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Abstract. This paper introduces a neurologically inspired computational model 
for the emergence of group decisions. The model combines an individual 
decision making model based on Damasio’s Somatic Marker Hypothesis with 
mutual effects of group members on each other via mirroring of emotions and 
intentions. The obtained model shows how this combination of assumed neural 
mechanisms can form an adequate basis for the emergence of common group 
decisions, while, in addition, there is a feeling of wellness with these common 
decisions amongst the group members. 

1   Introduction 

To express the impossibility of a task, sometimes the expression ‘like managing a 
herd of cats’ is used, for example, in relation to managing a group of researchers. This 
is meant to indicate that no single direction or decision will come out of such a group, 
no matter how hard it is tried. As an alternative, sometimes a reference is made to 
‘riding a garden-cart with frogs’. It seems that such a lack of coherence-directed 
tendency in a group is considered as something exceptional, a kind of surprising, and 
in a way unfair. However, as each group member is an autonomous agent with his or 
her own neurological structures, patterns and states, carrying for example, their own 
emotions, desires, preferences, and intentions, it would be more reasonable to expect 
that the surprise concerns the opposite side: how is it possible that so often, groups – 
even those of researchers – develop coherent directions and decisions, and, moreover, 
why do the group members in some miraculous manner even seem to feel good with 
these? 
 This paper presents a neurologically inspired computational modelling approach 
for the emergence of group decisions. It incorporates the ideas of somatic marking as 
a basis for individual decision making, see [1], [3], [5], [6] and mirroring of emotions 
and intentions as a basis for mutual influences between group members, see [7], [11], 
[12], [14], [15], 16], [18]. The model shows how for many cases indeed, the 
combination of these two neural mechanisms is sufficient to obtain the emergence of 
common group decisions on the one hand, and, on the other hand, to achieve that the 



group members have a feeling of wellness with these decisions. 
 The paper is organised as follows. In Section 2 a brief introduction of the 
neurological ideas underlying the approach is presented: mirroring and somatic 
marking. Next, in Section 3 the computational model is described in detail. Section 4 
presents a number of simulation results. Section 5 addresses verification of the model 
against formally specified properties describing expected emerging patterns. Finally, 
Section 6 is a discussion. 

2   Somatic Marking and Mirroring 

Cognitive states of a person, such as sensory or other representations often induce 
emotions felt within this person, as described by neurologist Damasio, [4], [5]; for 
example: 
 

‘Even when we somewhat misuse the notion of feeling – as in “I feel I am right about this” or “I 
feel I cannot agree with you” – we are referring, at least vaguely, to the feeling that accompanies 
the idea of believing a certain fact or endorsing a certain view. This is because believing and 
endorsing cause a certain emotion to happen.’ ([5], p. 93) 

Damasio’s Somatic Marker Hypothesis; cf. [1], [3], [5], [6], is a theory on decision 
making which provides a central role to emotions felt. Within a given context, each 
represented decision option induces (via an emotional response) a feeling which is 
used to mark the option. For example, a strongly negative somatic marker linked to a 
particular option occurs as a strongly negative feeling for that option. Similarly, a 
positive somatic marker occurs as a positive feeling for that option. Damasio 
describes the use of somatic markers in the following way:  
 

‘the somatic marker (..) forces attention on the negative outcome to which a given action may lead, and 
functions as an automated alarm signal which says: beware of danger ahead if you choose the option 
which leads to this outcome. The signal may lead you to reject, immediately, the negative course of 
action and thus make you choose among other alternatives. (…)  When a positive somatic marker is 
juxtaposed instead, it becomes a beacon of incentive.’ ([3], pp. 173-174) 

 

Usually the Somatic Marker Hypothesis is applied to provide endorsements or 
valuations for options for a person’s actions, thus shaping a decision process. Somatic 
markers may be innate, but may also by adaptive, related to experiences: 
 

‘Somatic markers are thus acquired through experience, under the control of an internal preference 
system and under the influence of an external set of circumstances which include not only entities and 
events with which the organism must interact, but also social conventions and ethical rules. ([3], p. 
179) 

 

 
 

