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Abstract* 

Two types of modelling approaches exist to reading an observed person’s emotions: with or without making use of 

the observing person’s own emotions. This paper focuses on an integrated approach that combines both types of 

approaches in an adaptive manner. The proposed models were inspired by recent advances in neurological context. 

Both a neural model and a more abstracted cognitive model are presented. In the first place emotion reading is 

modelled involving (preparatory) mirroring of body states of the observed person within the observing person. This 

involves a recursive body loop: a converging positive feedback loop based on reciprocal causation between 

preparations for body states and emotions felt. Here emotion reading involves the person’s own body states and 

emotions in reading somebody else’s emotions: first the same feeling is developed by mirroring, and after feeling the 

emotion, it is imputed to the other person. In the second place, as an extension an adaptive process is modelled based 

on Hebbian learning of a direct connection between a sensed stimulus concerning another agent’s body state (e.g., 

face expression) and an emotion imputation state. After this Hebbian learning process the emotion is imputed to the 

other agent before it is actually felt, or even without it is felt. Both the mirroring and Hebbian learning processes first 

have been modelled at a neural level, and next, in a more abstracted form at a cognitive level. By means of an 

interpretation mapping the paper shows the relation between the obtained cognitive model and the neurological 

model. In addition to specifications of both models and the interpretation mapping, simulation results are shown, and 

automated verification of relevant emerging properties is discussed. 

 

1  Introduction 

From an evolutionary perspective, mindreading (or having a Theory of Mind) in humans and 

some other kinds of animals has developed for a number of aspects, for example, intention, 

attention, emotion, knowing; e.g., (Baron-Cohen, 1995; Bogdan, 1997; Dennett, 1987; 

Goldman, 2006; Goldman and Spirada, 2004; Malle, Moses, and Baldwin, 2001). Two 

philosophical perspectives on having a Theory of Mind are Simulation Theory and Theory 

Theory; cf. (Goldman, 2006). In the first perspective it is assumed that mindreading takes place 

by using the facilities involving the person’s own cognitive states that are counterparts of the 

cognitive states attributed to the other person. For example, the state of feeling pain oneself is 

                                                                 
* Parts of this paper are based on work presented at the 8th IEEE/WIC/ACM International Conference on Intelligent Agent 

Technology (Memon and Treur, 2008), the 9th International Conference on Cognitive Modelling (Bosse, Memon, and Treur, 

2009a), the 31st Annual Conference of the Cognitive Science Society (Bosse, Memon, and Treur, 2009b), and the 12th 

International Conference on Principles of Practice in Multi-Agent Systems (Bosse, Memon, and Treur, 2009c). 
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used in the process to determine whether the other person has pain. The second perspective is 

based on reasoning using knowledge about relationships between cognitive states and observed 

behaviour. For example, in (Bosse, Memon, and Treur, 2007a, 2007b) mindreading concerning 

another person’s beliefs, desires and intentions was addressed from a Theory Theory 

perspective, and in (Memon and Treur, 2008) mindreading of emotions was addressed from a 

Simulation Theory perspective, where a person’s own emotions are involved in the process of 

reading the other person’s emotions.  

More and more neurological evidence supports the Simulation Theory perspective, in 

particular the recent discovery of mirror neurons: preparation neurons that are activated both 

when preparing for an action (including a change in body state) and when observing somebody 

else performing a similar action; e.g., (Rizzolatti and Sinigaglia, 2008; Pineda, 2009; Iacoboni, 

2008). However, work as described in (Pantic and Rothkrantz, 1997, 2000) shows the feasibility 

of automated approaches to emotion recognition where the person’s own emotions are not 

involved. This feasibility at least refers to the technical point of view, but leaves open the 

question of neurological plausibility.  

The current paper shows how both perspectives can co-occur, both from a technical and 

neurological perspective. A unified view on emotion reading is presented, where on the one 

hand mechanisms are available to perform emotion reading by simulation involving the person’s 

own emotions based on mirroring (in line with the Simulation Theory perspective), but on the 

other hand by Hebbian learning process a mechanism is developed where emotions are 

recognised without involving the person’s own emotions (resulting in a model part of which is 

in line with the Theory Theory perspective). This unified view is illustrated by both a neural and 

a more abstracted cognitive model for adaptive emotion reading, and by showing the mapping 

of the cognitive model onto the neural model. 

The two adaptive emotion reading models presented are based on three ingredients 

originating in the neurological area: a recursive body loop to generate emotional responses and 

feelings, the mirrorring function of preparation neurons, and Hebbian learning. By Damasio 

(1999, 2003) preparation neurons are attributed a crucial role in generating and feeling 

emotional responses. In particular, using a ‘body loop’ or ‘as if body loop’, a connection 

between such neurons and the feeling of emotions by sensing the person’s own body state is 

obtained; see (Damasio, 1999, 2003) or the formalisation presented in (Bosse, Jonker and Treur, 

2008). The concept of recursive body loop is used as one of the points of departure. This causal 

cycle through preparation and feeling states is triggered by a stimulus and after an indefinite 

number of rounds ends up in an equilibrium for both states. By Hebbian learning an adaptive 

model for emotion reading has been obtained, which is able to develop a shortcut in emotion 

recognition. The Hebbian learning creates a direct connection from the stimulus (e.g., an 

observed facial expression) to the imputed emotion, bypassing the body loop with the person’s 

own emotional states. Some simulation results are discussed, and formally specified dynamic 

properties of adaptive and non-adaptive emotion reading are shown, and it is discussed how 

they were verified against simulation traces. 

Within AI and Cognitive Science models are often designed as cognitive level models. 

Currently the amount of neurological knowledge is growing fast. One apparent way to exploit 

these neurological resources computationally is by designing neural level models. One might 

even be led to a conclusion that it is better to only design models at a neurological level, and 

totally give up to model at a cognitive level. Within AI and Cognitive Science, it is more and 
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more recognised that models can be more ‘embodied’ to obtain their grounding in (physical or 

neural) reality. Models describing a person’s internal functioning as fully immersed in physical 

reality can be designed on the basis of modelling concepts that are appropriate to describe the 

relevant neural and biological concepts and their dynamics (e.g., Port and van Gelder, 1995). 

Such concepts can be directly used to specify a neural level model. However, in line with 

(Jonker, Treur, and Wijngaards, 2002), it is still possible to exploit such concepts and relations 

as discussed in neurological literature in a more abstracted form in a cognitive level model, 

using more abstract mental states. This is also in line with Bickle (1998, pp. 205-208), where he 

illustrates a similar perspective for the folk psychological account in relation to a 

neurobiological account of Hawkin and Kandel's (1984a,1984b) case. It is also possible to 

make models at both levels, and, in addition to specify precisely defined (reduction) relations 

between concepts used in a cognitive level model and concepts used in a neural level model. 

This paper shows how this can be done. Both cognitive level and neural level model for 

adaptive emotion reading are introduced, and by means of an interpretation mapping, a relation 

between these two models have been shown (e.g., Kim, 2005; Treur, 2010). 

 

Summarising, this paper addresses two main research questions: 

 

• How can emotion reading by a person be modelled taking the person’s own 

emotional states into account, and how can this be integrated in an adaptive manner 

with emotion reading without taking into account the person’s own emotional states? 

• How can state of the art neurological knowledge be exploited in modelling these 

emotion reading processes; how can they be modelled at a neural level and how in a 

more abstracted form at a cognitive level, and how do the obtained models at these 

two levels relate to each other? 
 

The first research question is the primary one. The second one is more a meta-question about 

modelling methods in the light of the large amount of neurological resources becoming 

available. 

The structure of this paper is as follows. First, in Section 2 the principles behind the 

approach are briefly reviewed. In Section 3 the neural level model for adaptive emotion reading 

is introduced. Some simulation results are shown in Section 4. Next, in Section 5 the cognitive 

level model is described. Some simulation results are shown in Section 6. In Section 7 it is 

discussed how automated verification of a number of relevant emerging properties was applied. 

Section 8 shows the mapping of the cognitive level model onto the neural level model. The 

paper is concluded with a discussion in Section 9. 

2.   Principles Behind the Approach to Adaptive Emotion Reading  

Three main ingredients of the neural model to generate emotional responses and feeling states 

for a given stimulus are:  

(1)  a recursive body loop (cf. Damasio, 1999, 2003)  

(2)  the notion of mirror neurons (cf. Rizzolatti and Sinigaglia, 2008; Pineda, 2009; Iacoboni, 

2008) and by the Simulation Theory perspective on mindreading (cf. Goldman, 2006).  
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(3)  a Hebbian learning principle for the adaptive mechanism incorporated in the model (cf. 

Hebb, 1949; Bi and Poo, 2001; Gerstner and Kistler, 2002; Wasserman, 1989). 

These ingredients are briefly discussed below. 

 

Recursive (as if) body loop 

The models presented in this paper exploit the idea of a recursive ‘body loop’ or ‘as if body 

loop’, inspired by Damasio (1999, 2003).  

