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Abstract. It is widely recognized that both cognitive and affective aspects play 
an important role in human decision making. In most recent approaches for 
computational modelling of affective agents emotions have a cognitive origin. 
In contrast to these approaches, the computational social decision making 
model proposed in this paper is grounded on neurological principles and 
theories, thus providing a deeper level of understanding of decision making. 
The proposed approach integrates existing neurological and cognitive theories 
of emotion in a decision model based on evaluation of simulated behaviour 
chains. The application of the proposed model is demonstrated in the context of 
an emergency scenario. 

Keywords: Social decision making, affective, cognitive, simulated behavioural 
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1   Introduction 

Traditionally, human decision making has been modelled as the problem of rational 
choice from a number of options using economic utility-based theories [17, 18]. In the 
last decades such approaches were criticized by many authors [18] for the lack of 
realism and limited applicability. In particular, it is imputed to the traditional decision 
making modelling methods that the role of human cognitive heuristics and biases, and 
affective states is totally neglected. Much evidence exist [1, 4, 5, 10] that affective 
states have a significant impact on a human’s decision making. However, 
computational models to explain this evidence are rare. In this paper the focus is on 
the integration of cognitive and affective aspects in a computational social decision 
making model which is grounded in neurological theories.  

In the areas of Artificial Intelligence and Cognitive Science a number of 
computational models of decision making with emotions have been developed [9, 21, 
22], which use variants of the OCC model developed by Ortony, Clore and Collins 
[19] as a basis. The OCC model postulates that emotions are valenced reactions to 
events, agents, and objects, where valuations are based on similarities between 
achieved states and goal states; thus emotions in this model have a cognitive origin.  



The model proposed in this paper exploits some of the principles underlying the 
OCC model but embeds them in a neurological context that includes theories that 
cover other aspects as well, thus providing a deeper and wider level of understanding 
of social decision making. More specifically, options in decision making involving 
sequences of actions are modelled using the neurological theory of simulated 
behaviour (and perception) chains proposed by Hesslow [13]. Moreover, the 
emergence of emotional states in these behavioural chains is modelled using emotion 
generation principles described by Damasio [4-8]. Evaluation of sensory 
consequences of actions in behavioural chains, also uses elements borrowed from the 
OCC model. Different types of emotions can be distinguished and their roles in the 
decision making clarified. The social aspect comes in by processes of emotion and 
intention contagion between different persons. 

Evaluation and the emotions involved in it usually have a strong impact from the 
human’s earlier experiences. In the proposed model for social decision making, this 
form of adaptivity to past experiences is also incorporated based on neurological 
principles. In such a way elements from neurological, affective and cognitive theories 
were integrated in the adaptive agent model proposed.  

The paper is organised as follows. The general modelling principles on which the 
proposed computational model is based are described in Section 2. A detailed 
formalisation of the proposed model is provided in Section 3. In Section 4 it is 
demonstrated how the proposed social decision making model is applied in an 
emergency scenario. Finally, Section 5 concludes the paper.  

2   Neurological Principles Adopted  

Considering options and evaluating them is viewed as a central process in human 
decision making. In this paper options are not single actions but sequences of actions, 
as in planning. To model considering such sequences, from the neurological literature 
the simulation hypothesis proposed by Hesslow [13] was adopted. Based on this 
hypothesis, chains of behaviour can be simulated as follows: some situation elicits 
activation of s1 in the sensory cortex that leads to preparation for action r1. Then, 
associations are used such that r1 will generate s2, which is the most connected 
sensory consequence of the action for which r1 was generated. This sensory state 
serves as a stimulus for a new response, and so on. In such a way long chains of 
simulated responses and perceptions representing plans of action can be formed. 
These chains are simulated by an agent internally as follows: 

‘An anticipation mechanism will enable an organism to simulate the behavioural 
chain by performing covert responses and the perceptual activity elicited by the 
anticipation mechanism. Even if no overt movements and no sensory consequences 
occur, a large part of what goes on inside the organism will resemble the events 
arising during actual interaction with the environment.’ ([13]) 

 As reported in [13], behavioural experiments have demonstrated a number of 
striking similarities between simulated and actual behaviour. 