 In a social context, the idea of somatic marking can be combined with recent 
neurological findings on the mirroring function of certain neurons (e.g., [7], [11], 
[12], [14], [15], [16], [17], [18]. Mirror neurons are neurons which, in the context of 
the neural circuits in which they are embedded, show both a function to prepare for 
certain actions or bodily changes and a function to mirror states of other persons. 
They are active not only when a person intends to perform a specific action or body 
change, but also when the person observes somebody else intending or performing 
this action or body change. This includes expressing emotions in body states, such as 
facial expressions. For example, there is strong evidence that (already from an age of 
just 1 hour) sensing somebody else’s face expression leads (within about 300 



milliseconds) to preparing for and showing the same face expression ([10], p. 129-
130). The idea is that these neurons and the neural circuits in which they are 
embedded play an important role in social functioning and in (empathic) 
understanding of others; (e.g., [7], [11], [17], [18]). The discovery of mirror neurons 
is often considered a crucial step for the further development of the discipline of 
social cognition, comparable to the role the discovery of DNA has played for biology, 
as it provides a biological basis for many social phenomena; cf. [11]. Indeed, when 
states of other persons are mirrored by some of the person’s own states that at the 
same time are connected via neural circuits to states that are crucial for the own 
feelings and actions, then this provides an effective basic mechanism for how in a 
social context persons fundamentally affect each other’s actions and feelings. 

Given the general principles described above, the mirroring function relates to 
decision making in two different ways. In the first place mirroring of emotions 
indicates how emotions felt in different individuals about a certain considered 
decision option mutually affect each other, and, assuming a context of somatic 
marking, in this way affect how by individuals decision options are valuated in 
relation to how they feel about them. A second way in which a mirroring function 
relates to decision making is by applying it to the mirroring of intentions or action 
tendencies of individuals for the respective decision options. This may work when by 
verbal and/or nonverbal behaviour, individuals show in how far they tend to choose 
for a certain option. For example, in ([9], p.70) action tendencies are described as 
‘states of readiness to execute a given kind of action, [which] is defined by its end 
result aimed at or achieved’. In the computational model introduced below both of 
these (emotion and intention) mirroring effects are incorporated in the proposed 
model. 

3   The Computational Model for Group Decision Making 

In this section, based on the neurological principles of somatic marking and mirroring 
discussed in the previous section, the computational model for group decision making 
is introduced. To design such a model a choice has to be made for the grain-size: for 
example, it has to be decided in which level of detail the internal neurological 
processes of individuals are described. Such a choice depends on the aim of the 
model. In this case the aim was more to be able to simulate emerging patterns in 
groups of individuals, than to obtain a more detailed account of the intermediate 
neurological patterns and states involved. Therefore the choice was made to abstract 
to a certain extent from the latter types of intermediate processes. For example, the 
process of mirroring is described in an abstract manner by a direct causal relation 
from the emotional state shown by an individual to the emotional state shown by 
another individual, and the process of somatic marking is described by a direct causal 
relation from the emotional state shown for a certain option to the intention shown for 
this option (see Figure 1). These choices provide a model that is easier to handle for 
larger numbers of individuals. However, the model can easily be refined into a model 
that also incorporates more detailed intermediate internal processes, for example, 



based on recursive as-if body loops involving preparation and sensory neuron 
activations and the states of feeling the emotion, as shown in [13]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Abstract causal relations induced by mirroring and somatic marking by person A 
 
First for a given state S of a person (for example, an emotion or an intention) the 

impact due to the person’s mirroring function is described. This is done by a basic 
building block called the contagion strength for any particular state S between two 
individuals within a group. This contagion strength from person B to person A for 
state S is defined as follows: 

γSBA =    εSB ⋅ αSBA ⋅ δSA  (1) 

Here εSB is the personal characteristic expressiveness of the sender (person B) for S, 
δSA the personal characteristic openness of the receiver (person A) for S, and αSBA the 
interaction characteristic channel strength for S from sender B to receiver A. The 
expressiveness describes the strength of expression of given internal states by verbal 
and/or nonverbal behaviour (e.g., body states). The openness describes how strong 
stimuli from outside are propagated internally. The channel strength depends on the 
type of connection between the two persons, for example their closeness. 