 

‘The changes related to body state are achieved by one of two mechanisms. One involves 
what I call the ‘body loop’. It uses both humoral signals (chemical messages conveyed via 
the bloodstream) and neural signals (electrochemical messages conveyed via nerve 
pathways). As a result of both types of signal the body landscape is changed and is 
subsequently represented in somatosensory structures of the central nervous system, from 
the brain stem on up. The change in the representation of the body landscape can partly be 
achieved by another mechanism, which I call the ‘as if body loop’. In this alternate 
mechanism, the representation of body-related changes is created directly in sensory body 
maps, under the control of other neural sites, for instance, the prefrontal cortices. It is ‘as if’ 
the body had really been changed but it was not.’ (Damasio, 1999, p. 79-80) 

 

For a body loop this roughly proceeds according to the following causal chain: 

sensing a stimulus  →  sensory representation of a stimulus  →  preparation for  bodily response  → 

body state modification → sensing the body state  →  sensory representation of the body state  →  

feeling the emotion 

Alternatively, an ‘as if body loop’ uses a shortcut: 

preparation for  bodily response  →  sensory representation of the bodily response  

The sensory representation of a modified body state is considered as the basis for feeling the 

emotion: 

 

‘As for the internal state of the organism in which the emotion is taking place, it has 
available both the emotion as neural object (the activation pattern at the induction sites) and 
the sensing of the consequences of the activation, a feeling, provided the resulting 
collection of neural patterns becomes images in mind.’ (Damasio, 1999, p. 79). 

 

A main idea used in the models introduced here is that the body loop (or as if body loop) is 

extended to a recursive (as if) body loop by assuming that in turn the preparation of the bodily 

response is also affected by the state of feeling the emotion (cf. Damasio, 2003):  

 

‘The brain has a direct means to respond to the object as feelings unfold because the object at 

the origin is inside the body, rather than external to it. The brain can act directly on the very 

object it is perceiving. It can do so by modifying the state of the object, or by altering the 

transmission of signals from it. The object at the origin on the one hand, and the brain map of 

that object on the other, can influence each other in a sort of reverberative process that is not to 

be found, for example, in the perception of an external object.’ (…) 

   ‘In other words, feelings are not a passive perception or a flash in time, especially not in the 

case of feelings of joy and sorrow. For a while after an occasion of such feelings begins – for 

seconds or for minutes – there is a dynamic engagement of the body, almost certainly in a 

repeated fashion, and a subsequent dynamic variation of the perception. We perceive a series 

of transitions. We sense an interplay, a give and take.’ (Damasio, 2003, pp. 91-92) 
 

So, in addition to the causal chains described above, also a causal connection 
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feeling the emotion  →  preparation for  bodily response   

is assumed, which makes the two loops (body loop and as-if body loop) recursive.  

The bodily response and the feeling are assigned a level or gradation, expressed by a 

number, which is assumed dynamic. The causal cycle is modelled as a positive feedback loop, 

triggered by the stimulus and converging to a certain level of feeling and body state. Here in 

each round of the cycle the next body state has a level that is affected by both the level of the 

stimulus and of the feeling state, and the next level of the feeling is based on the level of the 

body state. This implies a pattern of gradual generation (and extinction) of an emotion upon a 

stimulus. 

 

Mirroring 

When as a stimulus another person’s face is taken, via a recursive body loop, gradually higher 

and higher activation levels of the person’s own feeling state are generated. Indeed there is 

strong evidence that (already from an age of 1 hour) sensing somebody else’s facial expression 

leads (within about 300 milliseconds) to preparing for and showing the same facial expression 

(Goldman and Sripada, 2004, pp. 129-130). This has been further supported from the 

neurological side by the recent discovery of mirror neurons: preparation neurons with a 

mirroring function; cf. (Rizzolatti, Fogassi, and Gallese, 2001; Wohlschlager and Bekkering, 

2002; Kohler, Keysers, Umilta, Fogassi, Gallese, and Rizzolatti, 2002; Ferrari, Gallese, 

Rizzolatti and Sinigaglia, 2008; Pineda, 2009; Rizzolatti, and Fogassi, 2003; Rizzolatti, 2004; 

Rizzolatti and Craighero, 2004; Iacoboni, 2008). 

Not only experiments with animals but also experiments with humans have provided much 

information, for example, fMRI data from experiments, single cell recordings with epileptic 

patients, and analysis of patiernts with specific forms of brain damage. Also upon observing 

facial expression mirror neuron activity is reported, for example, in (Dapretto, Davies, Pfeifer, 

et al., 2006, p. 949) it is found: 

‘This fMRI study shows that children with Autism Spectrum Disorder have reduced activity in 

mirror neuron areas during imitation and observation of facial emotional expressions. Furthermore, 

activity in mirror neuron areas correlates with severity of disease in autistic children.’ 

Mirror neurons have their function due to the embedding in the neural circuits they are part of. 

These neural circuits involve connections and loops with different parts of the cortex (parts of 

frontal, temporal and parietal lobe), but also to other areas such as insula and limbic system.  

For example, Iacoboni (2005, p. 632) indicates:  

‘Mirror neurons have been found in the ventral premotor cortex (…) and in the rostral sector of the 

inferior parietal lobule (…). F5 and PF are anatomically interconnected (…); in addition, PF 

connects with the superior temporal sulcus (STS) (…). In the STS, there are higher-order visual 

neurons that respond to seeing the actions of others (…). Thus, in the macaque, there seems to be a 

circuitry composed of the STS, PF and F5 that codes the actions of others and seems to be able to 

map these actions onto the motor repertoire of the observer.’ 

Moreover, in (Carr , Iacoboni, Dubeau, Mazziotta, and Lenzi, 2003, p. 5498) it is stated:  

‘A recent fMRI study of the observation and imitation of facial emotional expressions has revealed 

a large-scale neural network that comprises the core circuitry for imitation (the mirror neuron 

system and the STS), the insula and the limbic system’ 
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Hebbian learning 

Hebbian learning is based on the principle that connected neurons that are frequently activated 

simultaneously strengthen their connecting synapse. The principle goes back to Hebb (1949), 

but has recently gained enhanced interest by more extensive empirical support (e.g.,  Bi and 

Poo, 2001), and more advanced mathematical  formulations (e.g., Gerstner and Kistler, 2002). 

In the models a variant of this principle has been adopted to realise a strengthened direct 

connection between sensory representation of stimulus and imputation. 

3  A Neural Model for Adaptive Emotion Reading 

 

In this section the neural model made by adopting the principles discussed in Section 2 is 

presented. The neural model was specified both in MatLab and in the hybrid dynamical 

modelling language LEADSTO (Bosse, Jonker, Meij, and Treur, 2007). Within this language, 

the temporal relation a →→ b denotes that when a state property a occurs, then after a certain 

time delay (which for each relation instance can be specified as any positive real number), state 

property b will occur. In LEADSTO, both logical and numerical calculations can be specified, 

and a dedicated software environment is available to support specification and simulation; for 

more details see (Bosse, Jonker, Meij, and Treur, 2007). 

 

3.1  The Neural Network Structure 

The neural model for adaptive emotion reading introduced here refers to activation states of 

(groups of) neurons and the body. An overall picture of the network structure of this model is 

shown in Figure 1. In the network structure depicted in Figure 1 each node stands for a group of 

one or more neurons, or for an effector, sensor or body state. The nodes can be interpreted as 

explained in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Network structure of the neural model for adaptive emotion reading 

 

In the neural activation state of RN(s, b), the experienced emotion b is related to the stimulus 

s, which triggers the emotion generation process. Note that to the extent that this neuron is 

related to SN(s), it may be considered a basis for awareness of what causes the feeling b, which 
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may relate to what by Damasio (1999) is called a state of conscious feeling. This state that 

relates an emotion felt b to any triggering stimulus s can play an important role in the conscious 

attribution of the feeling to any stimulus s. 

 

node nr denoted by description 

0 s stimulus; for example, another agent’s body state b'  

1 SS(s) sensor state for stimulus s 

2 SN(s) sensory representation neuron for s 

3 PN(b) preparation neuron for the person’s own body state  b 

4 ES(b) effector state for the person’s own body state b 

5 BS(b) person’s own body state b 

6 SS(b) sensor state for the person’s own body state b 

7 SN(b) sensory representation neuron for the person’s own body state b 

8 FN(b) neuron for feeling state b 

9 RN(s, b) neuron representing that s induces feeling b 

 

Table 1:  Overview of the nodes involved 

 

The neural model for emotion reading has been formally specified in LEADSTO. To this end 

the connections with their strengths were specified by: 

 

connectedto(s, sensor_state(S), 1) 

connectedto(sensor_state(S), SN(S), 1) 

connectedto(FN(B), SN(S),  PN(B), 0.5, 0.5)   

connectedto(PN(B), effector_state(B), 1)   

connectedto(effector_state(B), body_state(B), 1)   

connectedto(body_state(B), sensor_state(B), 1)   

connectedto(sensor_state(B), SN(B), 1)   

connectedto(SN(B), FN(B), 1)     

connectedto(FN(B), SN(S),  RN(S, B), α, β) 

 

3.2  Functioning of the Neural Model 

According to the Simulation Theory perspective, an agent model for emotion reading should 

essentially be based on a neural model to generate the person’s own emotions as induced by any 

stimulus s. The neural agent model introduced above has been specialised in a quite 

straightforward manner to enable emotion reading. The main step is that the stimulus s that 

triggers the emotional process, which until now was left open, is instantiated with the body state 

b' of another agent (for example a facial expression of another agent). Within the network in 

Figure 1 this leads (via activation of the sensory representation state SN(b')) to activation of the 

preparation state PN(b) where b is the person’s own body state corresponding to the other 

agent’s body state b'. This pattern shows how this preparation state PN(b) functions as a mirror 

neuron.  
 

