.  
 In this paper a more generally applicable automated transformation is introduced 
from an internal agent model to a behavioural model, abstracting from the internal 
states. Within this transformation, techniques for loop abstraction are applied by 



 

identifying how equilibrium states depend on inputs for these loops. It is also shown 
how interaction between loops is addressed. In particular for agent models, in which 
the interaction between cognitive and affective processes plays an important role the 
proposed approach is useful. Empirical work such as described in, for example, [8, 
10], reports such types of effects of emotions on beliefs. From the area of 
neuroscience informal theories and models have been proposed (e.g., [5, 6]), 
involving a causal relation from feeling to belief, which is in line, for example, with 
the Somatic Marker Hypothesis described in [2], and may also be justified by a 
Hebbian learning principle (cf. [4]). These informal theories have been formalised in 
an abstracted computational form to obtain internal agent models (e.g., [16]).  

The transformation is illustrated for two agent models that include interaction 
between cognitive and affective processes. A single loop case is illustrated for an 
existing agent model for emotion-affected beliefs, described in [9]. In addition, a 
novel agent model with interdependent processes of believing, feeling, and trusting is 
introduced in this paper illustrating a case with two interacting loops.   
 The paper is organised as follows. First, in Section 2 the modelling approach is 
briefly introduced. Section 3 presents the transformation procedure. The applications 
of the procedure are described in Section 4. Finally, Section 5 is a discussion. 

2   Specifying Internal Agent Models 
As in [12], both behavioural specifications and internal agent models are specified 
using the reified temporal predicate language RTPL, a many-sorted temporal predicate 
logic language that allows specification and reasoning about the dynamics of a system. 
To express state properties ontologies are used. An ontology is a signature specified 
by a tuple <S1,…,  Sn,…, C,  f, P, arity>, where Si is a sort for i=1,.., n, C is a finite set of 
constant symbols, f is a finite set of function symbols, P is a finite set of predicate 
symbols, arity is a mapping of function or predicate symbols to a natural number. An 
interaction ontology InteractOnt is used to describe the (externally observable) 
behaviour of an agent. It is the union of input (for observations and incoming 
communications) and output (for actions and outgoing communications) ontologies: 
InteractOnt = InputOnt ∪  OutputOnt. For example, observed(a, t) means that an agent has an 
observation of state property a at time point t, communicated(a1, a2, m, v, t) means that 
message m with confidence v is communicated from agent a1 to agent a2 at time point 
t, and performing_action(b) represents action b. The internal ontology InternalOnt is used 
to describe the agent’s internal cognitive state properties. Within the state ontology 
also numbers are included with the usual relations and functions. In RTPL state 
properties as represented by formulae within the state language are used as terms 
(denoting objects). The set of function symbols of RTPL includes ∧ , ∨ , →, ↔: 

STATPROP x STATPROP → STATPROP; not: STATPROP → STATPROP, and ∀ , ∃ : SVARS x 

STATPROP → STATPROP, of which the counterparts in the state language are Boolean 
propositional connectives and quantifiers. To represent dynamics of a system sort 
TIME (a set of time points) and the ordering relation > : TIME x TIME are introduced in 
RTPL. To indicate that some state property holds at some time point the relation at: 

STATPROP x TIME is introduced. The terms of RTPL are constructed by induction in a 
standard way from variables, constants and function symbols typed with all before-



 

mentioned sorts. The set of well-formed RTPL formulae is defined inductively in a 
standard way using Boolean connectives and quantifiers over variables of RTPL sorts. 
More details can be found in [12]. 

Agent models are specified within RTPL in the following format: at(a, t)  ⇒ at(b, 

t+d) where d is the time delay of the effect of state property a on state property b, which 
for dynamical systems is often indicated by ∆t. These state properties may involve 
variables, for example for real numbers. This format subsumes both causal modelling 
languages (e.g., GARP [8]) and dynamical system modelling languages based on 
difference or differential equations (e.g., [10]), as well as hybrid languages combining 
the two, such as LEADSTO [3].  

3   Abstraction of an Internal Agent Model: Eliminating Loops 
In this section first the general transformation procedure as adopted from [12] is 
described. Next the contributed loop elimination procedure is addressed, starting by 
discussing the assumptions underlying the procedure, and further showing in more 
detail how both single loops and interaction between loops can be handled. 
 