To determine the level qSA(t) of an agent A for a specific state S the following 
model is used. First, the overall contagion strength γSA from the group towards agent A 
is calculated: 

γSA = ∑B≠A γSBA  (2) 

This value is used to determine the weighed impact qSA*(t)  of all the other agents 
upon state S of agent A:  

qSA*(t)  = ∑B≠A γSBA ⋅ qSB(t)  / γSA  (3) 

How much this external influence actually changes state S of the agent A is 
determined by two additional personal characteristics of the agent, namely the 
tendency ηSA to absorb or to amplify the level of a state and the bias βSA towards 
positive or negative impact for the value of the state. The model to update the value of 
qSA(t) over time is then expressed as follows: 

A’s emotion state 
for option O 

A’s intention state  
for option O 

emotion states of  
other group members 

for option O 
 

intention states of  
other group members 

for option O 
 

A’s somatic 
marking 
for option O 

A’s mirroring 
of emotion 
for option O 

A’s mirroring 
of intention 
for option O 



qSA(t + ∆t) = qSA(t) + γSA ·[ηSA·[βSA·(1 - (1-qSA*(t))·(1-qSA(t))) + (1 - βSA)·qSA*(t)·qSA(t) ] 
+  (1 - ηSA)·qSA*(t) - qSA(t) ] ∆t   

(4) 

Here the new value of the state is the old value, plus the change of the value based on 
the contagion. This change is defined as the multiplication of the contagion strength 
times a factor for the amplification of information plus a factor for the absorption of 
information. The absorption part (after 1 - ηSA) simply considers the difference 
between the incoming contagion and the current level for S. The amplification part 
(afterηSA) depends on the tendency or bias of the agent towards more positive (part of 
equation multiplied by βSA) or negative (part of equation multiplied by 1 - βSA) level 
for S. Table 1 summarizes the most important parameters and state variables within 
the model (note that the last two parameters will be explained below). 

Table 1. Parameters and state variables 
 

qSA(t) level for state S of agent A at time t 
εSA extent to which agent A expresses state S 
δSA extent to which agent A is open to state S 
ηSA tendency of agent A to absorb or amplify state S 
βSA positive or negative bias of agent A on state S 
αSBA channel strenght for state S from sender B to receiver A 
γSBA contagion strength for S from sender B to receiver A 
ωOIA weigth for group intention impact on agent A ‘s intention for O 
ωOEA weigth for own emotion impact on agent A ‘s intention for O 

 
The abstract model for mirroring described above applies to both emotion and 

intention states S or an option O, but does not describe any interplay between them 
yet. Taking the Somatic Marker Hypothesis on decision making as a point of 
departure, not only intentions of others, but also one’s own emotions affect one’s own 
intentions. To incorporate such an interaction, the basic model is extended as follows: 
to update qSA(t)  for an intention state S relating to an option O, both the intention 
states of others for O and the qS'A(t)  values for the emotion state S' for O are taken into 
account. These intention and emotion states S and S' for option O are denoted by OI 
and OE, respectively: 
 

Level of emotion for option O of person A:  qOEA(t) 
Level of intention indication for O of person A:  qOIA(t) 

 

The combination of the own (positive) emotion level and the rest of the group’s 
aggregated intention is made by a weighted average of the two: 
 

qOIA**(t)   = (ωOIA/ωOA) qOIA*(t)   + (ωOEA/ωOA) qOEA(t)  
γOIA* = ω γOIA 

(5) 
 

where ωOIA and ωOEA  are the weights for the contributions of the group intention 
impact (by mirroring) and the own emotion impact (by somatic marking) on the 
intention of A for O, respectively, and ωOA = ωOIA + ωOEA. Then the model for the 
intention and emotion contagion based on mirroring and somatic marking becomes: 



 

qOEA(t + ∆t) = qOEA(t) + γOEA[ηOEA(βOEA (1 - (1-qOEA*(t))(1-qOEA(t))) +  
       (1-βOEA) qOEA*(t)  qOEA(t)) + (1 - ηOEA) qOEA*(t)  - qOEA(t)  ] ⋅ ∆t  

(6) 

qOIA(t + ∆t) = qOIA(t) + γOIA* [ηOIA (βOIA (1 - (1-qOIA**(t))(1-qOIA(t))) +  
      (1-βOIA) qOIA**(t)  qOIA(t)) + (1 - ηOIA) qOIA**(t)  - qOIA (t)] ⋅ ∆t  (7) 