State variables and dynamic relations 

To formally specify the functioning of the neural model, the mathematical concepts listed in 

Table 2 are used. 
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concept description 

N set of nodes (as listed in Table 1);  

variables indicating elements of this set are i, j, k 

N' N\{0} the set of node numbers except the node for the stimulus s 

wij(t) strength of the connection from node i to node j at time t;  

this is taken 0 when no connection exists or when i=j 

yi(t) activation level of node i at time t 

neti(t) net input to node i at time t 

g function to determine activation level from net input  

γ change rate for activation level 

η learning rate for weights 

Table 2:  Mathematical concepts used 

 

 The function g can take different forms, varying from the identity function g(v) = v for the 

linear case, to a discontinuous threshold (indicated by β) step function with g(v) = 0 for v<β 

and g(v)=1 for v≥β, or a continuous logistic threshold function based on 
�

����σ���τ�
  with 

steepness σ and threshold τ. For the connections between nodes of which at least one is not a 

neuron the connections have been made simple: weights 1 and g the identity function; so w12 = 

w34 = w45 = w56 = w67  = 1. 

The activation levels are determined for step size ∆t for all i ∈ N'  as follows: 
 

 neti(t) = Σj∈N  wji(t) yj(t) 

  ∆yi(t) = γ (g(neti(t)) - yi(t)) ∆t 
 

Note that for step size ∆t = 1 and change rate γ = 1, the latter difference equation can be 

rewritten to 
 

 yi(t+1) = g(neti(t)) 
 

which is a wellknown formula in the literature addressing simulation with neural models.  

The generic propagation rules for functioning of the neural model were specified in 

LEADSTO format as (corresponding to general neurological laws): 
 

connectedto(X, Y, α)  &  activated(X, V) →→  activated(Y, α* V) 

connectedto(X1, X2, Y, α, β)  &  activated(X1, V1) &  activated(X2, V2)  →→  activated(Y, α* V1+β *V2) 
 

These temporal relations specify that propagation of activation levels takes place by multiplying 

them by the strength of the connection; for input from multiple connections they are added.  

 

3.3  Hebbian Learning within the Neural Model 

As a next step, the neural model for emotion reading is extended by a facility to strengthen the 

direct connection between the neuron SN(s) for the sensory representation of the stimulus (the 

other agent’s face expression) and the neuron  RN(s, f). A strengthening of this connection over 

time creates a different emotion reading process that in principle can bypass the generation of 

the person’s own feeling.  
 

 

Hebbian learning rule 

The learning rule to achieve such an adaptation process is based on the Hebbian learning 

principle that connected neurons that are frequently activated simultaneously strengthen their 
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connecting synapse e.g., (Hebb, 1949; Bi and Poo, 2001; Gerstner and Kistler, 2002; 

Wasserman, 1989). The change in strength for the connection wij between nodes i, j ∈ N is 

determined (for step size ∆t) as follows; see also (Gerstner and Kistler, 2002, p. 406): 
 

   ∆wij(t) = (η yi(t)yj(t)(1 – wij(t)) - ζ wij(t)) ∆t 
 

Here η is the learning rate, and ζ the extinction rate. Note that this Hebbian learning rule is 

applied only to those pairs of nodes i, j ∈ N for which a connection already exists. In 

LEADSTO this rule was specified as: 
 

connectedto(X1, X2, Y, W, β)  &  activated(X1, V1) &  activated(Y, V2)   

→→  connectedto(X1, X2, Y, W+ηV1V2(1-W) - ζW, β)   

 

By enabling the learning of a strengthened connection between sensory representation SN(s) 

of a stimulus and emotion imputation RN(s, f), this neural model realizes that (after a learning 

phase) a person can perform emotion reading without taking the his or her own emotions into 

account. Part of this learnt model fits better in the Theory Theory perspective, than in the 

Simulation Theory perspective. A more extensive discussion about this debate is presented in 

Section 9. 

In Appendix A an equilibrium analysis for the neural model can be found. 

 

4.   Example Simulations for the Neural Model  

Based on the neural model specifications, a number of simulation traces have been generated, 

both within the LEADSTO environment and in MatLab. Time delays within the temporal 

LEADSTO relations were taken 1 time unit. Section 4.1 presents some simulation traces for the 

nonadaptive case, and Section 4.2 presents some traces for the adaptive case.  

 

4.1  Nonadaptive example simulations of the neural model 

An example simulation trace for the nonadaptive case is shown in Figure 2. The graphs show 

the values of the various activation levels (on the y-axis) over time (on the x-axis). Here it is 

shown that the recursive body loop results in an approximation of convergent activation levels 

for the states that relate to the emotion and the body state, among others. A simulation trace for 

emotion reading is obtained by instantiating stimulus S with the other person’s face expression 

(indicated by s = othersface(f)), and instantiating body state B with the own face expression 

(indicated by f). Next, this trace is extended with a communication part, based on additional 

connections (see Figure 3): 
 

connectedto(RN(S, B), PN(say(your emotion is B)), 1) 

connectedto(PN(say(your emotion is B)), effector_state(say(your emotion is B)), 1) 
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Figure 2:  Example simulation trace for the neural model: nonadaptive case. These graphs show the 

values of the various activation levels (on the y-axis) from stimulus, sensing the stimulus, preparation for 

body state to sensing the body state over time (on the x-axis) 
 

 

 

 

 

 

activated(RN(s, f), X) 

       activated(PN(say(your emotion is f)), X) 

   activated(effector_state(say(your emotion is f)), X) 

body_state(f, X) 

activated(FN(f), X) 

activated(RN(s, f), X) 

activated(SN(f), X) 

activated(sensor_state(f), X) 

activated(effector_state(f), X) 

activated(PN(f), X) 

activated(SN(s), 1) 

activated(sensor_state(s), 1) 

activated(s, 1) 
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Figure 3:  Example simulation trace for neural model with communication  

These graphs show the values of the activation levels (on the y-axis) for imputation of the feeling, 

preparation of the communication and actual communication over time (on the x-axis) 

 

Note that at time point 3 the neuron RN(s, f) has activation level 0.5, which is not considered high 

enough to count as an indication of imputation. However, after time point 9 it gets an activation 

level of 0.75. This is considered an appropriate indication for an imputation.  

The numerical software environment Matlab has also been used to obtain simulation traces 

for the neural model described above. An example simulation trace that results from this neural 

model with the function g the identity function is shown in Figure 4. Here, time is on the 

horizontal axis, and the activation levels of three of the neurons SN(s), FN(f), and RN(s,f) are 

shown on the vertical axis. As shown in this picture, the sensory representation of a certain 

stimulus s quickly results in a feeling state f, and a representation that s induces f.  

 

Figure 4:  Example MatLab simulation for an agent performing non-adaptive emotion reading  

 SN(s) 

 FN(f) 

 RN(s, f) 

activated(RN(s, f), X) 

       activated(PN(say(your emotion is f)), X) 

   activated(effector_state(say(your emotion is f)), X) 
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When the stimulus s is not present anymore, the activations of FN(f) and RN(s, f) quickly 

decrease to 0. The weight factors taken are: w23 = w83 = w89 = 0.1,  w78 = 0.5 and w29 = 0. 

Moreover, γ = 1, and a logistic threshold function was used with threshold 0.1 and steepness 40. 

 

4.2  Adaptive example simulations of the neural model 

Also a number of simulations have been performed for the neural agent model performing 

adaptive emotion reading; for an example, see Figure 5. As seen in this figure, the strength of 

the connection between SN(s) and RN(s, f) (indicated by b which is in fact w29) is initially 0 (i.e., 

initially, when observing the other agent’s face, the agent does not impute feeling to this). 

However, during an adaptation phase of two trials, the connection strength goes up as soon as 

the agent imputes feeling f to the target stimulus s (the observation of the other agent’s face), in 

accordance with the temporal relationship described above.  

