
Modelling Temporal Aspects of Situation Awareness

Tibor Bosse1, Robbert-Jan Merk1,2, and Jan Treur1
1
Vrije Universiteit Amsterdam, Agent Systems Research Group

De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands
2
National Aerospace Laboratory, Training, Simulation & Operator Performance

Anthony Fokkerweg 2, 1059 CM Amsterdam, The Netherlands
Email: {tbosse, treur}@few.vu.nl merkrj@nlr.nl

Abstract. Computational models of situation awareness can be of interest for different
purposes, varying from the study of human cognition in demanding circumstances to the
development of human-like virtual opponents in serious gaming applications. This paper
presents a novel model of situation awareness, which extends previous work at a number of

points. In particular, the model incorporates qualitative time references, offers the possibility
to use Allen [1]‟s temporal relations, and features an explicit representation of Endsley [4]‟s
three phases of situation awareness. The behaviour of the model has been tested within a
simulation environment for F-16 pilots, and the resulting behaviour has been found
satisfactory using a formal verification tool.

Keywords. cognitive modelling, situation awareness, temporal aspects.

1 Introduction

To enhance and maintain capabilities of professionals who have to work in demanding

circumstances, often simulation-based training in the form of serious gaming is used. One of the
challenges in such applications of serious gaming is to provide a virtual context that has

sufficiently realistic characteristics. In cases where other human agents play an important role, in

particular these have to be represented as virtual agents with realistic human-like behaviour; e.g.,

[10]. As humans are not (always) perfect, to be realistic such virtual agents need to be able to

display biologically plausible limitations in the form of varying degrees of imperfection. A

principled design strategy to develop such agents cannot be based on ad hoc limitations that are

incorporated but need input from cognitive, social and neurological sciences to obtain a

biologically plausible basis for them. A notion identified in these human-directed disciplines as

important for human performance is the notion of situation awareness (SA); see also [7].

In [4] situation awareness is defined according to three phases: perception of cues,

comprehension and integration of information, and projection onto future events. The extent to

which an agent has SA depends on the available cognitive resources, which may be affected, for
example, by stress, high work load, fatigue, and time criticality. In demanding circumstances

such as in air traffic control or military combat a reduction in SA will often negatively affect

performance.

An example application area for virtual agents in simulation-based training is combat flight

simulation, a common method used to train fighter pilots, to learn the skills necessary for optimal

flight behavior; e.g., [6; 9]. This is the application area addressed here. A computational model

for situation awareness is described which has been implemented in an existing training

simulator for F-16 pilots. This model reuses some elements of the model described in [5] (for

example, the use of an underlying mental model) but it adds a number of other features, for

example, the use of qualitative time references, the possibility to use Allen [1]‟s temporal

relations, and a more explicit representation of Endsley [4]‟s three phases.
In the paper, Section 2 describes the modelling approach used, and Section 3 the

computational model for SA. In Section 4 it is described how the model has been used in some

simulation experiments. Section 5 addresses verification of the model against dynamic properties

that are expected. Finally, Section 6 is a discussion.

2 Modelling Approach

To model the different aspects related to the creation of situation awareness from an agent

perspective, an expressive modelling language is needed. On the one hand, qualitative aspects

have to be addressed, such as observations and beliefs of agents about the world. On the other

hand, quantitative aspects have to be addressed. For example, the extent to which a certain belief
is active within the agent‟s working memory can best be described by a real number, and the

update of such activation values can best be described by a mathematical formula. Another

requirement of the chosen modelling language is its suitability to express on the one hand the

basic mechanisms of SA creation (for the purpose of simulation), and on the other hand more

global properties of SA (for the purpose of logical analysis and verification). For example, basic

mechanisms of SA creation involve functions to derive activations of beliefs, whereas examples

of global properties involve the development of such beliefs over longer time periods, like “the

activation values of beliefs gradually decay over time”.

The hybrid predicate-logical Temporal Trace Language (TTL) [2] fulfils all of these

desiderata. It integrates qualitative, logical aspects and quantitative, numerical aspects. This

integration allows the modeller to exploit both logical and numerical methods for analysis and

simulation. Moreover it can be used to express dynamic properties at different levels of
aggregation, which makes it well suited both for simulation and logical analysis.