Hesslow argues in [13] that the simulated sensory states elicit emotions, which can 
guide future behaviour either by reinforcing or punishing simulated actions. However, 



specific mechanisms for emotion elicitation are not provided. This gap can be filled 
by combining the simulation hypothesis with a second source of knowledge from the 
neurological area: Damasio’s emotion generation principles based on (as-if) body 
loops, and the principle of somatic marking [1, 6]. These principles were adopted to 
model evaluation of options.  

Damasio [4, 5, 7] argues that sensory or other representation states of a person 
often induce emotions felt within this person, according to a body loop described by 
the following causal chain: 

sensory state  →  preparation for the induced bodily response → induced bodily response → 
sensing the bodily response → sensory representation of the bodily response → induced feeling 

As a variation, an as if body loop uses a direct causal relation as a shortcut in the 
causal chain: preparation for the induced bodily response → sensory representation of the 

induced bodily response. The body loop (or ‘as if body loop’) is extended to a recursive 
body loop (or recursive ‘as if body loop’) by assuming that the preparation of the 
bodily response is also affected by the state of feeling the emotion as an additional 
causal relation: feeling → preparation for the bodily response. Thus, agent emotions are 
modelled based on reciprocal causation relations between emotion felt and body 
states. Following these emotion generation principles, an ‘as if body’ loop can be 
incorporated in a simulated behavioural chain as shown in Fig.1 (left). Note that based 
on the sensory states different types of emotions may be generated.  

In the OCC model [19] a number of cognitive structures for different types of 
emotions are described. By evaluating sensory consequences of actions s1, s2, …, sn 
from Fig. 1 using cognitive structures from the OCC model, different types of 
emotions can be distinguished. More specifically, the emergence of hope and fear in 
agent decision making in an emergency scenario will be considered in Section 4.  
 

  
 

Fig. 1. Simulation of a behavioural chain extended with an ‘as if body’ loop with emotional 
state bem (left) and with emotional influences on preparation states (right) 

Hesslow argues in [13] that emotions may reinforce or punish simulated actions, 
which may transfer to overt actions, or serve as discriminative stimuli. Again, specific 
mechanisms are not provided. To fill this gap the Damasio’s Somatic Marker 
Hypothesis was adopted. This hypothesis provides a central role in decision making to 
emotions felt. Within a given context, each represented decision option induces (via 
an emotional response) a feeling which is used to mark the option. For example, a 



strongly negative somatic marker linked to a particular option occurs as a strongly 
negative feeling for that option. Similarly, a positive somatic marker occurs as a 
positive feeling for that option. Damasio describes the use of somatic markers in the 
following way:  

‘the somatic marker (..) forces attention on the negative outcome to which a given action 
may lead, and functions as an automated alarm signal which says: beware of danger ahead 
if you choose the option which leads to this outcome. The signal may lead you to reject, 
immediately, the negative course of action and thus make you choose among other 
alternatives. (…)  When a positive somatic marker is juxtaposed instead, it becomes a 
beacon of incentive.’ ([7], pp. 173-174) 

 

To realise the somatic marker hypothesis in behavioural chains, emotional 
influences on the preparation state for an action are defined as shown in Fig. 1 (right). 
Through these connections emotions influence the agent’s readiness to choose the 
option. From a neurological perspective, the impact of a sensory state to an action 
preparation state via the connection between them in a behavioural chain will depend 
on how the consequences of the action are felt emotionally.  

As neurons involved in these states and in the associated ‘as if body’ loop will 
often be activated simultaneously, such a connection from the sensory state to the 
preparation to action state may be strengthened based on a general Hebbian learning 
principle ([2, 11, 12]) that was adopted as well. It describes how connections between 
neurons that are activated simultaneously are strengthened, similar to what has been 
proposed for the emergence of mirror neurons; e.g., [8, 16, 20]. 

Thus, by these processes an agent differentiates options to act based on the strength 
of the connection between the sensory state of an option and the corresponding 
preparation to an action state, influenced by its emotions. The option with the highest 
activation of preparation is chosen to be performed by the agent. 