Figure 5:  Example simulation for the neural model performing adaptive emotion reading 

 

Note that, as in Figures 3 and 4, the activation values of other neurons gradually increase as the 

agent observes the stimulus, following the recursive body loop discussed. These values sharply 

decrease as the agent stops observing the stimulus as shown in Figures 4 and 5, e.g. from time 

point 40 to 76, from time point 112 to 148, and so on. Note that at these time points the strength 

of the connection between SN(s) and RN(s, f) (indicated by b) remains stable. After the 

adaptation phase, and with the imputation sensitivity at high, the agent imputes feeling f to the 

target stimulus directly after occurrence of the sensory representation of the stimulus, as shown 

in the third trial in Figure 5. Note here that even though the agent has adapted to impute feeling f 

to the target directly after the stimulus, the other state property values continue to increase in the 

third trial as the agent receives the stimulus; this is because the adaptation phase creates a 

connection between the sensory representation of the stimulus and emotion imputation without 

eliminating the recursive loop altogether.  

 SN(s) 

 FN(f) 

 RN(s, f) 

 b 
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The learning rate η used in the simulation shown in Figure 5 is 0.02, the extinction rate was 

put on 0. In Figure 6 a similar simulation is shown for a lower learning rate: 0.005. 

Figure 6:  Adaptive emotion reading of the neural model with lower learning rate 

 

5.  A Cognitive Model for Adaptive Emotion Reading 

The adaptive cognitive model to generate emotional responses and feeling states for a given 

stimulus was obtained by abstracting three main ingredients from neurological principles. More 

specifically, the following principles (also used as a basis for the neural model) as discussed in 

Section 2 were abstracted to a cognitive level:  

(1)  a recursive body loop for cognitive preparation states and feeling states (cf. Damasio, 

1999, 2003),  

(2)  a mirrorring function of cognitive preparation states as inspired by the notion of mirror 

neurons (cf. Rizzolatti and Sinigaglia, 2008; Pineda, 2009; Iacoboni, 2008) and by the 

Simulation Theory perspective on mindreading (cf. Goldman, 2006),  

(3)  a cognitive-level Hebbian learning principle for adaptivity in the cognitive model (cf. 

Hebb, 1949; Bi and Poo, 2001; Gerstner and Kistler, 2002; Wasserman, 1989).  

These ingredients are addressed at the cognitive level, respectively, in Section 5.1, 5.2, and 5.3. 

The description of the detailed cognitive model for emotion generation based on a recursive 

body loop is presented briefly in the sections below and specified in full in LEADSTO in 

Appendix B. 

 

5.1  Recursive Body Loop 

Figure 7 shows a graphical representation, where circles denote cognitive state properties and 

arrows denote temporal relationships. Here capitals are used for (assumed universally 

quantified) variables, and lower case letters for instances. In the figure it is assumed that b is a 

body state instance induced by stimulus instance s. The first two properties LP1 and LP2 

describe the sensing process, and are assumed to apply for all instances of the variable S. Note 

that states here are binary. 

LP1  Sensing a stimulus 

If  stimulus S occurs,  then a sensor state for S will occur. 

 SN(s) 

 FN(f) 

 RN(s, f) 

 b 
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LP2  Generating a sensory representation of a stimulus 

If  a sensor state for S occurs, then a sensory representation for S will occur. 
 

The third property LP3 only applies to a given specific stimulus instance s and a specific body 

state instance b. Here states have a certain level V: a real number in the interval [0, 1]. 
 

LP3  From sensory representation and emotion to preparation 

If  a sensory representation for s occurs   and  feeling b has level V,  

then  the preparation state for body state b will occur with level (1+V)/2. 

If  no sensory representation for s occurs   and feeling b has level V,  

then  preparation state for body state b will occur with level V/2. 
 

Here, it is assumed that the relative effects of both antecedents are the same. However, the 

formula (1+V)/2 can as well be replaced by the more generic formula w1+w2*V with weights w1 

and w2. Such a  variation also enables the modeller to distinguish different types of emotions 

(e.g., fear may develop faster than happiness). The properties LP4 to LP8 describe the general 

pattern of the body loop and are applicable to all instances of variable B.  
 

LP4  From preparation to body modification 

If  preparation state for body state B occurs with level V,  then  the body state will express B with level V. 
 

LP5  From body modification to modified body 

If  the body state is modified to express B with level V,  then the body state will have expression B with level V. 
 

LP6  Sensing a body state 

If  body state B with level V occurs,     then  body state B is sensed. 
 

LP7  Generating a sensory representation of a body state 

If  body state B of level V is sensed,      then  a sensory representation for body state B with level V will occur. 
 

LP8  From sensory representation of body state to feeling the emotion 

If  a sensory representation for body state B with level V occurs,   then body state B is felt with level V. 
 

 

Property LP9 describes the imputation and applies to all instances of variables S and B. 
 
 

LP9   Imputation 

If  a certain body state B is felt, with level ≥ th,   and  a sensory representation for S occurs,  

then  emotion B will imputed to S.  

Here, th is a (constant) threshold for imputation of emotion. In the simulations shown, th is assumed 0.95. 
 

In the imputation state, the experienced emotion B is related to the stimulus S, which triggers 

the emotion generation process.  
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7:  Cognitive model for adaptive emotion reading 
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Note that this state makes sense in general, for any type of stimulus S, as usually a person does 

not only feel an emotion, but also has an awareness of what causes an emotion; what by 

Damasio (1999) is called a state of conscious feeling also plays this role. This state that relates 

an emotion felt to a triggering stimulus plays an important role in the emotion reading process. 

A recursive as-if body loop has been achieved by replacing the temporal relations LP4, LP5, 

LP6, LP7 by the following relation: 
 

LP4*  From preparation to sensory representation of body state 

If  preparation state for body state B occurs with level V,  

then  a sensory representation for body state B with level V will occur. 

 

5.2  Emotion Reading by Mirrorring and Simulation 

Based on the model for a recursive body loop, a model for emotion reading for the Simulation 

Theory perspective is obtained. Such a model for emotion reading uses the model to generate 

the person’s own emotional responses and feelings to simulate the other person’s process. The 

model presented above has been specialised in simple manner to enable emotion reading. The 

main step is to assume that for another person’s body state that is observed (as a stimulus) a 

cognitive preparation state exists with a mirrorring function. This means that the stimulus s that 

triggers the emotional process is instantiated with the body state of another person, as was done 

in Section 3.2; to make it specific, a facial expression f of another person is considered; for 

example, s = othersface(f), and the body state instance b is face expression f.  

For the sake of illustration, following the emotion imputation, a communication about it is 

prepared and performed. This extension is not essential for the emotion reading capability, but 

just shows an example of behaviour based on emotion reading. 
 

LP10   Communication preparation 

If   emotion B is imputed to S,   then  a related communication is prepared 
 

LP11   Communication 

If  a communication is prepared,   then  this communication will be performed. 

 

5.3  Adaptivity of Emotion Reading Based on Hebbian Learning 

This section extends the model presented above by a facility to learn a direct connection 

between the stimulus (the other person’s body state) and the emotion imputation. An extra state 

is included that represents the sensitivity of how the emotion imputation depends on the sensory 

representation of the stimulus (the other face). At the cognitive level this can be expressed in 

qualitative or quantitative manners. If this sensitivity is qualified as ‘high’, the imputation will 

directly follow the sensory representation of the stimulus, as is expressed by the following 

temporal relationship. 
 

LP12   Direct imputation 

If  the imputation sensitivity between S and B is high   and   a sensory representation for S occurs,  

then  emotion B will imputed to S. 

 

The adaptation process itself and the persistence of the sensitivity level is described by the 

following two relationships. 

LP13   Imputation sensitivity adaptation 

If  the imputation sensitivity from S to B is W1   and   a sensory representation for S occurs  

  and an imputation occurs for B to S,  then  the imputation sensitivity will become the value W2 next to W1. 

LP14   Imputation sensitivity persistence 

If  the imputation sensitivity is W1 and no increase occurs,  

then  it will remain the same. 
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Note that the labels that represent the sensitivity levels may be elements of any linearly ordered 

set. Here, for simplicity, the set {low, medium, high} is taken, with relations next_value(low, medium)  

and next_value(medium, high). However, also other linearly ordered sets may be used, for example 

the set of real numbers between 0 and 1. 

By enabling the learning of a full connection between sensory representation of a stimulus 

and emotion imputation, this extended cognitive model entails that (after a learning phase) a 

person can perform emotion reading without taking his or her own emotions into account. As 

such, one could argue that part of this learnt model fits better in the Theory Theory perspective 

(not entirely but with certain aspects and in only a specific and simple form), than in the 

Simulation Theory perspective. A more extensive discussion about this debate is presented in 

Section 9. 

6.   Example Simulations for the Cognitive Model  

Based on the cognitive model for adaptive emotion reading presented in Section 5, also a 

number of simulations have been performed; for an example, see Figure 8. Note that here the 

sensitivity values have been chosen as qualitative labels: low, medium, high. In this figure, the 

imputation sensitivity state has initial value set to low, represented by  

 

srs_imputation_sensitivity(s, f, low)  

 

in the upper part of Figure 8. In this part of the trace, a dark box on top of a line indicates that a 

state property is true at that time point, and a light box below the line indicates that the state 

property is false. The adaptation phase consists of two trials, where as soon as the person 

imputes emotion e to the target stimulus s (which is the observation of the other person’s face), 

the imputation sensitivity level goes up, i.e., from low to medium to high, in accordance with 

the temporal relationship LP13 (see Section 5.3).  