The TTL language is based on the assumption that dynamics can be described as an evolution

of states over time. The notion of state as used here is characterised on the basis of an ontology

defining a set of physical and/or mental (state) properties that do or do not hold at a certain point

in time. These properties are often called state properties to distinguish them from dynamic

properties that relate different states over time. A specific state is characterised by dividing the

set of state properties into those that hold, and those that do not hold in the state. Examples of

state properties are „agent A observes world fact W‟, or „agent A has belief B with an activation

value of 0.6‟. Real value assignments to variables are also considered as possible state property

descriptions.

To formalise state properties, ontologies are specified in a (many-sorted) first order logical
format: an ontology is specified as a finite set of sorts, constants within these sorts, and relations

and functions over these sorts (sometimes also called signatures). The examples mentioned above

then can be formalised by n-ary predicates (or proposition symbols), such as, for example,

observation(A, W) or belief(A, B, 0.6). Such predicates are called state ground atoms (or atomic state

properties). For a given ontology Ont, the propositional language signature consisting of all

ground atoms based on Ont is denoted by APROP(Ont). One step further, the state properties based

on a certain ontology Ont are formalised by the propositions that can be made (using conjunction,

negation, disjunction, implication) from the ground atoms. Thus, an example of a formalised

state property is belief(A, B1, 0.6) & belief(A, B2, 0.4). Moreover, a state S is an indication of which

atomic state properties are true and which are false, i.e., a mapping S: APROP(Ont) {true, false}.

The set of all possible states for ontology Ont is denoted by STATES(Ont).

To describe dynamic properties of complex processes such as the creation of SA, explicit
reference is made to time and to traces. A fixed time frame T is assumed which is linearly

ordered. Depending on the application, it may be dense (e.g., the real numbers) or discrete (e.g.,

the set of integers or natural numbers or a finite initial segment of the natural numbers). Dynamic

properties can be formulated that relate a state at one point in time to a state at another point in

time. A simple example is the following (informally stated) dynamic property about an agent‟s

observation:

For all traces , there is a time point t such that

at t agent A observes world state W

A trace over an ontology Ont and time frame T is a mapping : T STATES(Ont), i.e., a

sequence of states t (t T) in STATES(Ont). The temporal trace language TTL is built on atoms

referring to, e.g., traces, time and state properties. For example, „in trace at time t property p
holds‟ is formalised by state(, t) |== p. Here |== is a predicate symbol in the language, usually used

in infix notation, which is comparable to the Holds-predicate in situation calculus. Dynamic

properties are expressed by temporal statements built using the usual first-order logical

connectives (such as , , ,) and quantification (and ; for example, over traces, time and
state properties). For example, the informally stated dynamic property introduced above is

formally expressed as follows:

:TRACES t:TIME state(, t) |== observation(A, W)

In addition, language abstractions by introducing new predicates as abbreviations for complex

expressions are supported.

To be able to perform (pseudo-)experiments, only part of the expressivity of TTL is needed.

To this end, the executable LEADSTO language [3] has been defined as a sublanguage of TTL,

with the specific purpose to develop simulation models in a declarative manner. In LEADSTO,

direct temporal dependencies between two state properties in successive states are modelled by

executable dynamic properties. LEADSTO subsumes specifications in difference equation
format. Based on TTL and LEADSTO, two dedicated pieces of software have recently been

developed. The LEADSTO Simulation Environment [3] takes a specification of executable

dynamic properties as input, and uses this to generate simulation traces. Second, to automatically

analyse the simulation traces or empirical traces, the TTL Checker tool [2] has been developed.

This tool takes as input a formula expressed in TTL and a set of traces, and verifies automatically

whether the formula holds for the traces. In case the formula does not hold, the checker provides

a counter example, i.e., a combination of variable instances for which the check fails.

For more details of the LEADSTO language and simulation environment, see [3]. For more

details on TTL and the TTL Checker tool, see [2].

3 The Computational Model

In this section the computational model for situation awareness is described in detail.

3.1 Overview

In the model, situation awareness is represented by dynamically generated and updated sets of

observations and beliefs. The observations represent the input the agent receives from its
environment. Observations are represented in the form

observation(AGENT, WORLD_INFO, REAL)

where the first argument is the owner of the observation, the second argument the world info the

observation is about and the third argument the certainty of the owner that the world info really

holds. Beliefs are represented in the form

belief(AGENT, WORLD_INFO, REAL, TIME)

where the first argument is the owner of the belief, the second argument the world info the belief

is about, the third argument the activation value of that belief and the fourth argument for what

time the agent holds that belief.

Generation of beliefs makes use of an underlying mental model. This is a network of
observations and beliefs where connections have strengths indicated by a real number in the

interval [0, 1]; along these connections activation is spread throughout the network. A connection

has a source observation or belief and a destination belief. Activation is spread from the source

via the connection to the destination belief.

