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Abstract. Within cognitive models, desires are often considered as functional 

concepts that play a role in efficient focusing of behaviour. In practice a desire 

often goes hand in hand with having certain feelings. In this paper by adopting 

neurological theories a model is introduced incorporating both cognitive and 

affective aspects in the dynamics of desiring and feeling. Example simulations 

are presented, and both a mathematical and logical analysis is included.  

1.   Introduction 

Desires play an important role in human functioning. To provide automated support 

for human functioning in various domains [2], it may be important to also monitor the 

humans states of desiring. Desires [13] are often considered cognitive states with the 

function of focusing the behaviour by constraining or indicating the options for 

actions to be chosen. Yet, there is much more to the concept of desire, especially 

concerning associated affective aspects. Cognitive functioning is often strongly 

related to affective processes, as has been shown more in general in empirical work as 

described in, for example, [9, 19]. In this paper a model is introduced that addresses 

both cognitive and affective aspects related to desires, adopting neurological theories 

as described in, for example, [3, 6, 7, 8, 19]. The aim of developing such a model is 

both to analyse adaptive dynamics of interacting cognitive and affective processes, 

and to provide a basis for an ambient agent that supports a person; cf. [14, 16, 2]. 

Evaluation criteria include in how far the model shows emerging patterns that are 

considered plausible, and the possibility to use the model in model-based reasoning 

within an ambient agent; cf. [2]. 

Within the presented model an activated desire induces a set of responses in the 

form of preparations for actions to fulfil the desire, and involving changing body 

states. By a recursive as-if body loop each of these preparations generates a level of 

feeling [18] that in turn can strengthen the level of the related preparation. These 

loops result in equilibria for both the strength of the preparation and of the feeling, 

and when these are strong enough, the action is actually activated. The specific 



 

 

strengths of the connections from the desire to the preparations, and within the 

recursive as-if body loops can be innate, or are acquired during lifetime. The 

computational model is based on neurological notions such as somatic marking, body 

loop and as-if body loop. The adaptivity in the model is based on Hebbian learning.  

Any mental state in a person induces emotions felt by this person, as described in 

[7, 8]; e.g., [8], p. 93:  ‘… few if any exceptions of any object or event, actually present or 

recalled from memory, are ever neutral in emotional terms. Through either innate design or by 

learning, we react to most, perhaps all, objects with emotions, however weak, and subsequent 

feelings, however feeble.’ More specifically, in this paper it is assumed that responses in 

relation to a mental state of desiring roughly proceed according to the following 

causal chain for a body loop, based on elements from [3, 7, 8]: 

desire   →  preparation for bodily response  →  body state modification  →  sensing body 

state  →  sensory representation of body state →  induced feeling 

In addition, an as-if body loop uses a direct causal relation 

preparation for bodily response  →  sensory representation of body state 

as a shortcut in the causal chain; cf. [7]. The body loop (or as-if body loop) is 

extended to a recursive (as-if) body loop by assuming that the preparation of the 

bodily response is also affected by the state of feeling the emotion:  

feeling  →  preparation for  the bodily response   

Such recursion is suggested in [8], pp. 91-92, noticing that what is felt is a body state 

under the person’s control: ‘The brain has a direct means to respond to the object as feelings 

unfold because the object at the origin is inside the body, rather than external to it. The brain 

can act directly on the very object it is perceiving. (…) The object at the origin on the one hand, 

and the brain map of that object on the other, can influence each other in a sort of reverberative 

process that is not to be found, for example, in the perception of an external object.’  
Within the model presented in this paper, both the bodily response and the feeling 

are assigned a level (or gradation), expressed by a number. The causal cycle is 

triggered by an activation of the desire and converges to certain activation levels of 

feeling and preparation for a body state. The activation of a specific action 

preparation is based on both the activation level of the desire and of the feeling 

associated to this action. This illustrates Damasio’s theory on decision making by 

somatic marking, called the Somatic Marker Hypothesis; cf. [1, 6, 8].  

The strengths of the connections from feeling to preparation may be subject to 

learning. Especially when a specific action is performed and it leads to a strong effect 

in feeling, by Hebbian learning [10, 12] this may give a positive effect on the strength 

of this connection and consequently on future activations of the preparation of this 

specific action. Through such a mechanism experiences in the past may have their 

effect on behavioural choices made in the future, as also described as part of 

Damasio’s Somatic Marker Hypothesis [6]. In the computational model described 

below, this is applied in the form of a Hebbian learning rule realising that actions 

induced by a certain desire which result in stronger experiences of satisfaction felt 

will be chosen more often to fulfil this desire. 