As also used as an inspiration in [14], in a social context, the idea of somatic 
marking can be combined with recent neurological findings on the mirroring function 
of certain neurons (e.g., [8, 16, 20]). Mirror neurons are neurons which, in the context 
of the neural circuits in which they are embedded, show both a function to prepare for 
certain actions or bodily changes and a function to mirror similar states of other 
persons. They are active not only when a person intends to perform a specific action 
or body change, but also when the person observes somebody else intending or 
performing this action or body change. This includes expressing emotions in body 
states, such as facial expressions.  The mirroring function relates to decision making 
in two different ways. In the first place mirroring of emotions indicates how emotions 
felt in different individuals about a certain considered decision option mutually affect 
each other, and, assuming a context of somatic marking, in this way affect how by 
individuals decision options are valuated in relation to how they feel about them. A 
second way in which a mirroring function relates to decision making is by applying it 
to the mirroring of intentions or action tendencies of individuals (i.e., preparation 
states for an action) for the respective decision options. This may work when by 
verbal and/or nonverbal behaviour individuals show in how far they tend to choose 
for a certain option. In the computational model introduced below in Section 3 both of 
these (emotion and preparation) mirroring effects are incorporated. 



3   A Computational Model for Decision Making with Emotions 

First, in Section 3.1 a modelling language is described used for formalisation of the 
decision making model proposed. Then, the formal model is provided in Section 3.2.  

3.1   Modeling language 

To specify dynamic properties of a system, the order-sorted predicate logic-based 
language called LEADSTO is used [3]. Dynamics in LEADSTO is represented as 
evolution of states over time. A state is characterized by a set of properties that do or 
do not hold at a certain point in time. To specify state properties for system 
components, ontologies are used which are defined by a number of sorts, sorted 
constants, variables, functions and predicates (i.e., a signature). For every system 
component A a number of ontologies can be distinguished: the ontologies IntOnt(A), 
InOnt(A),  OutOnt(A), and ExtOnt(A) are used to express respectively internal, input, 
output and external state properties of the component A. Input ontologies contain 
elements for describing perceptions of an agent from the external world, whereas 
output ontologies describe actions and communications of agents. For a given 
ontology Ont, the propositional language signature consisting of all state ground atoms 
based on Ont is denoted by APROP(Ont). State properties are specified based on such 
ontology by propositions that can be made (using conjunction, negation, disjunction, 
implication) from the ground atoms. Then, a state S is an indication of which atomic 
state properties are true and which are false: S: APROP(Ont) → {true, false}.  

LEADSTO enables modeling of direct temporal dependencies between two state 
properties in successive states, also called dynamic properties. The format is defined 
as follows. Let α and β be state properties of the form ‘conjunction of atoms or 
negations of atoms’, and e, f, g, h non-negative real numbers. In the LEADSTO 
language the notation α →→e, f, g, h β means: if state property α holds for a certain time 
interval with duration g, then after some delay (between e and f) state property β will 
hold for a certain time interval of length h. When e = f = 0 and g = h = 1, called standard 
time parameters, we shall write α→→ β. To indicate the type of a state property in a 
LEADSTO property we shall use prefixes input(c), internal(c) and output(c), where c is 
the name of a component. Consider an example dynamic property:  

input(A)|observation_result(fire) →→ output(A)| performed(runs_away_from_fire)  
Informally, this example expresses that if agent A observes fire during some time unit, 
then after that A will run away from the fire during the following time unit. 

3.2   The computational model 

Depending on a situational context an agent determines a set of applicable options to 
satisfy a goal at hand. In the model proposed here the applicable options are generated 
via connections from activated sensory states reflecting this situational context to 
preparation states for the relevant actions related to an option. The issue of how 
precisely the strengths of these connections from a particular context to relevant 



action preparations have come into existence is out of scope of this paper; some 
related research can be found in [18]. An option is represented by a (partially) ordered 
sequence of actions (i.e., a plan) to satisfy the agent’s goals. Computationally, 
alternative options considered by an agent are being generated and evaluated in 
parallel. The evaluation of options is based on the simulation of a behavioural chain 
as described in Section 2 (see Fig. 2). The social context in which decision making is 
performed is represented by a group of agents interacting (verbally, nonverbally) on 
the relevant options. It is assumed that the preparation states of an agent for the 
actions constituting options and for emotional responses for the options are body 
states that can be observed with a certain intensity or strength by other agents from 
the group. The contagion strength of the interaction from agent A2 to agent A2 for a 
preparation state p is defined as follows: 