3.2 Updating Activation Values

Updating the beliefs consists of three phases (cf. [4]): perception, comprehension and projection.

In perception, the certainties of observations are determined and used to derive the activation

values of those beliefs directly connected with the observations. In comprehension, the activation

values of beliefs on the present and the past are updated. In projection, the activation values of

beliefs for the future are updated. Each of the three phases has a time limit which determines how
much time the update process for that phase may take. These three time limits model the

phenomenon that humans under time pressure take shortcuts in their reasoning and have

degraded SA.

Perception

In the perception stage, the certainty values of the observations are used to determine the

activation values of a subset of beliefs on the current situation: those connected directly to

observations. This updating process continues until either the time limit of the perception phase

is reached or all beliefs have been updated. Currently, it is assumed that an observation is only

connected to one belief. The update algorithm for the perception stage:

Select from all the beliefs those whose parent

1
 is an observation and put these beliefs in the set S1.

While the perception time limit has not been reached and S1 is not empty

 Select from S1 the belief B with the highest activation value.
Update the activation value of B using the belief activation update formula for perception.

 Remove B from S1.
End while.

The belief activation update formula for perception is as follows.

VB(t+t) = VB(t) + [B (th(, , VO(t)) - VB(t)) - B VB(t)] t

Here the symbols mean:

B The belief for which the activation value is calculated.
O The parent observation of B.

B The update speed parameter (how fast recent updates

 influence the activation value) for B.

B The decay parameter for B

VB(t) The previous activation value of B.
VO(t) The certainty value of observation O.

th(, , VO(t)) The threshold function, with parameters (steepness), and τ (threshold value).

The continuous logistic threshold function used is as follows:

)1)(
1

1

1

1
(),,()

))(

 e

ee
Vth

V

Here

 Steepness parameter

 Threshold parameter

V Input value

1
 The parents of a belief or future belief are defined as those (future) beliefs or observations that are the source in a

connection which has the belief as destination belief.

Comprehension

In the comprehension phase, the activation values of all the beliefs on the present situation are

updated as long as a certain time limit not has been reached. A belief is updated exactly once

during a cycle. To ensure that the update of a belief is based on the most recent information, a

belief is only updated if all its parent beliefs were updated; the belief graph is assumed to have no

cycles. In each iteration, a belief is selected to be updated. For this belief, all the incoming

connections that come from an active belief are used to update the activation value of the selected

belief. The selected belief is marked as considered and the next iteration starts. This continues
until either the time limit of the comprehension phase is reached or all beliefs on the present and

past are updated. In pseudocode:

Select from all the beliefs those whose parent is an observation and put these beliefs in the set Sconsidered.
Select from all the beliefs on the present and the past those whose parents are all beliefs and put these beliefs

in the set Stodo.
While the comprehension time limit has not been reached and Stodo is not empty
 Select from Stodo the belief Bselected to be updated using selected_belief(Stodo, Sconsidered).

 Update the activation value of Bi using the update function for belief activation.
 Remove Bselected from Stodo, add Bselected to Sconsidered.
End while.

The function selected_belief(Stodo, Sconsidered) finds the belief Bselected for which the following

constraints hold:

1) Bselected is a member of Stodo,
2) All the parents of Bselected are in Sconsidered
3) The weighted sum of activation values of the parents Bselected is higher than any such value of all

beliefs for which constraints 1 and 2 hold.

The calculation of the activation value of a belief B is done by using only those connections

whose source belief has an activation value higher than the minimal activation value Minbelief.

This models the phenomenon that activation only spreads from beliefs that have some degree of

activation. The update function for belief activation is as follows.

VB(t+t) = VB(t) + [B (th(, , Cg(B) C,B VC(t)) - VB(t)) - B VB(t)] t

B The belief for which the activation value is calculated.

B The update speed parameter (how fast recent updates influence the activation value) for B.

B The decay parameter for B

VB(t) The previous activation value of B.
VO(t) The certainty value of observation O.

th(, , VO(t)) The threshold function, with parameters (steepness), τ (threshold value for B).

g(B) The set of beliefs C connected to belief B as destination
C A belief from the set g(B).

C,B The strength of connection from C to B.