In Section 2 the computational model for the dynamics of desiring and feeling is 

described. Section 3 presents some simulation results. In Section 4, formal analysis of 

the model is addressed, both by mathematical analysis of equilibria and automated 

logical verification of properties. Finally, Section 5 is a discussion. 



 

 

2.   Modelling Desiring and Feeling 

In this section the computational model for desiring and feeling is presented; for an 

overview see Fig. 1. This picture also shows representations from the detailed 

specifications explained below. The precise numerical relations between the 

indicated variables V shown are not expressed in this picture, but in the detailed 

specifications of properties below, which are labelled by LP0 to LP9 (where LP 

stands for Local Property), as also shown in the picture. The detailed specification 

(both informally and formally) of the computational model is presented below. Here 

capitals are used for (assumed universally quantified) variables. The model was 

specified in LEADSTO [4], where the temporal relation a →→ b denotes that when a 

state property a occurs, then after a certain time delay (which can be specified as any 

positive real number), state property b will occur. In LEADSTO both logical and 

numerical relations can be specified.  
 

Generating a desire by sensing a bodily unbalance 

The desire considered in the example scenario is assumed to be generated by sensing 

an unbalance in a body state b, according to the principle that organisms aim at 

maintaining homeostasis of their internal milieu. The first dynamic property 

addresses how body states are sensed. 

LP0  Sensing a body state 

If  body state property B has level V, then  the sensor state for B will have level V. 

body_state(B, V) →→  sensor_state(B, V) 

For the example scenario this dynamic property is used by the person to sense the 

body state b from which the desire originates (e.g., a state of being hungry), and the 

body states bi involved in feeling satisfaction with specific ways in which the desire is 

being fulfilled. From sensor states, sensory representations are generated as follows.  
 

LP1  Generating a sensory representation for a sensed body state  

If  a sensor state for B has level V,  then  the sensory representation for B will have level V. 

sensor_state(B, V)  →→  srs(B, V) 

Next the dynamic property for the process for desire generation is described, from the 

sensory representation of the body state unbalance.  
 

LP2  Generating a desire based on a sensory representation 

If  a sensory representation for B has level V,   then  the desire to address B will have level V. 

srs(B, V)  →→   desire(B, V) 
 

Inducing preparations  

It is assumed that activation of a desire, together with a feeling, induces preparations 

for a number of action options: those actions considered relevant to satisfy the desire, 

for example based on earlier experiences. Dynamic property LP3 describes such 

responses in the form of the preparation for specific actions. It combines the 

activation levels V and Vi of two states (desire and feeling) through connection 

strengths ω1i and ω2i respectively. This specifies part of the recursive as-if loop 

between feeling and body state. This dynamic property uses a combination model 

based on a function g(σ, τ,V, Vi, ω1i, ω2i) which includes a sigmoid threshold function  

th(σ, τ,V)  =  
�

����σ(��τ) 
 

with steepness σ  and threshold τ . For this model g(σ, τ,V, Vi, ω1i, ω2i) is defined as  
 



 

 

g(σ, τ,V, Vi, ω1i, ω2i)  = th(σ, τ,ω1iV + ω2iVi)  
 

with V, Vi  activation levels and ω1i, ω2i weights of the connections to the preparation 

state. Note that alternative combination functions g could be used as well, for example 

quadratic functions such as used in [15]. Property LP3 is formalised in LEADSTO as: 
 

LP3  From desire and feeling to preparation  

If  the desire for b has level V   
   and feeling the associated body state bi has level Vi 

   and  the preparation state for bi has level Ui 

   and  ω1i   is the strength of the connection from desire for b to preparation for bi 

   and  ω2i   is the strength of the connection from feeling of bi to preparation for bi 

   and  σ i  is the steepness value for the preparation for bi 

   and  τ i  is the threshold value for the preparation for bi 

   and  γ 1 is the person’s flexibility for bodily responses 

then  the preparation state for bi will have level   Ui + γ 1(g(σi, τ i,  V, Vi, ω1i, ω2i) - Ui) ∆t. 
 

desire(b, V)  &  feeling(bi, Vi)  &  prep_state(bi, Ui)  &   

has_steepness(prep_state(bi), σi) &  has_threshold(prep_state(bi), τi) 

→→  prep_state(bi, Ui + γ1 (g(σi, τ i, V, Vi, ω1i, ω2i) - Ui) ∆t) 
 

From preparation to feeling 

Dynamic properties LP4 and LP5 describe how the as-if body loop together with the 

body loop affects the feeling. 
 