Note that the sensitivity state keeps its value in the adaptation phase until the person (again) 

imputes emotion f to the target, as described by the temporal relationship LP14, but retains its 

final value, i.e. high, after the adaptation phase of two trials.  Moreover, note that in the lower 

part of Figure 8, the values of other state properties gradually increase as the person observes 

the stimulus, following the recursive body loop discussed in Section 5. These values sharply 

decrease as the person stops observing the stimulus, as described by the temporal relationship 

LP3 in Section 5.1. After the adaptation phase, and with the imputation sensitivity at high, the 

person imputes emotion f to the target stimulus directly after occurrence of the sensory 

representation of the stimulus, as shown in the third trial in the upper part of Figure 8. Again, 

note that, even though the person has adapted to impute emotion f to the target directly after the 

stimulus, the other state property values continue to increase in the third trial as the person 

receives the stimulus. 
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Figure 8:  Simulation results for the cognitive model for adaptive emotion reading 
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7.  Verification of Properties 

 

To verify whether the overall behaviour of the model is according to expectations, some 

hypotheses (in terms of logical dynamic properties) have been identified, formally specified, 

and verified for simulation traces. These properties express proper emotion reading, and some 

of them are meant to distinguish emotion reading in a situation before adaptation and after 

adaptation. In particular, before an accomplished adaptation process, upon occurrence of a 

stimulus, first the emotion has to be felt before the emotion reading takes place. After an 

adaptation process, the emotion reading takes place before the emotion is felt and therefore it 

will take place faster. 

The modelling approach for temporal expressions is based on the Temporal Trace Language 

TTL for formal specification and verification of dynamic properties; cf. Bosse, Jonker, Meij, 

Sharpanskykh, and Treur, 2009). This reified temporal predicate logical language supports 

formal specification and analysis of dynamic properties, covering both qualitative and 

quantitative aspects. TTL is built on atoms referring to states, time points and traces. A state of 

a process for (state) ontology Ont is an assignment of truth values to the set of ground atoms in 

the ontology. The set of all possible states for ontology Ont is denoted by STATES(Ont). To 

describe sequences of states, a fixed time frame T is assumed which is linearly ordered. A trace γ 

over state ontology Ont and time frame T is a mapping γ : T → STATES(Ont), i.e., a sequence of 

states γt (t ∈ T) in  STATES(Ont). The set of dynamic properties DYNPROP(Ont) is the set of 

temporal statements that can be formulated with respect to traces based on the state ontology Ont 

in the following manner. Given a trace γ over state ontology Ont, the state in γ at time point t is 

denoted by state(γ, t). These states can be related to state properties via the formally defined 

satisfaction relation |=. Then, state(γ, t) |= p denotes that state property p (from sort SPROP(Ont)) 

holds in trace γ at time t. Based on these statements, dynamic properties can be formulated in a 

sorted first-order predicate logic, using quantifiers over time and traces and the usual first-order 

logical connectives such as ¬, ∧, ∨, ⇒, ∀, ∃. A special software environment has been 

developed for TTL, featuring a Property Editor for building TTL properties and a Checking 

Tool that enables formal verification of such properties against a set of traces. 

Using the TTL environment, the following Global Properties (GP’s) have been identified, 

formalised and automatically verified against various simulation traces (first an abbreviation is 

introduced to count how often a state holds in a certain time period): 

 

Abbreviations  

state_holds_times_between(S:SPROP,0,tb,te:TIME,γ:TRACE) ≡    ¬ [ ∃t1:TIME tb<t1<te & state(γ, t1) |= S ] 
 

state_holds_times_between(S:SPROP,n+1,tb,te:TIME,γ:TRACE)  ≡  

∃t1:TIME tb<t1<te &  

state(γ, t1) |= S &  ¬[ ∃t2:TIME tb<t2<t1 & state(γ, t2) |= S ] &  state_holds_times_between(S, n, t1, te, γ) 
 

GP1a  Input-Output Correlation Timing 

In trace γ, if at time point t1 the person perceives a facial expression of another person,  

then within time duration D this leads to communication about the person’s emotional state. 

GP1a(t1:TIME, γ:TRACE, D:REAL)  ≡ 

state(γ, t1) |= sensor_state(othersface(F)) ⇒  [ ∃t2:TIME  t1<t2<t1+D &  state(γ, t2) |= effector_state(your emotion is F) ] 

 

This first property checks whether the process of responding (verbally) to the stimulus is 

performed correctly. As could be expected, this property indeed turned out to hold for all 
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simulation traces, for any t1. As an illustration, consider the trace shown in Figure 8. For this 

trace, GP1a holds in the situation before learning for D=36, and after learning it holds already 

for D=6. 

 

GP1b  Input-Output Correlation During Learning 

If in trace γ between tb and te the person perceives a facial expression of another person for n (different) time points, 

then within time duration D this leads to communication about the person’s emotional state. 

GP1b(tb, te:TIME, n:INTEGER, γ:TRACE, D:REAL)  ≡ 

state_holds_times_between(sensor_state(othersface(F)), n, tb, te, γ) ⇒ 

[ ∃t:TIME  te<t<te+D &  state(γ, t) |= effector_state(your emotion is F) ] 
 

This property also holds for all traces and time points. For the trace shown in Figure 8, it 

holds for n=3 and D=6. Hence, in all situations that the person perceived the stimulus three 

times, this resulted in a response within 6 time points. 

 

GP2  Successful Associative Learning 

If in trace γ between tb and te state property S1 and S2 hold together for n (different) time points,  

then eventually a relation between these states will be learned.  

GP2(tb, te:TIME, n:INTEGER, γ:TRACE)  ≡ 

∀S1,S2:SPROP 

state_holds_times_between(S1∧S2, n, tb, te, γ) ⇒ 

[ ∃t:TIME ∃w:REAL  te<t<te+D & state(γ, t) |= sensitivity_for_relation_between(S1,S2, w) &  w>δ ] 

 

This property holds for all traces for n=2 (and for D=1), which confirms that the associative 

learning is directly successful after two trials. Note that here δ is a certain sensitivity threshold, 

which can be considered to depend on n. Thus, an example instance of  

sensitivity_for_relation_between(S1, S2, w)  

could be the state property  

srs_imputation_sensitivity(s, f, high).  
 

GP3a  Emotion reading with the person’s own feeling 

In trace γ, if at time point t1 a stimulus occurs,  

then there is a point in time that the emotion is recognised whereas it is felt as well.  

GP3a(t1:TIME, γ:TRACE)  ≡ 

state(γ, t1) |= sensor_state(othersface(F)) ⇒  

∃t2:TIME, V:REAL [ t1<t2<t1+D & V>th & state(γ, t2) |= effector_state(your emotion is F) &  state(γ, t2) |= feeling(F, V) ] 

 

GP3b  Emotion reading without the person’s own feeling 

In trace γ, if at time point t1 a stimulus occurs,  

then there is a point in time that the emotion is recognised whereas it is not felt (yet).  

GP3b(t1:TIME, γ:TRACE)  ≡ 

state(γ, t1) |= sensor_state(othersface(F)) ⇒ ∃t2:TIME, V:REAL  [ t1<t2<t1+D &  

V≤0.1 & state(γ, t2) |= effector_state(your emotion is F)  &  state(γ, t2) |= feeling(F, V) ] 

 

These properties have been used to distinguish the phase when the person performs emotion 

reading with an experienced emotion from the phase without an experienced emotion. For 

example, for the trace depicted in Figure 8, checks pointed out that the second phase is entered 

at time point 126. 

To conclude, although not proven exhaustively, the above checks have pointed out that the 

presented models satisfy a number of relevant expected properties. In addition, they allow the 

modeller to fine-tune the precise temporal aspects of the simulated emotion reading process. 
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8.   An Interpretation Mapping from the Cognitive to the Neural Model  

 

The cognitive model described in Section 5 by abstracting the following neurological principles 

to the cognitive level: (1)  a recursive body loop for cognitive preparation states and feeling 

states, (2) the mirrorring function of cognitive preparation states as inspired by the notion of 

mirror neurons and by the Simulation Theory perspective on mindreading, and (3) a cognitive-

level Hebbian learning principle for adaptivity in the cognitive model. Such an abstraction 

allows a modeller to exploit neurological knowledge to enrich models at the cognitive level, 

and not to work with neural models of the type as described in Section 3. The result is that now 

two models are available describing the same process, at the neural level, resp. cognitive level. 