Projection

If the time limit has not been reached, the projection stage is processed (until the time limit is

reached). In projection, beliefs on the future are updated. The update process is the same as for
beliefs on the current situation, only with a different start set of beliefs. In pseudocode, the

projection process is described by:

Select all beliefs on the present and past and put these in the set Sconsidered.
Select all beliefs on the future and put these in the set Stodo.
While the comprehension time limit has not been reached and Stodo is not empty
 Select from Stodo the belief Bselected to be updated using selected_belief(Stodo, Sconsidered).

 Update the activation value of Bi using the update function for belief activation.

 Remove Bselected from Stodo, add Bselected to Sconsidered.
End while.

4 Simulation Results

The model has been tested against a case study in the domain of air-to-air combat in a tactical

fighter simulator. A simulated fighter airplane was controlled by an agent equipped with the SA

model as described in this paper.

The scenario that was used in the simulator is as follows: the agent flies over an enemy
Surface-to-Air Missile (SAM) site, a ground-to-air weapon system that can launch radar-guided

missiles to take down aircraft. As the agent flies within the weapon range of the SAM site, the

site launches a missile, which is then defeated by the agent. The scenario ends when the agent

leaves the SAM site‟s weapon range. While the scenario is simple, it is important that any agents

operating in the domain can deal with threats like SAM sites in a believable and realistic way.

Fig. 1: Belief graph for the case study

Fig. 1 shows the connections and beliefs used for the scenario. Two concepts have all three time

labels: if a missile is incoming and whether the agent is within the SAM site‟s weapon range. The

observations and connected beliefs are necessary to derive the six higher-level beliefs.

Two trials have been executed, one in which the time limits are set so that all beliefs are

updated continuously (the „Full SA‟ trial), and one in which due to the time limits settings only

half of all beliefs are updated (the „Reduced SA‟ trial). Fig. 2 and Fig. 3 show the progression of

activation values for the various beliefs updated in the perception, comprehension and projection

phases (time in seconds on horizontal axis, activation value on vertical axis).
In the trial with full SA, the beliefs of the perception phase accurately represent the current

changes in the world: for example entering the SAM range (t ≈ 35) and leaving it (t ≈ 135). In the

comprehension phase, the agent remembers that it just has been in the SAM range after leaving it

(t ≈ 135-170). As the agent leaves the SAM range, it assumes that somewhere in the future it will

run into another (see future belief of in_sam_range in the projection phase).

In the trial with reduced SA, the activation values of the agent‟s beliefs are different. As only

a limited amount of beliefs are updated, some beliefs that should have a high activation value do

not have this. For example, the present belief of leaving_sam_range near the end of the trial has a

low activation value while it should be high, and (as a result) the same holds for the past belief of

in_sam_range.

Fig. 2: Activation values with full Situation Awareness.

Fig. 3: Activation values with reduced Situation Awareness

5 Verification of Dynamic Properties

This section addresses analysis of the simulation model by verification of dynamic properties.

Following [2], the dynamics of a simulation model can be studied by specifying certain dynamic

statements that are (or are not) expected to hold in terms of temporal logical expressions, and

automatically verifying these statements against simulation traces. The purpose of this type of

verification is to check whether the simulation model behaves as it should. A typical example of

a property that may be checked is whether no unexpected situations occur, such as a variable

running out of its bounds (e.g., some activation value > 1). By running a large number of

simulations and verifying such properties against the resulting simulation traces, the modeler can

easily locate the sources of errors in the simulation.

For the SA model presented in this paper, various dynamic properties have been formalized in

the language TTL [2], and have been checked against the simulation traces described in Section

4. Below, a number of them are introduced, both in semi-formal and in informal notation (note

that they are all defined for a particular trace and time interval between tb and te):

P1 - Monotonic Decrease of Activation Values

For all time points t1 and t2 between tb and te in trace

if at t1 the activation value of the agent‟s belief of world info w at interval i is x1
and at t2 the activation value of the agent‟s belief of world info w at interval i is x2

and t1 < t2

then x1 x2.

P1(:TRACE, tb, te:TIME, w:WORLD_INFO, i:INT)

t1,t2:TIME x1,x2:REAL

state(, t1) |== belief(w, x1, i) & state(, t2) |== belief(w, x2, i) &

tb t1 te & tb t2 te & t1 < t2

 x1 x22

Property P1 can be used to check whether the activation values of certain beliefs decrease (or

increase) monotonically over a certain time period. For instance, after certain world information

is observed, the corresponding present belief (according to graphs as in Fig. 1) should first

increase for a number of time steps, and should then decrease monotonically until the same

observation is made again. As a concrete example, within the „Full SA‟ trace, the activation value

of present belief sam_missile_detected should decrease monotonically from time point 83 until the

end of the simulation (see also Fig. 2). This indeed turned out to be the case: property

P1(full_SA_trace, 83, 200, sam_missile_detected, present) succeeded. For the other beliefs, similar
checks were performed, both for the Full SA and for the Reduced SA trace. The results indicated

that the activation values of all beliefs indeed decrease over the expected time periods.