The general transformation procedure  
The format at(a, t)  ⇒ at(b, t+d) is equivalent to at(a, t-d)  ⇒ at(b, t), where t is a variable 
of sort TIME. When a number of such specifications are available for one atom at(b, t), 
by taking the disjunction of the antecedents one specification in past to present format 
can be obtained ∨ i at(ai, t-di)  ⇒ at(b, t). When in addition a form of closed world 
assumption is assumed, also the format ∨ i at(ai, t-di)  ⇔ at(b, t) is obtained, which 
specifies to equivalence of the state formula b at t with a past formula. This type of 
format, called pp-format is used in the abstraction procedure introduced in [12].  

The rough idea behind the overall procedure is as follows. Suppose a pp-
specification B ⇔ at(p, t) is available. Moreover, suppose that in B only two atoms of 
the form at(p1, t1) and at(p2, t2) occur, whereas as part of the agent model also 
specifications B1 ⇔ at(p1, t1) and B2 ⇔ at(p2, t2) are available. Then, within B the atoms 
can be replaced (by substitution) by the formula B1 and B2. This results in B[B1/at(p1, 

t1), B2/at(p2, t2)] ⇔ at(p, t) which again is a pp-specification. Here for any formula C the 
expression C[x/y] denotes the formula C transformed by substituting x for y. Such a 
substitution corresponds to an abstraction step. For the general case the procedure 
includes a sequence of abstraction steps; the last step produces a behavioural 
specification that corresponds to the given agent model. 
 

Assumptions underlying the loop elimination approach  
1. Internal dynamics develop an order of magnitude faster than the dynamics of the 

world external to the agent. 
2. Loops are internal in the sense that they do not involve the agent’s output states. 
3. Different loops have limited mutual interaction; in particular, loops may contain 

internal loops; loops may interact in couples; interacting couples of loops may 
interact with each other by forming noncyclic interaction chains.  

4. For static input information any internal loop reaches an equilibrium state for this 
input information. 



 

5. It can be specified how the value for this equilibrium state of a given loop depends 
on the input values for the loop. 

6. In the agent model the loop can be replaced by the equilibrium specification of 4. 
The idea is that when these assumptions are fulfilled, for each received input, before 
new input information arrives, the agent computes its internal equilibrium states, and 
based on that determines its behaviour.  
 

Loop elimination setup  
To address the loop elimination process, the following representation of a loop is 
assumed 
 

at(has_value(u, V1) ∧  has_value(p, V2), t)  ⇒   at(has_value(p, V2 + f(V1, V2)d), t+d)        (1) 
 

here u is the name of an input variable, p of the loop variable, t is a variable of sort 
TIME, and f(V1, V2) is a function combining the input value with the current value for p.  

Note that an equilibrium state for a given input value V1 in (1) is a value V2 for p 
such that f(V1, V2) = 0. A specification of how V2 depends on  V1 is a function g such that 
f(V1, g(V1)) = 0. Note that the latter expression is an implicit function definition, and 
under mild conditions (e.g., ∂f(V1, V2)/∂V2 ≠ 0, or strict monotonicity of the function V2 
→ f(V1, V2)) the Implicit Function Theorem within calculus guarantees the existence 
(mathematically) of such a function g. However, knowing such an existence in the 
mathematical sense is not sufficient to obtain a procedure to calculate the value of g 
for any given input value V1. When such a specification of g is obtained, the loop 
representation shown above can be transformed into: 
 

at(has_value(u, V1)  ⇒  at(has_value(p, g(V1)), t+D), 
 

where D is chosen as a timing parameter for the process of approximating the 
equilibrium value up to some accuracy level.  

To obtain a procedure to compute g based on a given function f, two options are 
available. The first option is, for a given input V1 by numerical approximation of the 
solution V2 of the equation f(V1, V2) = 0. This method can always be applied and is not 
difficult to implement using very efficient standard procedures in numerical analysis, 
taking only a few steps to come to high precision. The second option, elaborated 
further below is by symbolically solving the equation f(V1, V2) = 0 depending on V1 in 
order to obtain an explicit algebraic expression for the function g. This option can be 
used successfully when the symbolic expression for the function f is not too complex; 
however, it is still possible to have it nonlinear.  

In various agent models involving such loops a threshold function is used to keep 
the combined values within a certain interval, for example [0, 1]. A threshold function 
can be defined, for example, in three ways:  

(1)  as a piecewise constant function, jumping from 0 to 1 at some threshold value 
(2)  by a logistic function with format 1/(1+exp(-σ(V1+ V2-τ)), or  
(3)  by a function β(1-(1- V1)(1- V2)) + (1-β) V1 V2.  