LP4  From preparation and sensor state to sensory representation of body state 

If  the preparation state for body state B has level V1 

  and the sensor state for B has level V2  

  and the sensory representation for B has level U 

   and  σ  is the steepness value for the sensory representation of B 

   and  τ  is the threshold value for the sensory representation of B 

   and  γ 2 is the person’s flexibility for bodily responses 

then  the sensory representation for body state B will have level  level U + γ2 (g(σ, τ,  V1, V2, 1, 1) - U) ∆t. 
 

prep_state(B, V1) & sensor_state(B, V2) & srs(B, U)  & has_steepness(srs(B), σ) &  

has_threshold(srs(B), τ) 

→→  srs(B, U + γ2 (g(σ, τ, V1, V2, 1, 1) - U) ∆t) 
 

Dynamic properties LP5 describes the remaining part of the as-if body loop. 
 

LP5  From sensory representation of body state to feeling 

If  a sensory representation for body state B has level V,  

then  B will be felt with level V. 

srs(B, V)  →→   feeling(B, V) 
 

Action performance and effects on body states 

Temporal relationships LP6 and LP7 below describe the preparations of body states bi 

and their effects on body states b and bi. The idea is that the actions performed by 

body states bi are different means to satisfy the desire related to b, by having an 

impact on the body state that decreases the activation level V (indicating the extent of 

unbalance) of body state b. In addition, when performed, each of them involves an 

effect on a specific body state bi which can be interpreted as a basis for a form of 

satisfaction felt for the specific way in which b was satisfied. So, an action 

performance involving bi has an effect on both body state b, by decreasing the level of 

unbalance entailed by b, and on body state bi by increasing the specific level of 

satisfaction.  This specific level of satisfaction may or may not be proportional to the 

extent to which the unbalance is reduced. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Overview of the computational model for desiring and feeling 

 

As the possible actions to fulfil a desire are considered different, they differ in the 

extents of their effects on these two types of body states, according to an effectiveness 

rate αi between 0 and 1 for b, and an effectiveness rate βi between 0 and 1 for bi. The 

effectiveness rates αi and βi can be considered a kind of connection strengths from the 

effector state to the body states b and bi, respectively. In common situations for each 

action these two rates may be equal (i.e., αi = βi), but especially in more pathological 

cases they may also have different values where the satisfaction felt based on rate βi 

for bi may be disproportionally higher or lower in comparison to the effect on b based 

on rate αi  (i.e., βi > αi or βi < αi). An example of this situation would be a case of 

addiction for one of the actions. To express the extent of disproportionality between βi 
and αi, a parameter λi, called satisfaction disproportion rate, between -1 and 1 is 

used; here: λi =  (βi - αi) / (1-αi) if   βi ≥ αi; λi = (βi - αi) /αi  if   βi ≤ αi. This parameter 

can also be used to relate βi to αi using a function: βi = f(λi, αi). Here f(λ, α) satisfies 
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f(0, α) = α f(-1, α) = 0 f(1, α) = 1 

The piecewise linear function f(λ, α)  can be defined in a continuous manner as: 

f(λ, α) = α + λ(1-α) if  λ ≥ 0;      f(λ, α) = (1+λ)α  if  λ ≤ 0 

Using this, for normal cases λi = 0 is taken, for cases were satisfaction is higher  

0 < λi ≤ 1 and for cases where satisfaction is lower -1 ≤ λi < 0. 
 