4   Simulation Results 

The model has been studied in several scenarios in order to examine whether the 
proposed approach indeed exhibits the patterns that can be expected from literature. 
The investigated domain consists of a group of four agents who have to make a choice 
between four different options: A, B, C or D. The model has been implemented in 
Matlab by constructing three different scenarios which are characterized by different 
relationships (i.e., channel strength) between the agents. The scenarios used, involve 
two more specific types of agents: leaders and followers. Some agents have strong 
leadership abilities while others play a more timid role within the group. The general 
characteristics of leaders and followers as they were used in the experiments, which 
can be manifested differently within all agents, can be found in Table 2.  
 

Table 2. Parameters and state variables for leaders and followers 
 

 Leader A Follower B 
emotion level qOEA high for particular O -  

intention level qOIA high for particular O -  
expressivity εSA  high εSB  low 

channel strength αSAB high αSAB high 
αSBA low αSBA low 

 
The different scenarios are depicted in Figure 2. Scenario 1 consists of a group of 
agents in which agent1 has strong leadership abilities and high channel strengths with 
all other agents. His initial levels of emotion and intention for option A, are very high. 
Scenario 2 depicts a situation where there are two agents with leadership abilities in 
the group, agent1 and agent4. Agent1 has strong channel strength to agent2, while 
agent4 has a strong connection to agent3. Agent1 has an initial state of high (positive) 
emotion and intention for option A, while agent4 has strong emotion and intention 
states for option D. Agent2 and agent3 have show no strong intentions and emotions 
for any of the options in their initial emotion and intention states. In Scenario 3 there 
are no evident leaders. Instead, all agents have moderate channel strengths with each 
other. A majority of the agents (agent3 and agent4) prefers option C, i.e., initially they 
have high intention and emotions states for option C. For both scenarios two variants 
have been created, one with similar agent characteristics within the group (besides the 
difference between leader and follower characteristics), and the second with a greater 
variety of agent personalities. In this section, only the main results using the greater 
variety in agent characteristics are shown for the sake of brevity. For the formal 
verification (Section 6) both have been used. 



Fig. 2. Scenarios for the presented simulation experiments 

The results of scenario 1 clearly show how one influential leader can influence the 
emotions and intention in a group. This is shown in the left graph of Figure 3, here the 
z-axis shows the value for the respective states, and the x-and y-axes represent time 
and the various agents. The emotion and intention of the leader (in this case agent1) 
spread through the network of agents, while the emotions and intentions of other 
agents hardly spread. Consequently, the emotions and intentions for option A, which 
is the preferred option of the leader, develop to be high in all agents. As can be seen 
in the figure, there are small differences between the developments of emotions and 
intentions of the agents. This is because they have different personality 
characteristics, which are reflected in the settings for the scenario1

In scenario 2 (as shown in the right graph of Figure 3), the leader has somewhat 

. Depending on 
their openness, agents are more or less influenced by the states of others. Those 
agents with low openness (such as agent4) are hardly influenced by intentions and 
emotions of others. 

                                                 
1 A full description of the characteristics and different parameter setting of the agents can be 

found in Appendix A: http://www.cs.vu.nl/~wai/Papers/group_decisions_appendix1.pdf 

scenario 1 scenario 2 scenario 3 

   

Fig. 3. Simulation results for scenario 1 (left) and scenario 2 (right) 

 



positive emotions about option C as well, which explains the small but increasing 
spread of emotions (and after a while also intentions) concerning option C through the 
social network. Even though agent3 and agent2 both have a moderate intention for 
option B, their only strong channel strength is with each other, causing only some 
contagion between the two of them. Their intention does not spread because of a low 
expressive nature and low amplification rate of both agents. The patterns found in the 
simulation of scenario 2 are similar to the ones of scenario 1, with the addition that 
both leaders highly dominate the spread of the emotions and intentions. The figure 
shows that the emotions and intentions of agent2 turn out to depend highly on the 
emotions and intentions of agent1, whereas the emotions and intentions of agent3 
highly depend on those of agent4. As can be seen in the figure, any preferences for 
option D and C by agent2 and agent3 quickly grow silent. 