The first option provides a discontinuous function, which is not desirable for analysis. 
The third format is used here, since it provides a continuous function, can be used for 
explicit symbolic manipulation, and is effective as a way of keeping the values 
between bounds. Note that this function can be written as a linear function of V2 with 
coefficients in V1 as follows: 
 



 

f(V1, V2) =  β(1-(1- V1)(1- V2)) + (1-β) V1 V2 – V2 = - [(1- β)(1- V1) +β V1 ] V2 + β V1 
 

From this form it follows that  
       

∂ f(V1, V2) /∂ V2 =  ∂ -[[(1- β)(1- V1) +β V1 ] V2 + β V1]/∂ V2  = - [(1- β)(1- V1) +β V1 ] ≤ 0  
 

This is only 0 for extreme cases: β = 0 and V1 = 1 or β = 1 and V1 = 0. So, for the 
general case V2 → f(V1, V2) is strictly monotonically decreasing, which shows that it 
fulfills the conditions of the Implicit Function Theorem, thus guaranteeing the 
existence of a function g as desired. 
 

Obtaining the equilibrium specification: single loop case 
Using the above expression, the equation f(V1, V2) = 0 can be easily solved 
symbolically: V2 = β V1 / [(1- β)(1- V1) +β V1 ]. This provides an explicit symbolic 
definition of the function g: g(V1) = V2 = β V1 / [(1- β)(1- V1) +β V1 ]. For each β  with 
0<β <1 this g is a strictly monotonically increasing function with g(0) = 0 and g(1) = 
1. A few cases for specific values of the parameter β are as follows: (i) β = 0, g(V1) = 0; 
(ii) β = 0.5, g(V1) = V1 ; (iii) β =1, g(V1) = 1. 
 

Obtaining the equilibrium specification: interacting loops case 
Interaction between two loops occurs when the outcome of one loop is used as (part 
of) input in another loop; it may occur in two forms: monodirectional or bidirectional. 
In the monodirectional case the previously described method can be used in a 
straightforward manner one-by-one for each of the loops, first for the loop providing 
input for the other loop.  

The bidirectional case requires more elaboration. First it is assumed that the input 
from the other loop is combined with the externally provided input as follows: v1 = 
λ1(u1)p2  + µ1(u1) and v2 = λ2(u2)p1  + µ2(u2) where ui denotes the external input (what 
was indicated above by V2) for a loop i, pi the state of the loop (what was indicated 
above by V2), and λi and µi are functions of the external input ui. Special cases are:  

(1)  λ1(u1) = w1  and µ1(u1) = w2 u1 , in which case they are combined according to 
a weighted sum,  

(2)  λ1(u1) = u1 and µ1(u1) = 0, in which case p2 acts as a modifier of the external 
input u1; e.g., an estimated degree of reliability of the incoming information  

(3) λ1(u1) = - [(1- β)(1-u1) +βu1 ] and  µ1(u1) =βu1 which provides the 
combination function used in f(V1, V2) above. 

To solve the two coupled equations for this case a simplified notation is used: v1 = 
λ1p2  + µ1  and   v2 = λ2p1  + µ2.  
 

 [( 1- β1)(1-(λ1p2  + µ1)) +β1(λ1p2  + µ1) ] p1 = β1(λ1p2  + µ1) 
[( 1- β2)(1-(λ2p1  + µ2)) +β2(λ2p1  + µ2) ] p2 = β2(λ2p1  + µ2) 

 

These equations can be rewritten as follows: 
 

 (2β1-1)λ1 p1 p2  +[ (1- β1)(1- µ1) +β1µ1 ] p1 = β1(λ1p2  + µ1) 
 (2β2-1)λ2 p1 p2  +[ (1- β2)(1- µ2) +β2µ2 ] p2 = β2(λ2p1 + µ2) 

Multiplying the first equation by (2β2-1)λ2 and the second by (2β1-1)λ1 and 
subtracting them from each other provides one equation that can be rewritten into a 
form that provides an explicit expression of p2 in terms of p1: 

p2  = [ (2β2-1)λ2 [ ( 1- β1)(1- µ1) +β1µ1 + (2β1-1)λ1 β2λ2 ] p1 +  
   (2β1-1)λ1 β2 µ2 - (2β2-1)λ2 β1µ1) ] / [ (2β1-1)λ1 [ ( 1- β2)(1- µ2) +β2µ2 + (2β2-1)λ2 β1λ1]] 