LP6  From preparation to effector state  

If  preparation state for B has level V, then  the effector state for body state B will have level V. 

prep_state(B, V)  →→  effector_state(B, V) 
 

LP7  From effector state to modified body state bi 

If  the effector state for bi has level Vi, 

   and for each i the effectivity of bi for b is αi 

   and the satisfaction disproportion rate for bi for b is λi 

then  body state bi will have level  f(λi, αi)Vi. 

effector_state(bi, Vi) & is_effectivity_for(αi, bi, b) & 

is_disproportion_rate_for(λi, bi)  →→  body_state(bi, f(λi, αi)Vi) 
 

LP8  From effector state to modified body state b 

If  the effector states for bi have levels Vi, 

   and body state b has level V, 

   and for each i the effectivity of bi for b is αi 

then body state b will have level   

  V +(ϑ * (1-V) –  ρ * (1 – ( (1 - α1 * V1)  * (1 - α2 * V2) * (1 - α3 * V3) )) * V) ∆t. 

effector_state(bi, Vi)  & body_state(b, V)  &  is_effectivity_for(αi, bi, b) 

→→  body_state(b, V + (ϑ * (1-V) – ρ * (1 – ( (1 - α1*V1)  * (1 - α2*V2) * (1 - α3*V3) )) * V) ∆t   
 

Note that in case only one action is performed (i.e., Vj = 0 for all j ≠ i), the formula in 

LP8 above reduces to V +(ϑ * (1-V) –  ρ*αi*Vi * V) ∆t. In the formula ϑ  is a rate of 

developing unbalance over time (for example, getting hungry), and ρ  a general rate 

of compensating for this unbalance. Note that the specific formula used here to adapt 

the level of b is meant as just an example. As no assumptions on body state b are 

made, this formula is meant as a stand-in for more realistic formulae that could be 

used for specific body states b.  
 

Learning of the connections from desire to preparation 

The strengths ω2i  of the connections from feeling bi to preparation of bi are 

considered to be subjected to learning. When an action involving bi is performed and 

leads to a strong effect on bi, by Hebbian learning [10, 12] this increases the strength 

of this connection. This is an adaptive mechanism that models how experiences in the 

past may have their effect on behavioural choices made in the future, as also 

described in Damasio’s Somatic Marker Hypothesis [6]. Within the model the 

strength ω2i of the connection from feeling to preparation is adapted using the 

following Hebbian learning rule. It takes into account a maximal connection strength 

1, a learning rate η, and an extinction rate ζ.  
 

LP9  Hebbian learning for the connection from feeling to preparation 

If  the connection from feeling bi to preparation of bi has strength ω2i 

  and the feeling bi has level V1i  

  and  the preparation of bi has level V2i  

  and  the learning rate from feeling bi to preparation of bi is η 

  and  the extinction rate from feeling bi to preparation of bi is ζ 

then  after ∆t  the connection strength from feeling bi to preparation of bi will be  



 

 

  ω2i + (ηV1iV2i (1 - ω2i) - ζω2i) ∆t. 

has_connection_strength(feeling(bi), preparation(bi), ω2i) & feeling(bi, V1i)  &  preparation(bi, V2i) &   

has_learning_rate(feeling(bi), preparation(bi), η)  &  has_extinction_rate(feeling(bi), preparation(bi), ζ)    

 →→   has_connection_strength(feeling(bi), preparation(bi), ω2i + (ηV1iV2i (1 - ω2i) - ζω2i) ∆t) 

3.   Example Simulation Results 

Based on the model described in the previous section, a number of simulations have 

been performed. A first example simulation trace included in this section as an 

illustration is shown in Fig. 2; in all traces, the time delays within the temporal 

LEADSTO relations were taken 1 time unit. Note that only a selection of the relevant 

nodes (represented as state properties) is shown. In all of the figures time is on the 

horizontal axis, and the activation levels of state properties on the vertical axis.  
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Fig. 2: Simulation Trace 1 – Normal behaviour 

(σ1=σ2=10, τ1=τ2=0.5, γ1=γ2=0.05, α1=β1 =0.05, α2=β2 =0.25, α3=β3=1,  

ρ=0.8, ϑ=0.1, η=0.04, ζ=0.01) 

 

For the example shown in Fig. 2, for each i it was taken λi = 0, so satisfaction felt is in 

proportion with fulfilment of the desire.  Action option 3 has the highest effectiveness 

rate, i.e. α3 =1. Its value is higher as compared to the other two action options. This 

effect has been propagated to their respective body states as shown in Fig. 2(b). All 

these body states has a positive effect on body state b, decreasing the level of 

unbalance, as shown in Fig. 2(b), where the value of body state b (which was set 

initially to 0.3) decreases over time until it reaches an equilibrium state. Each of these 

body states generates feelings by a recursive as-if body loop, as shown in Fig. 2(c). 