γpA2A1
=εpA2

⋅αpA2A1
⋅δpA1 (1) 

Here εpA2 is the personal characteristic expressiveness of the sender (agent A2) for p, 
δpA1 is the personal characteristic openness of the receiver (agent A1) for p, and αpA2A1 

is the interaction characteristic channel strength for p from sender A2 to receiver A1. 
By aggregating such input, an agent Ai perceives the group’s joint attitude towards 

each option, which comprises the following dynamic properties. Note that for the sake 
of simplicity no intermediate states for this process have been included, such as 
effector states, body states proper, or sensor states; the process from internal states to 
external expression, transfer and receipt is characterised at once by using parameters 
such as εpAj, αpAjAi 

and δpAi
 introduced above. 

(a) the aggregated group preparation to (i.e., the externally observable intention to 
perform) each action p constituting the option.  This is expressed by the following 
dynamic property: 

∧ j≠i internal(Aj) | preparation_for(p, Vj) →→ internal(Ai) | srs(G(p), Σ j≠i  γpAjAi Vj / Σ j≠i  γpAjAiεpAj)   (2) 

(b) the aggregated group preparation to an emotional response (body state) be for each 
option. In general an option may induce different types of emotions (e.g., fear, 
hope, joy). For each of them a separate preparation state is introduced. Formally: 

∧ j≠i internal(Aj) |preparation_for(be, Vj)→→internal(Ai) | srs(G(be), Σ j≠I γbeAjAi Vj/ Σ j≠i γbeAjAiεbeAj) (3) 

Furthermore, the emotional responses induced by options affect preparation states for 
the actions from options via ‘as-if body’ loops as described in Section 2. Thus, the 
preparation state for the first action from an option is affected by the sensory 
representations of the option, of the perceived group preparation for the action and of 
the emotion felt towards the option. Formally: 

srs(O, V1)  &  srs(be, V2)  &  srs(G(a1), V3)  &  preparation_for(a1, V4) (4) 
→→  preparation_for(a1, V4 + γ(h(V1, V2, V3) – V4)∆t), 

where O is an option, be is an emotional response state, Ga1 is the aggregated group 
preparation to action a1, h(V1, V2, V3) is a combination function: 

 

h(V1, V2, V3) = β (1-(1- V1)(1- V2)(1- V3)) + (1-β) V1 V2 V3. 
 

The simulated perception of the effect of an action from a plan in a simulated 
behavioural chain is modelled by the following property: 



preparation_for(a, V) →→  srs(effect(a), V) (5) 
 

The confidence that an action will result in a particular effect is specified as the 
strength of the link between the preparation for the action state and the sensory 
representation of the corresponding effect state. 

The preparation state for each following action a from the behavioural chain is 
specified by: 

srs(effect(a), V1) & srs(be, V2) & srs(G(a), V3) & preparation_for(a, V4) (6) 
→→ preparation_for(a, V4 + γ(h(V1, V2, V3) – V4) ∆t), 

An emotional response is generated based on an evaluation of the effects of each 
action of the option. In such an evaluation the effect state for each action is compared 
to a goal state(s) of the agent. 

 

 

Fig. 2. A graphical representation of the emotional decision making model in the social context. 

Note that for different types of emotions different aspects of a goal state or different 
types of goals may be used. In [19] a number of cognitive structures eliciting 
particular types of emotions are described. As a simulated behavioural chain is a kind 
of a behavioural projection, cognitive structures of prospect-based emotions (e.g., 
fear, hope, satisfaction, disappointment) from [19] are particularly relevant for the 
evaluation process. Such structures can be represented formally as evaluation 
properties. Examples of such properties for the emotions fear and hope are provided 
in the following section 4. As indicated in [19], the intensity of prospect-based 
emotions depends on the likelihood (confidence) that a prospect state will occur. 
Thus, the strength of the link between the preparation state for an action and the 
sensory representation of its effect state is taken into account as a factor in the 
evaluation property. The generic evaluation property of the effect of the action a 
compared with the goal state g is specified formally as: 



srs(g, V1) & srs(effect(a), V2) & srs(be, V3) & connection_between_strength(preparation_for(a), 
srs(effect(a)), V4)  & srs(eval_for(effect(a), be), V5) 
→→ srs(eval_for(effect(a), be), V5 + γ(h(V4*f(g, effect(a)), V3) – V5) ∆t),  (7) 
where f(g, effect(a)) is an evaluation function depending on the cognitive structure used 
for the evaluation. 
 