 



 

Filling the expression for p2 in the second equation provides one equation in p1: 
 

 [( 1- β2)(1-(λ2p1  + µ2)) +β2(λ2p1  + µ2) ] 
 [ (2β2-1)λ2 [ ( 1- β1)(1- µ1) +β1µ1 + (2β1-1)λ1 β2λ2 ] p1 +  
(2β1-1)λ1 β2 µ2 - (2β2-1)λ2 β1µ1) ] / [ (2β1-1)λ1 [ ( 1- β2)(1- µ2) +β2µ2 + (2β2-1)λ2 β1λ1]] 
= β2(λ2p1  + µ2) 

 

By solving this equation an explicit symbolic expression is obtained for p1 and for  p2. 

4   Feeling, Trusting and Believing 
In this section two applications of the proposed procedure are described. First, the 
single loop case is illustrated for an agent model involving emotion-affected beliefs. 
Then, a novel agent model with interdependent processes of believing, feeling, and 
trusting is presented illustrating a case with two interacting loops.  

4.1 A single loop case for emotion-affected beliefs 

Beliefs of an agent are time-labelled internal representations created based on 
communication and observation results received by the agent. In [9] beliefs are 
specified using the function belief(p:STATPROP, v:VALUE), here p is the content of the 
belief and v is the degree of confidence of the agent from the interval [0, 1] that the 
belief content is true. According to the literature [7, 8], beliefs are only rarely 
emotionally unbiased. Previously, a model for emotion-affected beliefs was proposed 
in [9] based on a body loop for a cognitive state described by Damasio [5, 6]: 
input → cognitive state → preparation for the induced bodily response → induced bodily response → 
sensing the bodily response → sensory representation of the bodily response →  feeling the emotion 

As a variation, an as-if body loop uses a direct causal relation preparation for the induced 

bodily response → sensory representation of the induced bodily response as a shortcut in the 
causal chain. The body loop and as-if body loop are extended to a recursive body loop 
or as-if body loop by assuming that the preparation of the bodily response is (also) 
affected by the state of feeling the emotion. An as-if body loop for a cognitive state w 
is formalized in RTPL as follows: 

at(input(w, V1) ∧  feeling(b, V2) ∧  cog_state(w, V3), t-∆t) ⇒ at(cog_state (w, V3 + γ(g(β1, V1,V2) - V3)∆t), t) 
at(cog_state(w, V) ∧  body_state_for(b, w), t-∆t) ⇒ at(preparation_state(b, V), t) 
at(preparation_state(B, V), t-∆t) ⇒ at(srs(B, V), t) 
at(srs(B, V), t-∆t) ⇒ at(feeling(B, V), t) 
 

Here g(β1, V1,V2) is a threshold function and γ determines the speed of change.  
The model from [9] contains a composite body loop, which comprises two simple 

loops. To eliminate the composite loop using the mechanisms from Section 3, first an 
isomorphic model has been identified in which a redefined simple body loop has a 
reciprocal relation with the belief state. Using the procedure from Section 3, two 
coupled equations are obtained for this model: 

p1 = β1(1 –(1-p2)(1-V))+(1-β1) p2V 
[(1-β2)(1- p1)+ β2 p1] p2 =β2 p1 



 

Here p1 represents the confidence of the belief state, p2 is the variable for the 
preparation state and V is the input provided by the world. From this system a 
quadratic equation in p1 is obtained: 

(1-2β2) p1
2 + (β2(1+β1+V)+ β1V-1) p1+β1V(1-β2) = 0 

The solution to this equation agrees with the simulation results for particular values of 
parameters and the input reported in [9]. For example, for the case β1=0.8, β2=0.4, 
V=0.8, it is calculated that p1=0.9255 and p2=0.8923, which is also the case in the 
simulation. 

4.2 Interacting loops for belief, feeling and trust 

Previously, several models combining beliefs and trust were proposed [1, 14]. The 
authors are not aware of any computational model that combines cognitive processes 
of believing and trusting with affective processes (feelings and emotions). In the 
following a first attempt for a model for believing, feeling, and trusting is described. 
In this model two types of beliefs are distinguished: a factual belief of an agent that 
some information was observed in the environment or communicated by some source, 
and a belief representing the agent’s own valuation of some property.  