Furthermore it gives a strong effect on the strength of the connection from feeling to 



 

 

preparation. The connection strength keeps on increasing over time until it reaches an 

equilibrium state, as shown in Fig. 2(d). As the extinction rate (ζ=0.01) is smaller 

compared to the learning rate (η=0.04), the connection strength becomes 0.8, which is 

closer to 1, as confirmed by the mathematical analysis in Section 4. Fig. 3, shows the 

simulation of an example scenario where the person is addicted to a particular action, 

in this case to action option 1, λ1 = 1. But because the effectiveness rate α1 for this 

option is very low (0.05), the addiction makes that the person is not very effective in 

fulfilling the desire: the level of unbalance remains around 0.3; the person mainly 

selects action option 1 because of its higher satisfaction. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3: Simulation Trace 2 – Addiction-like behaviour  

(σ1=σ2=10, τ1=τ2=0.5, γ1=γ2=0.05, α1=0.05, α2=β2=0.1, α3=β3=0.7,  

ρ =0.8, ϑ=0.1, η=0.02, ζ=0.01) 
 

In the next trace (see Fig. 4), the effectiveness rates for the different action options 

have been given a distinct pattern, i.e. after some time α1 has been gradually increased 

with a term of 0.009, starting with an initial value of 0.05 until it reaches the value of 

1, thereafter it has been kept constant to 1. In the same period the effectiveness rate α3 

has been gradually decreased with 0.009, starting with an initial value of 1, until it 

reaches the value of 0.05, thereafter it has been kept constant to 0.05, showing an 

exact opposite pattern of α1. Effectiveness rate α2 is being kept constant to 0.15 for all 

the time points. As can be seen in Fig. 4, first the person selects action option 3 as the 

most effective one, but after a change in circumstances the person shows adaptation 

by selecting action option 1, which has now a higher effectiveness rate. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Simulation Trace 3 – Adapting to changing circumstances  

(σ1=σ2=6, τ1=τ2=0.5, γ1=γ2=0.1, α1=β1 increasing from 0.05 to 1, α2=β2=0.15, α3=β3 

decreasing from 1 to 0.05, ρ =0.8, ϑ=0.1, η=0.04, ζ=0.02) 

4.   Formal Analysis of the Model 

This section addresses formal analysis of the model and the simulation results as 

presented above. First a mathematical analysis of the equilibria is made. Next, a 

number of more globally emerging dynamic properties are verified for a set of 

simulation traces. 
 

Mathematical analysis of equilibria  

For an equilibrium of the strength of the connection from feeling bi to preparation of 

bi, by LP9 it holds ηV1iV2i (1 - ω2i) - ζω2i = 0 with values V1i for feeling level and V2i  

for preparation level for bi. This can be rewritten into  

ω2i  = 
η 	�
	�
  

η 	�
	�
  � ζ
  =  

�

� � ζ /(η 	�
	�
 ) 
 

Using V1i, V2i  ≤ 1 from this it follows that 

ω2i  ≤   
�

� � ζ /η
 

gives a maximal connection strength that can be obtained. This shows that given the 

extinction, the maximal connection strength will be lower than 1, but may be close to 

1 when the extinction rate is small compared to the learning rate. For example, for the 

trace shown in Fig. 2 with ζ = 0.01 and η=0.04, this bound is 0.8, which indeed is 

reached for option 3. For the traces in Fig. 3 and 4 with ζ /η = ½ this maximum is 2/3, 

which is indeed reached for option 1 in Fig. 3 and option 3, resp. 1 in Fig. 4. Whether 



 

 

or not this maximally possible value for ω2i is approximated for a certain option, also 

depends on the equilibrium values for feeling level V1i and preparation level V2i for bi. 

For values of V1i  and V2i that are 1 or close to 1, the maximal possible value of ω2i  is 

approximated. When in contrast these values are very low, also the equilibrium value 

for ω2i  will be low, since: 

ω2i  =  
η 	�
	�
  

η 	�
	�
  � ζ
   ≤ η V1iV2i /ζ 

So, when one of V1i and V2i is 0 then also ω2i = 0 (and conversely). This is illustrated 

by the options 1 and 2 in Fig. 2, and option 2 in Fig. 3. 