These two models are formally defined objects, so as they are assumed to describe the same 

reality, a natural question is in how far they can be formally related to each other (see Figure 9). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9:  Relating two models describing the same reality 

 

For cognitive models in general it is an interesting challenge to find out how they can be related 

to a neural and/or biological realisation. Work on this area of reduction can be found in a wide 

variety of publications in the philosophical literature; see, for example, (Kim, 2005). A specific 

reduction approach provides a particular reduction relation: a way in which each cognitive 

property a can be related to a neural property b; this b is often called a realiser for a. Reduction 

approaches differ in how these relations are defined. In (Treur, 2010) three well-known 

approaches are described and compared to each other: the bridge law approach, the 

interpretation mapping approach and the functional reduction approach, and it is shown how 

they can be translated into each other, when the context of the realisation is made explicit. 

The notion to define reduction relations used below is the interpretation mapping approach; 

e.g., (Schoenfield, 1967, pp. 61-65). This is based on a mapping ϕϕϕϕ relating cognitive concepts a 

to neural concepts b, in the sense that b = ϕϕϕϕ(a). Such a mapping is an interpretation mapping 

when it satisfies the property that if  L is a cognitive law, then the statement ϕϕϕϕ(L) can be derived 

from neural laws. Usually the mapping is assumed compositional with respect to connectives, 

for example:  
 

ϕϕϕϕ(A1 & A2) = ϕϕϕϕ(A1) & ϕϕϕϕ(A2)  

ϕϕϕϕ(A1 ∨ A2) = ϕϕϕϕ(A1) ∨ ϕϕϕϕ(A2)  

ϕϕϕϕ(¬ A1)  = ¬ ϕϕϕϕ(A1)  

ϕϕϕϕ(A1 →→ A2) = ϕϕϕϕ(A1) →→ ϕϕϕϕ(A2)  
 

cognitive  

model 

neural  

model 

 

? 
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In this section it is shown how the cognitive model for adaptive emotion reading, has been 

mapped onto the neural model, by an interpretation mapping.  

 In order to define an interpretation mapping from the cognitive model to the neural model for 

adaptive emotion generation, one needs to formally settle, for example, which neural states 

exactly are to be interpreted as feeling the emotion, and which as the imputation of the emotion 

to a person. For the state properties of the cognitive model, the interpretation mapping ππππ 

(indicated by a question mark in Figure 9) has been defined as follows, where a criterion for 

considering RN(S, F) as imputation is defined by a threshold of 0.75.  
 

ππππ(S)  =  activated(S, 1) 

ππππ(sensor_state(S))  =  activated(sensor_state(S), 1) 

ππππ(srs(S))  =  activated(SN(S), 1) 

ππππ(preparation_state(F, V))  =  activated(PN(F), V) 

ππππ(feeling(F, V))  =  activated(FN(F), V) 

ππππ(effector_state(F, V))  =  effector_state(F, V) 

ππππ(sensor_state(F, V))  =  sensor_state(F, V) 

ππππ(srs(F, V))  =  activated(SN(F), V) 

ππππ(imputation(S, F))  =  ∃V  V≥0.75 & activated(RN(S, F), V) 

ππππ(srs_imputation_sensitivity(S, B, V)) =   ∃W  qualifies_as(W, V) & connectedto(FN(f), SN(s),  PN(f), α,  W) 
 

Here qualifies_as(W, V) is a predicate that is assumed to relate the values V used in the cognitive 

model to values W between 0 and 1 for the connection strength in the neural model. An example 

instantiation of this predicate is qualifies_as(0.95, high). 

The mapping is extended to more complex (temporal) expressions in a compositional 

manner as follows: 
 

ππππ(A1 & A2)  =  ππππ(A1) & ππππ(A2) 

ππππ(A1 →→ A2)  =  ππππ(A1) →→ ππππ(A2) 
 

Using this, the mapping maps the cognitive temporal relationships (depicted in Figure 7) 

between the different state properties specified in the cognitive model to neural relationships 

between state properties entailed by the neural model (depicted in Figure 1). For example, if L is 

the relationship  
 

srs(s) & feeling(f, V)  →→  preparation_state(f, (1+V)/2) 
 

which holds in the cognitive model, then L is mapped by ϕ1 onto 
 

      ππππ(L) =  ππππ(srs(s) & feeling (f, V)  →→  preparation_state(f, (1+V)/2)) 

=  ππππ(srs(s) & feeling(f, V))  →→  ππππ(preparation_state(f, (1+V)/2))) 

=  ππππ(srs(s)) & ππππ(feeling(f, V))  →→  ππππ(preparation_state(f, (1+V)/2))) 

=  activated(SN(s), 1) & activated(FN(f), V)  →→  activated(PN(f), (1+V)/2) 
 

The latter expression is not literally part of the neural model, but is entailed by it, in particular 

by 
 

connectedto(FN(f), SN(s),  PN(f), α,  β) 
 

for α=β=0.5 together with the general rule  
 

connectedto(X1, X2, Y, α, β)  &  activated(X1, V1) &  activated(X2, V2)  →→  activated(Y, α* V1+β *V2) 
 

that specifies propagation of activation through connections. In a similar way a property has 

been mapped that expresses that always an emotion is imputed to a sensed stimulus: the 

temporal relation L' given by 

srs(s) →→  imputation(s, f) 



22 

 

 

is entailed by the temporal relations in the neural model. It is mapped as follows: 

 

ππππ(L') =  ππππ(srs(s)  →→  imputation(s, f)) 

=  ππππ(srs(s))  →→  ππππ(imputation(s, f)) 

=  activated(SN(s), 1)  →→  ∃V  V≥0.75 & activated(RN(s, f), V) 

 

Indeed this property is entailed by a connection 

 

connectedto(FN(B), SN(S),  RN(S, B), α, W) 

 

but only when W≥0.75 (which makes the condition FN(B) superfluous to pass the threshold) and 

the temporal relationship  

 

connectedto(X1, X2, Y, α, β)  &  activated(X1, V1) &  activated(X2, V2)  →→  activated(Y, α*V1+β*V2) 

 

in the neural model. Note that this does not hold when W is too low, for example, when W = 

0.5. An interpretation mapping for the communication extensions of the emotion reading model 

has been defined as a specialisation of the mapping ϕ1  above as follows: 
 

ππππ(preparation_state(say(your_emotion_is(f))))  =  ∃V  V≥0.75 & activated(PN(say(your_emotion_is(f))), V) 

ππππ(effector_state(say(your_emotion_is(f))))  =  ∃V  V≥0.75 &   activated(effector_state(say(your_emotion_is(f))), V) 

 

The learning rule of the cognitive model has been mapped as follows: 

 

ππππ(srs(S) & imputation(S, B) & srs_imputation_sensitivity(S, B, V1) &  next_value(V1, V2) 

→→  srs_imputation_sensitivity(S, B, V2)) 
= ππππ(srs(S) & imputation(S, B) & srs_imputation_sensitivity(S, B, V1) &  next_value(V1, V2)) 

→→  ππππ(srs_imputation_sensitivity(S, B, V2)) 
= ππππ(srs(S)) & π(imputation(S, B)) & ππππ(srs_imputation_sensitivity(S, B, V1)) &  ππππ(next_value(V1, V2))) 

→→  ππππ(srs_imputation_sensitivity(S, B, V2)) 
=   activated(SN(S), 1)  &   ∃V  V≥0.75 & activated(RN(S, F), V)  &  

∃W  qualifies_as(W, V1) & connectedto(FN(f), SN(s),  PN(f), α,  W) &  next_value(V1, V2)  

→→  ∃W  qualifies_as(W, V2) & connectedto(FN(f), SN(s),  PN(f), α,  W) 

 

In principle this is entailed by the Hebbian learning rule  

 

connectedto(X1, X2, Y, W, β)  &  activated(X1, V1) &  activated(Y, V2)   

→→  connectedto(X1, X2, Y, W+ηV1V2(1-W) - ζW, β)   

 

in the neural model, but this also depends on the precise definition of the values in the cognitive 

model and the ‘next value’ relation. One case in which it holds is when the values for the 

cognitive model are exactly the same as in the neural model. 

 

 

9.   Discussion 

 

In the literature on emotion reading, it is often assumed that a person uses observations of 

another person’s body (for example facial expressions) as a basis for the emotion reading 

process. Models for emotion reading by a person can be of two types: either they make use of 



23 

 

the person’s own emotion states , or they are independent of them. Models for emotion reading 

of the second type are available using a specific classification procedure. Here, for example, a 

specific emotion reading process can be modelled in the form of a prespecified classification 

process of facial expressions in terms of a set of possible emotions; see, for example, (Cohen, 

Garg, and Huang, 2000;  Malle, Moses, and Baldwin, 2001; Pantic and Rothkrantz, 1997, 

2000). Also models of an observing person based on reasoning based on models of the observed 

person are of the second type, for example (Bosse, Memon, and Treur, 2007a, 2007b). Such 

models are considered in the Theory Theory perspective on mindreading (e.g., Goldman, 2006). 

A model based on such a classification procedure or based on reasoning is able to perform 

emotion reading. However, within such an approach the imputed emotions will not have any 

relationship to a person’s own emotions.  