An agent creates beliefs not only about world states, but also about the world 
dynamics, specified by the function dyn_prop(o, f), where f is the name of a dynamic 
property describing the dynamics of  the world object o which may be composite. In 
the absence of recent experience the agent may reason about the present world state 
using such beliefs and old experience stored in factual beliefs. To enable such 
reasoning, the auxiliary predicate belief_project(s:AGENT, ag:AGENT, w:STATPROP, 

V:VALUE) is introduced, which specifies a temporal projection of agent ag of the most 
recent factual belief about w based on the information received from source s. Here V 
is the confidence value obtained by projection; it is updated at each time point based 
on the agent’s beliefs about the world dynamics with the highest confidence: 

at(belief(communicated(s, ag, w, v, t1), q) ∧  belief(dyn_prop(w, f), v2) ∧  name_for(f, expr(x, y, z)) ∧  
∀ f1:STATPROP [ f1≠f ∧  belief(dyn_prop(w, f1), v3, t1) → v3 < v2], t-∆t)  
⇒ at(belief_project(s, ag, w, expr[x/v, y/t1, z/t]), t) 

here expr [x/v] denotes the substitution of x by v in expr(x, y, z). 
It is assumed that the emotional influence on the factual beliefs is insignificant, 

belief projections are influenced by emotions indirectly through beliefs about the 
world dynamics, and all beliefs of the second type are influenced by emotions directly 
via an as-if body loop (see Fig. 1). A belief prospect is provided to this loop as input 
mediated by the agent’s trust in the information source of the belief prospect. In the 
model trust is an (cognitive and affective) attitude of an agent towards an information 
source that determines the extent to which information received by the agent from the 
source influences agent's beliefs. It is often argued that trust should be distinguished 
per information type [7]. In the model trust in a source w.r.t. an information type is 
represented by the preparation state to accept information of this type from the source. 
This preparation state accumulates all experience with the source. The amount of trust 
is a number from the range [0, 1]. Formally, the trust-mediated input to the as-if body 
loop for a belief about w is specified by: v = η pu. Here η is the strength of the 



 

communication through the channel from the source (η =1 if the source provided 
information about w, η=0 if no information about w was received from the source); 
for an agent’s observations the source is the environment, u is the confidence value for 
the belief prospect for w based on the information received from the source, p is the 
amount of trust of the agent to the source. 

According to the formula, the higher the agent’s trust in a source, the greater the 
source’s influence on the input value. A high confidence value provided by a 
trustworthy source brings the input value further away from the minimal knowledge 
state (v1 = 0). In the case when more than one source provides information of a type w 
to the agent, the overall confidence value of the agent’s belief representing its 
valuation of w is calculated by aggregating the agent’s emotional beliefs about w for 
each source: 
 

b = ∑i=1..n ηi bi / ∑i=1..n ηi , where  ∑i=1..n ηi > 0 
 

Here n is the number of information sources, bi is the confidence value of the 
emotional belief created based on information from the ith source, ηi is the strength of 
the communication channel from the ith source. 
 

communicated
(s, ag,w, v, t)

preparation_
state(b2, v)

feeling(b1, v) srs(b1, v)

srs(communicated
(s, ag, w, v, t))

belief(w, v) preparation_
state(b1, v)

srs(b2, v)feeling(b2, v)
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(s, ag, w, v)

belief(dyn_
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(s, ag, w, v, t), q)

srs(b3, v)
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feeling(b3, v)

observed(agent_
close(a), t)
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belief(observed
(agent_close(a), t),1)

preparation_state(to_
be_communicated
(ag, a, w, v))

communicated
(ag, a, w, v, t)

 
Fig. 1. A schematic representation of the model for believing, feeling, and trusting for an 
information source s; the bold arrows represent interaction between two loops. 

Thus, trust and beliefs are interdependent: on the one hand, the trust in a source 
builds up based on information received from the source evaluated using the agent's 
beliefs; on the other hand, the trust in a source determines the degree of influence of 
information from the source on the agent's beliefs. Furthermore, both trust and beliefs 
are influenced by emotions. Similarly to beliefs, the emotional influence on trust is 
modelled by an as-if body loop. The input for this loop is provided by the evaluation 
of experiences with the source.  

The parameters of the model allow specifying diverse individual characteristics, 
similar to the Big Five traits: γ’s in as-if body loops reflect the agent’s flexibility to 
adopt new experiences; α reflects the agent’s openness, as reported in [7], positive 
emotions, such as happiness, increase the agent’s openness, whereas negative 
emotions, such as anger, have the opposite effect. 