Given the sigmoid combination functions it is not possible to analytically solve the 

equilibrium equations in general. Therefore the patterns emerging in the simulations 

cannot be derived mathematically in a precise manner. However, as the combination 

functions are monotonic, some relationships between inequalities can be found: 
(1) V1jV2j  ≤ V1kV2k    ⇒  ω2j  ≤ ω2k       

(2) ω2j  < ω2k    ⇒  V1jV2j  < V1kV2k 

(3) ω2j ≤ ω2k   &  V1j  ≤ V1k    ⇒  ω2j V1j  ≤ ω2k V1k   ⇒  V2j  ≤ V2k   

(4) V2j  < V2k   ⇒  ω2j V1j  < ω2k V1k 

(5) βj ≤ βk   & V2j  ≤ V2k   ⇒  (1+βj ) V2j  ≤ (1+βk ) V2k  ⇒ V1j  ≤ V1k   

(6)  V1j  < V1k   ⇒  (1+βj ) V2j  < (1+βk ) V2k 

Here (1) and (2) follow from the above expressions based on LP9. Moreover, (3) and 

(4) follow from LP3, and (5) and (6) from the properties LP4, LP5, LP6, LP7, LP0 

and LP1 describing the body loop and as-if body loop.  

For the case that one action dominates exclusively, i.e., V2k = 0 and ω2k = 0  for all 

k ≠ i, and V2i > 0, by LP8 it holds 
ϑ * (1-V) –  ρ * αi * V2i * V = 0 

where V is the level of body state b. Therefore for ϑ >0 it holds  

V  =   
�

��(ρα
 /ϑ) 	�

 ≥   

�

��(ρ/ϑ)α
 
 

As V2i > 0  is assumed, this shows that if ϑ  is close to 0 (almost no development of 

unbalance), and ρ > 0 and αi > 0, the value V can be close to 0 as well. If, in contrast, 

the value of ϑ  is high (strong development of unbalance) compared to ρ and αi, then 

the equilibrium value V will be close to 1. For the example traces in Fig. 2, 3 and 4, ρ 

=0.8 and ϑ=0.1, so ρ /ϑ = 8. Therefore for a dominating option with αi  = 1, it holds V 

≥ 0.11, which can be seen in Fig. 2 and 4. In Fig. 3 the effectiveness of option 1 is 

very low (α1 = 0.05), and therefore the potential of this option to decrease V is low: V 

≥ 0.7. However, as in Fig. 3 also option 3 is partially active, V reaches values around 

0.35. Note that for the special case ϑ = 0 (no development of unbalance) it follows 

that ρ * αi * V2i * V = 0 which shows that V = 0. Values for V at or close to 0 confirm 

that in such an equilibrium state the desire is fulfilled or is close to being fulfilled (via 

LP0, LP1 and LP2 which show that the same value V occurs for the desire). 
 

Logical verification of properties on simulation traces 

In order to investigate particular patterns in the processes shown in the simulation 

runs, a number of properties have been formulated. Formal specification of the 

properties, enabled automatic verification of them against simulation traces, using the 

logical language and verification tool TTL (cf. [5]). The purpose of this type of 

verification is to check whether the simulation model behaves as it should. A typical 



 

 

example of a property that may be checked is whether certain equilibria occur, or 

whether the appropriate actions are selected.  

The temporal predicate logical language TTL supports formal specification and 

analysis of dynamic properties, covering both qualitative and quantitative aspects. 

TTL is built on atoms referring to states of the world, time points and traces, i.e. 

trajectories of states over time. Dynamic properties are temporal statements 

formulated with respect to traces based on the state ontology Ont in the following 

manner. Given a trace γ over state ontology Ont, the state in γ at time point t is denoted 

by state(γ, t). These states are related to state properties via the infix predicate |=, 

where state(γ, t) |= p denotes that state property p holds in trace γ at time t. Based on 

these statements, dynamic properties are formulated in a sorted predicate logic, using 

quantifiers over time and traces and the usual logical connectives such as ¬, ∧, ∨, ⇒, 

∀, ∃. For more details on TTL, see [5]. 

A number of properties have been identified for the processes modelled. Note that 

not all properties are expected to always hold for all traces. The first property, GP1 

(short for Global Property 1), expresses that eventually the preparation state with 

respect to an action will stabilise. 
 