Instead, the Simulation Theory perspective on mindreading assumes that the person’s own 

mental states are used to simulate the other person’s corresponding mental states; (e.g., 

Goldman, 2006; Goldman and Sripada, 2004; Bosse, Memon, and Treur, 2008). In recent years, 

an increasing amount of neurological evidence is found that supports the Simulation Theory 

perspective on emotion reading, e.g., (Rizzolatti, Fogassi, and Gallese, 2001; Wohlschlager and 

Bekkering, 2002; Kohler, Keysers, Umilta, Fogassi, Gallese, and Rizzolatti, 2002; Ferrari, 

Gallese, Rizzolatti, and Fogassi, 2003; Rizzolatti, 2004; Rizzolatti and Craighero, 2004; 

Iacoboni, 2005, 2008). According to such a type of approach, in order to recognise emotions of 

other persons, humans exploit observations of these other persons’ body states in order to mirror 

these states in the persons’ own preparation states, and based on this simulation of the other 

person’s states takes place making use of counterparts of these states.  

The first research question was formulated in the introduction section in the following 

manner: 

 

• How can emotion reading by a person be modelled taking his or her own emotional 

states into account, and how can this be integrated in an adaptive manner with 

emotion reading without taking into account the person’s own emotional states? 
 

This question was addressed by the models presented in the current paper integrating 

approaches to mindreading of the two types. The models do not discriminate between different 

emotions; they are  based on the notions of (preparatory) mirror neurons and Damasio’s 

perspective on emotions and feelings based on a recursive body loop (cf. Damasio, 1999, 2003), 

generating a converging positive feedback loop based on reciprocal causation between 

mirrorring preparation states and feeling states. The models were equipped with an adaptation 

model to learn a direct connection between sensory representation of a stimulus and emotion 

imputation. Thus, after a learning phase the person can perform emotion reading without taking 

the person’s own emotions into account. As this learnt pathway bypasses the person’s own 

emotion generation process, such a direct connection is faster (it may take place within 

hundreds of milliseconds) than a connection via a body loop (which usually takes seconds). This 

time difference implies that first the emotion is recognised without feeling the corresponding 

person’s own emotion, but within seconds the corresponding person’s own emotion is in a sense 

added to the recognition. When an as if body loop is used instead of a body loop, the time 

difference will be smaller, but may still be present. An interesting question is whether it is 

possible to design experiments that show this time difference as predicted by the neural agent 
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model. As the person’s own emotions are not involved anymore, it can be argued that the learnt 

model for emotion reading by itself is not a model from the Simulation Theory perspective, 

whereas the model for the learning process to obtain this model is. It may also be considered 

that the learnt model (or part of it) is innate, and is only further tuned by the learning process. 

One step further, one could even argue that the learnt part of the model fits in the Theory 

Theory perspective. However, notice that what is learned is only a specific and simple form of a 

Theory Theory model. A further exploration of the relation between adaptive emotion reading 

models from a Simulation Theory perspective and Theory Theory models is left for future work. 

The models have been specified in LEADSTO and in Matlab. The neural model consists of 

two types of general rules: one for propagation of activation levels between connected neurons, 

and one for strengthening of connections between neurons that are active simultaneously. These 

rules are applied to all nodes in the network. To perform a particular simulation, only the initial 

activation levels and connection strengths have to be specified. The simulations performed 

indicated that the models are indeed able to simulate various patterns of adaptive emotion 

reading. An interesting challenge for the future is to extend the models such that they can cope 

with multiple qualitatively different emotional stimuli (e.g., related to joy, anger, or fear), and 

their interaction. 

Some other computational models related to mirror neurons are available in literature; for 

instance: a genetic algorithm model which develops networks for imitation while yielding 

mirror neurons as a byproduct of the evolutionary process (Borenstein and Ruppin, 2005); the 

mirror neuron system (MNS) model that can learn to ‘mirror’ via self-observation of grasp 

actions (Oztop and Arbib, 2002); the mental state inference (MSI) model that builds on the 

forward model hypothesis of mirror neurons (Oztop, Wolpert, and Kawato, 2005). A 

comprehensive review of these computational studies can be found in (Oztop, Kawato, and 

Arbib, 2006). All of the above listed computational models (and many others available in the 

literature) are targeted to imitation, whereas the neural model presented here specifically targets 

to interpret somebody else’s emotions. 

The second research question in the introduction section was formulated in the following 

manner:  

 

• How can state of the art neurological knowledge be exploited in modelling these 

emotion reading processes; how can they be modelled at a neural level and how in a 

more abstracted form at a cognitive level, and how do the obtained models at these 

two levels relate to each other? 
 

This question was addressed by providing both a neural level model and a cognitive level 

model, illustrating the possibilities. Modeling causal relations discussed in neurological 

literature in a cognitive level model does not take specific neurons into consideration but can 

use more abstract mental states. This is a way to use results from the large and more and more 

growing amount of neurological literature, without abandoning the cognitive modelling level. 

This method can be considered as lifting neurological knowledge to a cognitive level of 

description. In a more detailed manner, Bickle (1998, pp. 205-208), illustrates a similar 

perspective for the higher level (e.g., folk psychological) in relation to the lower-level (e.g., 

neurobiological) explanation in the context of Hawkin and Kandel's (1984a,1984b) case; see 

also (Jonker, Treur, and Wijngaards, 2002): 
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‘The abstract processing structure of the two networks is very similar, at least at a coarse-grained 

level of analysis. The gross causal flow, from sensations through representational states to 

behavior, is mostly the same. Imagine the two accounts diagrammed as a set of nodes, with each 

node representing a representational state occurring in the explanation, connected by arrows 

representing the causal effects. If we overlay the nets, landmark nodes and arrows of the two 

would largely lie one on top of the other. (…) Of course, the functional profiles assigned to 

cognitive states on Hawkin and Kandel's neurobiological account are much more fine-grained and 

detailed, for that account recognizes distinctions and connections that folk psychology either 

lumps together or leaves extremely vague (…) Here again, however, we can expect that injection 

of some neurobiological details back into folk psychology would fruitfully enrich the latter, and 

thus allow development of a more fine-grained folk-psychological account that better matches the 

detailed functional profiles that neurobiology assigns to its representational states. There is no 

principled reason against such enrichment.’ (Bickle, 1998, p. 207-208) 

 
Here Bickle suggests that by relating a folk psychological explanation to a neurobiological 

account, a decision can be made to enrich the former, based on the more detailed account 

provided by the latter. Note that what he sketches about to ‘overlay the nets’ visualises quite 

well the interpretation mapping defined in Section 8, which can be visualised as a mapping 

from the cognitive ‘net’ depicted in Figure 7 to the neural ‘net’ in Figure 1. 

The type of cognitive level model that results from adopting principles from the neurological 

level may inherit some characteristics (in the technical and/or conceptual sense) from the 

neurological level. For example, it takes cognitive states as having a certain activation level, 

instead of binary (to occur or not to occur). This is needed to be able to model gradual 

adaptation processes and loops, which both are essential for the processes addresssed here, but 

are not always covered by (symbolic) cognitive modelling approaches. As a consequence, for a 

cognitive state depending on multiple other states, values for such activation levels have to be 

combined, to obtain an activation level for this state. Therefore combination functions are 

needed, for example, as a technique to determine the level of the preparation state from the 

levels of sensory representations of the stimulus and of the body. However, the technique used 

for modelling is not to be considered a distinguishing criterion between neural or cognitive 

modelling level. In order to incorporate at the cognitive level elements put forward by 

neuroscience, such as gradual adaptation and loops, modelling techniques at the cognitive level 

are needed that maybe usually are associated to neural modelling practice; but techniques 

themselves are neutral in for what they are used, be it at a cognitive or at a neural level. 

Another example is the notion of mirror neurons, discovered in neurological context. The 

function of mirroring can be abstracted to a comparable function of a state at the cognitive level 

as shown here: a mirroring function of a cognitive preparation state. Yet another example is the 

Hebbian learning principle, which originally was formulated for neurons, but can easily be 

abstracted to a cognitive Hebbian learning principle, as was done here. So, in order to model an 

adaptive agent at a cognitive level abstracting from neurological detail, still some machinery 

may be needed that may usually be associated to a neural modelling perspective. In order to 

obtain cognitive models with more complex, adaptive and human-like behaviour, the toolset for 

the modeller has to include such numerical modelling techniques, enabling to model in a hybrid 

logical/numerical manner. 
To show how the more abstract adaptive cognitive model for emotion reading is related to the 

neurological context, it was formally related to the neural model. This adaptive neural model 

makes use of mirror neurons, and learns a direct (synaptic) connection between sensory neurons 

(for example, concerning another person’s face expression) and the emotion recognition 
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neurons. Based on the literature on reduction such as (Kim, 2005; Treur, 2010), it was shown 

how the models can be related to each other by an interpretation mapping. This interpretation 

mapping was first defined on state properties, and then extended by compositionality to 

dynamic relations. For some of the state properties it was needed that a qualitative variable at 

the cognitive level was related to a quantitative variable at the neurological level, by using as a 

condition that the value of the quantitative variable was above some threshold. At these points it 

the difference in abstraction level between the two models is shown. 