The evaluation of the effects of the actions for a particular emotional response to an 
option together with the aggregated group preparation to the emotional response 
determine the intensity of the emotional response: 

∧ i=1..n  srs(eval_for(effect(ai), be), Vi) &  srs(G(be), V3)  (8) 
→→ preparation_for(be, f(V1, …, Vn)),  
where bem is a particular type of the emotional response. 
 
The agent perceives its own emotional response and creates the sensory representation 
state for it:  

preparation_for(be, V) →→ srs(be, V) (9)  
 
The Hebbian learning principle for links connecting the sensory representation of 
options, and effects of the actions from these options, with preparation states for 
subsequent actions in the simulation of a behavioural chain is formalised as follows 
(cf. [11]): 

connection_between_strength(O, preparation_for(a1), V1) & srs(O, V2) & preparation_for(a1, V3) 
→→ connection_between_strength(O, preparation_for(a1), V1 + (η V2 V3 (1 – V1) - ξV1)∆t),   (10) 
where η is a learning rate and ξ is an extinction rate. 
 
connection_between_strength(srs(effect(ai)), preparation_for(ai+1), V1) & srs(effect(ai), V2) & 
preparation_for(ai+1, V3) 
 →→ connection_between_strength(srs(effect(ai)),  

preparation_for(ai+1), V1 + (η V2 V3 (1 – V1) - ξ V1)∆t)    (11) 

4   Decision Making in Emergency Situations: a Case Study 

In this section it is demonstrated how decision making in an evacuation scenario can 
be modelled using the proposed approach (see Fig. 3). In this scenario a group of 
agents considers different options (paths) to move outside of a burning building. Each 
option is generated based on the agent’s beliefs about the accessibility of locations in 
the building. Each option is represented by a sequence of locations with an exit as the 
last location, specified by follows_after(move_from_to(p1, p2), move_from_to(p2, p3)). The 
strength of a link between a preparation for a movement action and a sensory 
representation of the effect of the action is used to represent confidence values of the 
agent’s beliefs about the accessibility of locations. For example, if the agent’s 
confidence of the belief that location p1 is accessible from location p2 is ω, then the 
strength of the link between the states preparation_for(move_from_to(p2, p1)) and 
srs(is_at_location(p1)) is also ω. 

Considered options (i.e., activation of the preparations for the actions involved) 
evoke two types of emotions - fear and hope, which are often considered in the 



emergency context [17]. According to [19], the intensity of fear induced by an event 
depends on the degree to which the event is undesirable and on the likelihood of the 
event. The intensity of hope induced by an event depends on the degree to which the 
event is desirable and on the likelihood of the event. Thus, both emotions are 
generated based on the evaluation of a distance between the effect states for the 
actions from an option and the agent’s goal states. In this example each agent in the 
group has two goal states ‘be outside’ and ‘be safe’. The evaluation functions for both 
emotions include two aspects: (1) how far is the agent’s location from the nearest 
reachable exit; (2) how dangerous is the agent’s location (i.e., the amount of smoke 
and fire). Formally these two aspects are combined in the evaluation function from (7) 
using the formula  

ωV1 + (1-ω)/(1+ λe-ϕV2),  (12) 
 

where V1 is the degree of danger of the location, V2 is the distance in number of 
actions that need to be executed to reach the nearest accessible exit, λ and ϕ are 
parameters of the threshold function, ω is a weight. 
The goal value in (7) is obtained by setting V1=0 and V2=0 in (12):   (1-ω)/(1+ λ). 