Scenario 3 shows how a group converges to the same high emotions and 
intentions for an option when there is no authority. In general, the graphs show that 
when there is no clear leadership, the majority determines the option with highest 
emotion and intentions in all agents. Option C, initially preferred by agent4 and 
agent3, eventually is the preferred option for all. However, the emotions and 
intentions for option A also spread and increase, though to a lesser extent. This is due 
to the fact that agent1 has strong feelings and intentions for option A and a high 
amplification level for these states. Furthermore, he has a significant channel strength 
with agent3, explaining why agent3 has the most increasing emotions and intentions 
for option A. However, the majority has the most important vote in this scenario.  

Furthermore, some general statements can be made about the behaviour of the 
model. In case a leader has high emotions but low intentions for a particular option, 

Fig. 4. Simulation results for scenario 3 

 



both the intentions and emotions of all followers will increase for that option. On the 
other hand, if a leader has high intentions for a particular option, but not high 
emotions for that option, this intention will not spread to other agents.  

5   Mathematical Analysis of Equilibria 

During simulations it turns out that eventually equilibria are reached: all variables 
approximate values for which no change occurs anymore. Such equilibrium values 
can also be determined by mathematical analysis of the differential equations for the 
model: 

dqOEA(t)/dt = γOEA[ηOEA(βOEA (1 - (1-qOEA*(t))(1-qOEA(t))) +  
       (1-βOEA) qOEA*(t)  qOEA(t)) + (1 - ηOEA) qOEA*(t)  - qOEA(t)  ] ⋅ ∆t (8) 

dqOIA(t)/dt = γOIA* [ηOIA (βOIA (1 - (1-qOIA**(t))(1-qOIA(t))) +  
      (1-βOIA) qOIA**(t)  qOIA(t)) + (1 - ηOIA) qOIA**(t)  - qOIA (t)] ⋅ ∆t (9) 

 

Putting dqOEA(t)/dt = 0  and dqOIA(t)/dt  = 0 and assuming γOEA and γOIA*  nonzero, 
provides the following equilibrium equations for each agent A. 
 

  ηOEA(βOEA (1-(1-qOEA*)(1-qOEA)) + (1-βOEA) qOEA* qOEA) + (1 - ηOEA) qOEA* - qOEA  = 0  (10) 
  ηOIA (βOIA (1-(1-qOIA**)(1-qOIA)) +  (1-βOIA) qOIA** qOIA) + (1 - ηOIA) qOIA** - qOIA  = 0 (11) 
 

For given values of the parameters ηOEA, βOEA, ηOIA, and βOIA , these equations may be 
solved analytically or by standard numerical approximation procedures. Moreover, by 
considering when dqOEA(t)/dt > 0   or dqOEA(t)/dt < 0  one can find out when qOEA(t) is 
strictly increasing and when strictly decreasing, and similarly for qOIA(t). For example, 
for equation (2), one of the cases considered is the following. 
 

Case ηOIA = 1 and βOIA = 1 
For this case, equation (2) reduces to (1-(1-qOIA**)(1-qOIA))  - qOIA = 0. This can easily be 
rewritten via (1- qOIA ) -(1-qOIA**)(1-qOIA)  = 0  into qOIA**(1-qOIA)  = 0. From this, it can be 
concluded that equilibrium values satisfy qOIA**= 0  or qOIA = 1, and qOIA is never 
strictly decreasing, and is strictly increasing when qOIA** > 0  and  qOIA < 1.  Now the 
condition qOIA** = 0  is equivalent to 
 

 (ωOIA/ωOA) qOIA*  + (ωOEA/ωOA) qOEA = 0  ⇔  
 qOIA*  = 0  if  ωOIA  > 0 and qOEA = 0  if  ωOEA  > 0 

 

where qOIA*  = 0  is equivalent to ∑B≠A γOIBA ⋅ qOIB / γOIA = 0  ⇔   qOIB = 0  for all  B≠A  with 
γOIBA > 0. Assuming both ωOIA and ωOEA nonzero, this results in the following: 
 

equilibrium:   qOIA = 1  or  qOIA < 1 and qOEA = 0 and  qOIB = 0  for all  B≠A  with γOIBA > 0 
strictly increasing:   qOIA < 1   and   qOEA > 0 or qOIB > 0  for some  B≠A  with γOIBA > 0 
 