GP1(d): Equilibrium of preparation state 

Eventually, the preparation state for each bi will stabilise at a certain value (i.e., not deviate 

more than a value d). 
∀γ:TRACE, B:BODY_STATE  [ ∃t1:TIME   [ ∀t2:TIME > t1, V1, V2 :VALUE 

[ state(γ, t1) |= prep_state(B, V1) & state(γ, t2) |= prep_state(B, V2)   

⇒ V2 ≥ (1 – d) * V1 & V2 ≤ (1 + d) * V1 ] ] ] 
 

Next, in property GP2 it is expressed that eventually the action which has the most 

positive feeling associated with it will have the highest preparation state value. 
 

GP2: Action with best feeling is eventually selected 

For all traces there exists a time point such that the bi with the highest value for feeling 

eventually also has the highest activation level. 
∀γ:TRACE, B:BODY_STATE, t1:TIME<end_time, V:VALUE 

[ [ state(γ, t1) |= feeling(B, V) & ∀B2:BODY_STATE, V2:VALUE [ state(γ, t1) |= feeling(B2, V2)  

⇒ V2 ≤ V]  

 ⇒ [ ∃t2:TIME > t1, V1:VALUE    [ state(γ, t2) |= prep_state(B, V1) &  

          ∀B3:BODY_STATE, V3:VALUE [ state(γ, t2) |= prep_state(B3, V3)  ⇒ V3 ≤ V1 ] ] ] ] 
 

Property GP3 expresses that if the accumulated positive feelings experienced in the 

past are higher compared to another time point, and the number of negative 

experiences is lower or equal, then the weight through Hebbian learning will be 

higher. 
 

GP3: Accumulation of positive experiences 

If at time point t1 the accumulated feeling for bi is higher than the accumulated feeling at time 

point t2, then the weight of the connection from bi is higher than at t1 compared to t2. 
∀γ:TRACE, B:BODY_STATE, a:ACTION, t1, t2:TIME<end_time, V1, V2:VALUE 

[ [state(γ, t1) |= accumulated_feeling(B, V1) & state(γ, t2) |= accumulated_feeling(B, V2) & V1>V2 ] 

  ⇒ ∃W1, W2:VALUE [state(γ, t1) |= has_connection_strength(feeling(B), preparation(B), W1) &  

    state(γ, t2) |= has_connection_strength(feeling(B), preparation(B), W2) & W1 ≥ W2 ] ] 
 

Next, property GP4 specifies a monotonicity property where two traces are compared. 

It expresses that strictly higher feeling levels result in a higher weight of the 

connection between the feeling and the preparation state. 

 



 

 

GP4: High feelings lead to high connection strength 

If at time point t1 in a trace γ1 the feelings have been strictly higher level compared to another 

trace γ2, then the weight of the connection between the feeling and the preparation state will 

also be strictly higher. 
∀γ1, γ2:TRACE, B:BODY_STATE, t1:TIME<end_time, W1, W2:VALUE 

[∀t’ < t1:TIME, V1, V2:VALUE    

[ [ state(γ1, t’) |= feeling(B, V1) & state(γ2, t’) |= feeling(B, V2) ] ⇒ V1 > V2 ] & 

state(γ1, t1) |= has_connection_strength(feeling(B), preparation(B), W1) &  

state(γ2, t1) |= has_connection_strength(feeling(B), preparation(B), W2) ⇒ W1 ≥ W2 ] 
 

Finally, property GP5 analyses traces that address cases of addiction. In particular, it 

checks whether it is the case that if a person is addicted to a certain action (i.e., has a 

high value for the satisfaction disproportion rate λ for this action), this results in a 

situation of unbalance (i.e., a situation in which the feeling caused by this action stays 

higher than the overall body state). An example of such a situation is found in 

simulation trace 2 (in Fig. 3). 
 

GP5: Addiction leads to unbalance between feeling and body state 

For all traces, if a certain action has λ > 0, then there will be a time point t1 after which the 

feeling caused by this action stays higher than the overall body state. 
∀γ:TRACE, B1:BODY_STATE, L1:VALUE   [ state(γ, 0) |= has_lambda(B1,L1) & L1 > 0 

⇒ [ ∃t1:TIME < last_time 

   ∀t2:TIME>t1 X,X1:VALUE [ state(γ, t2) |= body_state(b, X) & body_state(B1, X1) ⇒ X < X1 ] ] ] 
 

An overview of the results of the verification process is shown in Table 1 for the three 

traces that have been considered in Section 4. The results show that several expected 

global properties of the model were confirmed. For example, the first row indicates 

that for all traces, eventually an equilibrium occurs in which the values of the 

preparation states never deviate more than 0.0005 (this number can still be decreased 

by running the simulation for a longer time period). Also, the checks indicate that 

some properties do not hold. In such cases, the TTL checker

software provides a counter example, i.e., a situation in which the property does not 

hold. This way, it could be concluded, for example, that property GP1 only holds for 

the generated traces if d is not chosen too small. 
 