According to the two emotions are considered in the example, (7) is refined into 
two specialized evaluation properties – one for fear and one for hope: 

srs(g, V1) & srs(effect(a), V2) & srs(bfear, V3) &  
connection_between_strength(preparation_for(a), srs(effect(a)), V4) & 
srs(eval_for(effect(a), bfear), V5) 
→→ srs(eval_for(effect(a1), bfear), V5 + γ(h(V4*f(g, effect(a)), V3) – V5) ∆t), 
where f(g, effect(a)) = |V1-V6|, and V6 is calculated by (12) for state effect(a). 
 
srs(g, V1) & srs(effect(a), V2) & srs(bhope, V3) &  
connection_between_strength(preparation_for(a), srs(effect(a)), V4) & 
srs(eval_for(effect(a), bhope), V5) 
→→ srs(eval_for(effect(a), bhope), V5 + γ(h(V4* f(g, effect(a)), V3) – V5) ∆t), 
where f(g, effect(a))=1-|V1-V6|, and V6 is calculated by (12) for state effect(a). 
 

Also specialized versions of other generic properties 3-9 are defined by replacing 
the generic state bem in them by specific emotional response states bfear and bhope. 

Using the developed model a number of simulations have been performed. In 
particular, social decision making in a group of 6 agents with 3 agents of type 1 (see 
Table 1) and 3 agents of type 2 has been modelled.  

Table 1.  Two types of agents used in the simulation.  

Agent type ε for all states to 
all agents 

δ for all states 
from all agents α β γ η ξ 

Type 1: Extravert with a 
positive thinking attitude 0.8 0.8 1 0.7 0.7 0.6 0.1 

Type 2: Introvert with a 
negative thinking attitude 

0.4 0.4 1 0.3 0.7 0.6 0.1 

 
The agents in the group are making choice among two options to move out of the 

building. It is assumed that all agents have the same beliefs about the availability of 
locations in the building and the degree of danger of each location. Path 1 considered 
by each agent is short, but also is more dangerous; whereas the alternative path 2 is 



much longer, but is considered to be more safe. The dynamics of spread of fire and 
smoke is taken into account in the internal processing of the agents. 

 

 
 

Fig. 3. A graphical representation of the emotional decision making model for an emergency 
scenario. 

In Fig. 4 the change of the strength of the links over time between the sensory 
representations of both options and the corresponding preparation states to start the 
option execution is depicted. As one can see from the graphs all agents are more 
inclined to choose the second option. Furthermore, as the group reaches the 
consensus, the difference in the strength of the link for option 2 for both types of 
agents decreases over time. The agents of type 2 are consistently lower in their 
estimation of the options than the agents of type 1. This can be explained by their 
personal characteristics from Table 1.  
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Fig. 4. The change of the strength of the link over time between the sensory representations of 
option1 (left) and option 2 (right) and their preparation states to start the option execution. 

 



In Fig. 5 the change of fear and hope over time for option 1 for both types of agents is 
depicted.  
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Fig. 5. The change of fear (left) and hope (right) for option 1 for both types of agents. 

As can be seen from the graphs, the agents of type 1 have much more hope and much 
less fear than the agents of type 2, even though option 1 is not the most promising 
option. Such dynamics is largely accounted for by the settings of the individual 
parameters of agents from Table 1. 

 5   Conclusion 

In this paper a computational approach for modelling adaptive decision making of 
individuals in a group is proposed. The approach is based on a number of neurological 
theories and principles supplementing each other in a consistent manner. By taking a 
neurological perspective and incorporating cognitive and affective elements in one 
integrated model, a more realistic and deeper and wider understanding of the internal 
processing underlying human decision making in social situations has been achieved. 
This gives a richer type of model than models purely at the cognitive level (and 
ignoring affective aspects), or diffusion or contagion models at the social level 
abstracting from internal processing, for example, as addressed in [14]. 

Although the neurological theories and principles used as a basis for the model 
proposed have been validated to a certain extent, in the future a large-scale validation 
study for the model in the frames of the EU-project SOCIONICAL is planned 
(http://www.socionical.eu). 

Previously, a number of computational models for human decision making 
including different types of cognitive biases and heuristics have been developed, also 
in LEADSTO language [15]. Such models can be readily integrated with the model 
proposed in this paper. More specifically, models of cognitive biases can be used for 
the generation of effect of action states and for the evaluation of these states for the 
generation of emotions. 
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