For a number of cases such results have been found, as summarised in Table 3. This 
table considers any agent A in the group. Suppose A is the agent in the group with 
highest qOEA, i.e., qOEB ≤ qOEA for all B≠ A.  This implies that  qOEA*  = ∑B≠A γOEBA ⋅ qOEB / 
γOEA  ≤  ∑B≠A γOEBA ⋅ qOEA / γOEA  =  qOEA  ∑B≠A γOEBA / γOEA =  qOEA. So in this case always qOEA*  
≤  qOEA . Note that when qOEB < qOEA for some B≠ A with γOEBA > 0,  then qOEA* = ∑B≠A 

γOEBA ⋅ qOEB / γOEA  <  ∑B≠A γOEBA ⋅ qOEA / γOEA  =  qOEA  ∑B≠A γOEBA ⋅ / γOEA =  qOEA. Therefore 
qOEA* = qOEA  implies qOEB  = qOEA for all B ≠ A with γOEBA > 0.  Similarly, when A has the 
lowest qOEA  of the group, then always qOEA*  ≥  qOEA and again qOEA* = qOEA  implies 



qOEB = qOEA for all B ≠ A with γOEBA > 0. This implies, for example, for ηOEA = 1 and βOEA = 0.5, 
assuming nonzero γOEBA , that always for each option the members’ emotion levels for 
option O will converge  to one value in the group (everybody will feel the same about 
option O). 

Table 3.  Equilibria cases for an agent A with both ωOEA  > 0, ωOIA  > 0, and γOEBA > 0 for all B 

6   Verifying Properties Specifying Emerging Patterns  

This section addresses the analysis of the group decision making model by 
specification and verification of properties expressing dynamic patterns that emerge. 
The purpose of this type of verification is to check whether the model behaves as it 
should, by automatically verifying such properties against the simulation traces for 
the various scenarios. In this way the modeller can easily detect inappropriate 
behaviours and locate sources of errors in the model. A typical example of a property 
that may be checked, is whether no unexpected situations occur, such as a variable 
running out of its bounds (e.g., qA(t) > 1, for some time point  t and agent A), or 
whether eventually an equilibrium value is reached, but also more detailed expected 
properties of the model such as compliance to the theories found in literature.  

A number of dynamic properties have been identified, formalized in the Temporal 
Trace Language (TTL), cf. [2] and automatically checked. The TTL software 
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environment includes a dedicated editor supporting specification of dynamic 
properties to obtain a formally represented temporal predicate logical language TTL 
formula. In addition, an automated checker is included that takes such a formula and a 
set of traces as input, and verifies automatically whether the formula holds for the 
traces. The language TTL is built on atoms referring to states of the world, time points 
and traces, i.e. trajectories of states over time. In addition, dynamic properties are 
temporal predicate logic statements that can be formulated with respect to traces 
based on a state ontology.  

Below, a number of the dynamic properties that were identified for the group 
decision making model are introduced, both in semi-formal and in informal notation 
(where state(γ, t) |= p denotes that p holds in trace γ at time t). The first property counts 
the number of subgroups that are present. Here, a subgroup is defined as a group of 
agents having the same highest intention. Each agent has 4 intention values (namely 
one for each of the four options that exist), therefore the number of subgroups that can 
emerge are always: 1, 2, 3 or 4 subgroups. 
 

P1 –number of subgroups 
The number of subgroups in a trace γ is the number of options for which there exists at least 
one agent that has an intention for this option as its highest valued intention.  
 

P1_number_of_subgroups(γ:TRACE) ≡  sum(I:INTENTION, case(highest_intention(γ, I), 1, 0) 
where 

highest_intention(γ:TRACE, I:INTENTION) ≡ 
∃A:AGENT     [∀R1:REAL      state(γ, te) |= has_value(A, I, R1)  

               ⇒ ∀I2:INTENTION≠I, ∀R2:REAL   [state(γ, te) |= has_value(A, I2, R2) ⇒ R2 < R1]]  
 