A third research question that can be formulated concerns the assessment of neurological 

theories and their relations to empirical data, and what is the role of computational models such 

as the ones presented here:  

 

• How can the introduced computational models play a role in strengthening the 

assessment and validation of neurological theories? 

 

Although usually inspired by empirical results, scientific theories always have a certain extent 

of being speculative. It is interesting and useful to make further analyses and assessments of 

theories that are active in the research community, as the current paper does. Indeed Damasio 

(1999, 2003)’s theories and the theories about mirror neuron systems (Rizzolatti and Sinigaglia, 

2008; Pineda, 2009; Iacoboni, 2008) used as a basis here currently are active; they occur in 

current (cognitive) neuroscience textbooks (e.g., Gazzaniga, 2009; Purves et al., 2008; Ward, 

2010), and in many other state of the art publications. It is a joint effort of a whole 

multidisciplinary research community to assess such theories both by formal analysis methods 

and by empirical research. Different research groups play different roles in such a process, 

taking into account their specific background and expertise; some may take more responsibility 

for contributing empirical research, some other more for contributing computational modelling 

approaches and formal analyses. The joint effort has as an aim over a longer time period to 

bring all of these aspects further. Although the authors fully recognize the third research 

question formulated above as being important in all of its aspects, the current paper focuses on a 

contribution from the latter side.  

Computational modelling techniques play a useful tool role for analysis of theories, as they 

can be used to determine in a precise manner the implications of a theory. For example, by 

simulation or formal verification it can be determined in a detailed manner which patterns may 

or may not emerge from basic mechanisms described by such a theory. This paper has indicated 

how the idea of a recursive body loop can be integrated with the notion of mirror neurons and 

Hebbian learning, with resulting patterns that are quite plausible according to the neurological 

literature. In this sense the models contribute a positive evaluation of these theories. This is also 

a relative validation of the models themselves, with respect to the neurological literature. 

Validation of the theories based on precise empirical data by using the presented models is an 

interesting challenge, and not impossible, but also not trivial. Such a more extensive empirical 

evaluation of the theories and models as presented is left for future work. 

The role of more extensive cognitive interpretation or labeling as an ingredient for a specific 

emotion has not been taken in the scope of this model, as the current aim was to follow 

Damasio’s theory. However, an interesting extension to be addressed in future work would be to 

incorporate such cognitive interpretation as an extension in the models. 
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Appendix A  Equilibrium Analysis for the Neural Model 

Appendix B  Specification of the Adaptive Cognitive Model 

Equilibrium equations for the non-adaptive case 

The neural model description in the form of a system of differential equations has been used for an 

analysis of equilibria that can occur. Here the external stimulus level for s is assumed constant. 

Moreover, it is assumed that γ > 0. In general putting ∆yi(t) = 0 provides the following set of 

equations for i ∈ N':  

 yi = g(Σj∈N  wji yj) 

For the given network structure these equilibrium equations are: 

 y1 = g(w01 y0) y2 = g(w12 y1)  y4 = g(w34 y3)     y5 = g(w45 y4)        y6 = g(w56 y5) 

 y7 = g(w67 y6) y8 = g(w78 y7)  y3 = g(w23 y2 + w83 y8)    y9 = g(w29 y2 + w89 y8) 

Taking into account that connections between nodes among which at least one is not a neuron have 

weight 1 and g the identity function, it follows that the equilibrium equations are: 

 y2 = y1 = y0 y7 = y6 = y5 = y4 = y3       y8 = g(w78 y7) 

 y3 = g(w23 y2 + w83 y8) y9 = g(w29 y2 + w89 y8) 

For the values taken in the simulation in Section 3.1, the equilibrium equations are:  

 y2 = y1 = y0 y7 = y6 = y5 = y4 = y3 

 y8 = g(0.5 y7) y3 = g(0.1 y2 + 0.1 y8)  y9 = g(0.1y8) 
 

As the threshold was taken 0.1 it follows from the equations that for stimulus level y0 = 0 all values 

for yi are (almost) 0, and for stimulus level y0 = 1 that all values for yi are 1, which is also shown by 

the simulation in Figure 4. 
 

Equilibrium equations for the adaptive case 

Also for the adaptive case, equilibrium equations have been found. Here it is assumed that γ, η > 0. 

Putting both ∆yi(t) = 0 and ∆wij(t) = 0  provides the following set of equations for i, j ∈ N’:  

 yi = g(Σj∈N  wji yj)   yiyj(1 – wij) -  ζ wij = 0 

For ζ = 0 from the latter set of equations (second line), it immediately follows that for any pair i, j ∈ 

N’ it holds: either    yi = 0    or    yj = 0    or    wij = 1. In particular, when for an 

equilibrium state both yi and yj are nonzero, then wij = 1. In simulations such as the one shown in 

Section 3.2, when a constant stimulus level 1 is taken, an equilibrium state is reached in which 

learned connection strength wij = 1, and all yi are 1. For the general case with ζ ≠ 0 in an equilibrium 

state it holds: 

wij  =  
η�	�
 

η�	�
 � ζ
 

When yi , yj ≠ 0, the above equation is equivalent to: 

wij  =  
�

� � 
ζ 

η�
��

 

From this it follows that: 

wij  ≤  
�

� � 
ζ 

η

 < 1 

In the simulation examples with nonzero extinction rate, this upper bound indeed can be observed. 
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LP1  Sensing a stimulus 

If  stimulus S occurs    then  a sensor state for S will occur. 

world_state(S) →→  sensor_state(S) 
 

LP2  Generating a sensory representation of a stimulus 

If  a sensor state for S occurs,   then  a sensory representation for S will occur. 

sensor_state(S)  →→  srs(S) 
 

LP3  From sensory representation and emotion to preparation* 

If  a sensory representation for s occurs   and  feeling b has level V,  

then  the preparation state for body state b will occur with level (1+V)/2. 

srs(s) & feeling(b, V)  →→  preparation_state(b, (1+V)/2) 

If  no sensory representation for s occurs  and feeling b has level V,  

then  preparation state for body state b will occur with level V/2. 

not srs(s) & feeling(b, V)  →→  preparation_state(b, V/2) 
 

LP4  From preparation to body modification 

If  preparation state for body state B occurs with level V, 

then  the body state is modified to express B with level V. 

preparation_state(B, V) →→  effector_state(B, V) 
 

LP5  From body modification to modified body 

If  the body state is modified to express B with level V, then  the body state will have expression B with level V. 

effector_state(B, V) →→  body_state(B, V) 
 

LP6  Sensing a body state 

If  body state B with level V occurs,  then  body state is sensed. 

body_state(B, V) →→  sensor_state(B, V) 
 

LP7  Generating a sensory representation of a body state 

If  body state B of level V is sensed,   then   a sensory representation for body state B with level V will occur. 

sensor_state(B, V)  →→  srs(B, V) 
 

LP8  From sensory representation of body state to feeling the emotion 

If  a sensory representation for body state B with level V occurs, then  body state B is felt with level V. 

srs(B V) →→  feeling(B, V) 
 

LP9   Imputation 

If  a certain body state B is felt, with level ≥ th     and  a sensory representation for S occurs,  

then  emotion B will imputed to S.  

Here, th is a (constant) threshold for imputation of emotion. In the simulations shown, th is assumed 0.95. 

srs(S) & feeling(B, V)  &  V≥th  →→  imputation(S, B) 
 

LP4*  From preparation to sensory representation of body state 

If  preparation state for body state B occurs with level V,  

then  a sensory representation for body state B with level V will occur. 

preparation_state(B, V) →→  srs(B, V) 
 

LP10   Communication preparation 

If   emotion B is imputed to S,   then  a related communication is prepared 

imputation(B, S) →→ preparation_state(say(your emotion is B)) 
 

LP11   Communication 

If  a communication is prepared,    then  this communication will be performed. 

preparation_state(say(your emotion is B))  →→  effector_state(say(your emotion is B)) 
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LP12   Direct imputation 

If  the imputation sensitivity between S and B is high  

  and a sensory representation for S occurs,  

then  emotion B will imputed to S. 

srs(S) & srs_imputation_sensitivity(S, B, high)  →→   imputation(S, B) 

LP13   Imputation sensitivity adaptation 

If  the imputation sensitivity from S to B is W1  

  and a sensory representation for S occurs  

  and an imputation occurs for B to S,  

then the imputation sensitivity will become the value W2 next to W1. 

srs(S) & imputation(S, B) & srs_imputation_sensitivity(S, B, W1) &  next_value(W1, W2) 

→→  srs_imputation_sensitivity(S, B, W2) 

LP14   Imputation sensitivity persistence 

If  the imputation sensitivity is W1 and no increase occurs,  

then  it will remain the same. 

srs_imputation_sensitivity(S, B, W1) &  next_value(W1, W2) &  

not srs_imputation_sensitivity(S, B, W2) →→  srs_imputation_sensitivity(S, B, W1) 

srs_imputation_sensitivity(S, B, high)   →→   srs_imputation_sensitivity(S, B, high) 