 

Based on the valuation of beliefs the agent decides how to act. In the model shown 
in Fig.1, if the agent has a high confidence (> 0.8) in a property, and observes that 
another agent is close, then it communicates this property to that agent. Formally:    

at(belief(observed(agent_close(a), t-∆t), 1) ∧  belief(w, v) ∧  v > 0.8, t- ∆t)  
⇒  at(preparation_state(to_be_communicated(ag, a, w, v)), t) 
 

at(preparation_state(to_be_communicated(ag, a, w, v)), t-∆t) 
⇒  at(communicated(ag, a, p, w, t)), t) 

In the following it is demonstrated how the procedure from Section 3 is applied to 
eliminate the loops from the model from Fig.1.  The loop for the belief about the 
world dynamics is eliminated as shown in Section 4.1. To eliminate two interacting 
loops from Fig.1, following the procedure, two coupled equations are obtained: 

[(1-β1)(1-p2u)+ β1 p2u] p1 = β1p2u  
[(1-β2)(1- α| u – p1|) + β2 α| u – p1|] p2 =β2 α| u – p1| 

Here p1 represents the confidence of the agent’s belief about w, p2 is the degree of 
agent’s trust in the source for w; u is the confidence value for the belief prospect based 
on the information about w provided from the source (i.e., experience). The 
parameters β1 and β2 account for temporal discounting of old experiences in 
calculation of confidence values of beliefs and trust values. Furthermore, β1 and β2 

reflect the agent’s positive versus negative bias. From this system for the case u ≥ p1 a 
quadratic equation in p1 is obtained: 
 

 (h2h3 – (β1-h3)β2 α) p1
2 + (h1h3 + (β1-h3)β2αu + β1β2αu)p1 - αβ1β2u

2 = 0, (2) 
 

where  h1= (1-β2)(1-αu), h2=α (1-β2), h3 = 1-β1. The case u < p1 is treated similarly. 
In cases with more than one source, each couple of loops for each source is eliminated 
as described above, and the obtained expressions for emotion-affected beliefs is used 
to calculate the overall confidence value of the agent’s belief by aggregation. 

Now, after all loops have been eliminated from the model, an executable 
behavioural specification containing a direct relation between the input and output 
states of the model can be automatically generated using the procedure from [12]: 

at(observed(agent_close(a), t-Dt) ∧  communicated(s, ag, w, v, t1) ∧  t-Dt ≥ t1 ∧   
f(expr(v, t1, t) > 0.8, t-Dt)   ⇒  at(communicated(ag, a, w, v, t), t) 

 

Here f(expr(v, t1, t)) is the solution to the equation (2) with u=expr(v, t1, t) and expr is the 
function used to calculate the belief projection; Dt>>∆t. 

5   Discussion 
Existing models for an agent’s internal functioning often have been designed from an 
artificial (software) agent perspective, without taking into account underlying 
neurological principles. In particular, they usually are based on a noncyclic causal 
graph assumption for the mental states involved. From the literature in the 
neurological and brain research area it is known that realistic processes often have a 
highly cyclic character. For example, affective processes may be triggered by 
cognitive processes, but in turn affect the very same cognitive processes. To obtain 
more realistic and neurologically founded agent models such mutual interactions 
cannot be ignored. To obtain such agent models, as for example argued in [11], 



 

techniques from the dynamical (complex) systems area in principle are a useful 
option, as opposed to the logical methods usually advocated. In general, the 
complexity of such dynamical systems may provide some computational difficulties. 
However, for a substantial class of applications of such models their complexity can 
be analysed by identifying a number of loops that during processing lead to equilibria, 
and transforming the model into one in which these loops are replaced by the 
equilibria they reach.  

This paper contributes such a transformation procedure to relate a specification of 
an agent’s internal processes to its behavioural specification, in particular for more 
complex and neurologically founded agent models. Due to this contribution agent 
models have become within reach with internal processing and adaptation involved in 
valuation of cognitive states based on the emotional responses they trigger. It has been 
shown that when an approximation perspective is adopted loops can be eliminated by 
replacing them by direct functional association specifications that only require limited 
time for their processing. Noncyclic specifications obtained using the proposed 
procedure can be handled by more common analysis methods. The resulting agent 
models also become suitable for other analysis methods, for example model checking.  
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