Table 1. Results of verification 

property trace 1 trace 2 trace 3 

GP1(X) X≥0.0001 X≥0.0005 X≥0.0001 
GP2 satisfied satisfied satisfied 

GP3 satisfied satisfied Satisfied 

GP4 satisfied for all pairs of traces 

GP5 satisfied satisfied satisfied 

 

5.  Discussion 

In this paper an adaptive computational model was introduced for dynamics of 

cognitive and affective aspects of desiring, based on neurological theories involving 

(as-if) body loops, somatic marking, and Hebbian learning. The introduced model 

describes more specifically how a desire induces (as a response) a set of preparations 

for a number of possible actions, involving certain body states, which each affect 

sensory representations of the body states involved and thus provide associated 



 

 

feelings. On their turn these feelings affect the preparations, for example, by 

amplifying them. In this way an model is obtained for desiring which integrates both 

cognitive and affective aspects of mental functioning. For the interaction between 

feeling and preparation of responses, a converging recursive body loop is included in 

the model, based on elements taken from [3, 7, 8]. Both the strength of the 

preparation and of the feeling emerge as a result of the dynamic pattern generated by 

this loop. The model is adaptive in the sense that within these loops the connection 

strengths from feelings to preparations are adapted over time by Hebbian learning. By 

this adaptation mechanism, in principle the person achieves that the most effective 

action to fulfill a desire is chosen. However, the model can also be used to cover 

persons for whom satisfaction for an action is not in proportion with the fulfilment of 

the desire, as occurs, e.g., in certain cases of temptation and addiction, such as 

illustrated in [14]. 

Despite growing interest in integrating cognitive and affective aspects of mental 

functioning in recent years, both in informally described approaches  [9, 19] and in 

formal and computational approaches [11, 15], the relation of affective and cognitive 

aspects of desires has received less than adequate attention. Moreover, most existing 

formal models that integrate cognitive and affective aspects in mental functioning 

adopt the BDI (belief-desire-intention) paradigm and/or are based on appraisal theory 

(e.g., [11]). The proposed model is the first to show the effect of desire on feeling in a 

formalised computational manner and is based on neurological theories given in the 

literature as opposed to the BDI paradigm or appraisal-based theories. An interesting 

contrasting proposal of representing feelings as resistance to variance is put forward 

by [17]; this model is however not computational. 

The computational model was specified in the hybrid dynamic modelling 

language LEADSTO, and simulations were performed in its software environment; 

cf. [4]. The computational model was analysed through a number of simulations for a 

variety of different settings and scenarios, and by formal analyses both by 

mathematical methods and by automated logical verification of dynamic properties 

on a set of simulation traces. Several expected global properties, such as the 

occurrence of equilibria and the selection of appropriate actions, were confirmed for 

the generated traces. Although this is not an exhaustive proof, it is an important 

indication that the model behaves as expected. Currently the model is generic in a 

sense that it does not address any specific desire or feeling. It would be an interesting 

future work to parameterise the model to analyse desire relating to different types of 

feeling. Future work will also focus on a more extensive validation of the model. 

It was shown that under normal circumstances indeed over time the behaviour of 

the person is more and more focusing on actions that provide higher levels of desire 

fulfilment and stronger feelings of satisfaction, thus improving effectiveness of desire 

fulfilment. Also less standard circumstances have been analysed: particular cases in 

which the fulfilment of the desire and the feeling of satisfaction are out of proportion, 

as, for example, shown in some types of addictive behaviour. Indeed also such cases 

are covered well by the model as it shows over time a stronger focus on the action for 

which the satisfaction is unreasonably high, thereby reducing the effectiveness to 

fulfil the desire. In [14] it is reported how this model can be used as a basis for an 

ambient agent performing model-based reasoning and supporting addictive persons in 

order to avoid temptations. 
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