In this property, the expression case(p, 1, 0) in TTL functions such that if property p 
holds it is evaluated to the second argument (1 in this example), and to the third 
argument (0 in this example) if the property does not hold. The sum operator simply 
adds these over the number of elements in the sort over which the sum is calculated 
(the intentions in this case). Furthermore, when tb or te are used in the property, they 
denote the begin or end time of the simulation, whereby in te an equilibrium is often 
reached. Property P1 can be used to count the number of subgroups that emerge. A 
subgroup is defined as a group of agents that each have the same intention as their 
intention with highest value. This property was checked on multiple traces that each 
belong to one of the three scenario’s discussed in the simulation results section. For 
the traces for both variants of scenario 1: , a single subgroup was found, for scenario 
2:  two subgroups were found, and for scenario 3, a single subgroup was found, which 
is precisely according to the expectations. 

The second property counts the number of agents in each of the subgroups, using a 
similar construct. 
 

P2– subgroup size 
The number of agents in a subgroup for intention I is the number of agents that have this 
intention as their highest intention. 
P2_subgroup_size(γ:TRACE, I:INTENTION) ≡  sum(A:AGENT, case(highest_intention_for(γ, I, A), 1, 0)) 
where 

highest_intention_for(γ:TRACE, I:INTENTION, A:AGENT) ≡ 
∀R1:REAL    [state(γ, te) |= has_level(A, I, R1) 

         ⇒ ∀I2:OPTION≠I, ∀R2:REAL [state(γ, te) |= has_level(A, I2, R2) ⇒ R2 < R1]]  
 



In the traces for scenario1 the size of the single subgroup that occurred was 4 agents. 
For scenario 2 two subgroups of 2 agents were found. Finally, in scenario 3 only a 
single subgroup combining 4 agents has been found. These findings are correct; they 
indeed correspond to the simulation results. 

The final property, P3, expresses that an agent is a leader in case its intention values 
have changed the least over the whole simulation trace, as seen from his initial 
intention values and compared to the other agents (thereby assuming that these agents 
moved towards the intention of the leader that managed to convince them of this 
intention). 
 

P3–leader 
An agent is considered a leader in a trace if the number of intentions for which it has the lowest 
change is at least as high as all other agents. 
 

P3_leader (γ:TRACE, A:AGENT) ≡ 
∀A2:AGENT ≠A    

sum(I:INTENTION, case(leader_for_intention(γ, A, I),1,0)) ≥ 
sum(I:INTENTION, case(leader_for_intention(γ, A2, I),1,0)) 

where 
leader_for_intention(M:TRACE, A:AGENT, I:INTENTION) ≡ 
∀R1, R2: REAL    [ [state(γ, tb) |= has_value(A,I, R1) &  state(γ, te) |= has_value(A, I, R2) ] 

     ⇒    ∀R3, R4: REAL, ∀A2:AGENT ≠A 
            [state(γ, tb) |= has_value (A2, I, R4) & state(γ, te) |= has_value (A2, I, R3) 
               ⇒ |R2-R1|< |R3-R4| ]] 
 

Using this definition, only agent 1 qualifies as a leader in scenario 1. For scenario 2 
only agent 4 is a leader. Finally, in scenario 3 both agent 1 and agent 3 are found to be 
leaders as they both have equal intentions for which they change the least. 

7   Discussion 

In this paper, an approach has been presented, to model the emergence of group 
decisions. The current model has been based on the neurological concept of mirroring 
(see e.g. [12], [18]) in combination with the Somatic Marker Hypothesis of Damasio 
(cf. [1], [3], [5], [6]). An existing model of emotion contagion (cf. [8]) was taken as 
inspiration, and has been generalised to contagion of both emotions and intentions, 
and extended with interaction between the two, in the form of influences of emotions 
upon intentions. Several scenarios have been simulated by the model to investigate 
the emerging patterns, and also to look at leadership of agents within groups. The 
results of these simulation experiments show patterns as desired and expected. In 
order to be able to make this claim more solid, both a mathematical analysis as well as 
a formal verification of the simulation traces have been performed, showing that the 
model indeed behaves properly. 

For future work, an interesting element would be to scale up the simulations and 
investigate the behaviour of agents in larger scale simulations. Furthermore, 
modelling a more detailed neurological model is also part of future work, thereby 
defining an abstraction relation mapping between this detailed level model and the 
current model. 
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