P2 - Activation Values between Boundaries

For all time points t between tb and te in trace

if at t the activation value of the agent‟s belief of world info w at interval i is x
then min < x < max.

P2(:TRACE, tb, te:TIME, w:WORLD_INFO, i:INT, max, min:REAL)

t:TIME x:REAL

state(, t) |== belief(w, x, i) & tb t te

 min x max

This property can be used to check whether the activation values stay between certain

boundaries. For the current model, they should never become lower than 0 or higher than 1,

which indeed turned out to be the case for the generated traces (i.e., property P2(trace, 0, 200, w, i,

0, 1) succeeded for all traces, w, and i). A similar property (not shown here) was checked for the

strength of all connections in the model; these also turned out to stay between 0 and 1.

P3 - Generation of Present Beliefs

For all time points t1 between tb and te in trace
if at t1 the agent observes world info w (with certainty 1.0)

then within d time points the agent will have a present belief of w with an activation value x of at least p.

2
 Note that a stronger variant of this (and similar) properties can be created by replacing by >.

P3(:TRACE, tb, te:TIME, w:WORLD_INFO, d:TIME, p:REAL)

t1:TIME

state(, t1) |== observation(w, 1.0) & tb t1 te

 t2:TIME x:REAL [state(, t2) |== belief(w, x, present) & t1 t2 t1+d & x ≥ p]

By checking property P3, one can check whether the generation of present beliefs is

performed correctly. Also, the property can be used to check whether the activation value of the

belief reaches a specified threshold p, and whether this happens within a specified time period d.

For example, for the Full SA trace, this property pointed out that any observation by an agent is

converted within 13 time steps into a corresponding present belief with at least activation value

0.78: property P3(trace, 0, 200, w, 13, 0.78) succeeded for all w. For the Reduced SA trace, this

property did not succeed. The reason for this is, among others, that the observation of

leaving_sam_range is not converted into a corresponding belief in this trace. This illustrates that,

with reduced SA, the agent generally has less resources to convert observations into beliefs.

6 Discussion

In recent years, the concept of situation awareness has received an increasing attention within

Artificial Intelligence, Cognitive Science, and Human-Computer Interaction. Computational

models of SA can be of interest for different purposes, varying from the study of human cognition

in demanding circumstances to the development of human-like virtual opponents in serious

gaming applications. In this paper, a novel SA model has been presented, which has been inspired

by [5]. This model has been based upon the three key stages within situation awareness as defined

by Endsley [4]: the perception of cues, the comprehension and integration of information, and the

projection of information into future events.

The current model extends the model by [5], among others, by incorporating qualitative time

references, the possibility to use Allen [1]‟s temporal relations, and a more explicit representation
of Endsley [4]‟s three phases. Moreover, the behaviour of the model has been tested by

implementing it within an agent that acts in a simulation environment for F-16 pilots. The runs of

the simulator have been logged in the form of traces, and using a formal verification tool [2], a

number of relevant dynamic properties have been checked against these traces. Although this is

obviously not an exhaustive proof for the correctness of the model, it provides a first indication

that the model behaves as intended.

Future work will address further testing of the model, using different and more complex

scenarios. In addition, a more elaborated experiment is currently being set up, in which multiple

domain experts will play realistic missions against the model, and will be asked to evaluate

various aspects of the agent‟s perceived behaviour by means of a questionnaire.

Regarding related work, other models have been proposed for the design of intelligent agents
with SA, see e.g. [7; 12]. However, these models are limited as they do not represent all

necessary aspects and stages of SA as have been distinguished in this paper. A more detailed

model of SA can be found in [8], but it does not make use of a general method to integrate

observations into higher level beliefs and is therefore difficult to apply in new situations. A

computational model proposed for SA that takes Endsley‟s model as a point of departure is

described in [11]. The first two phases are covered, but the temporal projection phase of

Endsley‟s model is not modelled in [11].

References

1. Allen, J.F.: An interval-based representation of temporal knowledge, Proceedings of the Seventh
International Joint Conference on Artificial Intelligence (IJCAI), pp. 221-226 (1981)

2. Bosse, T., Jonker, C.M., van der Meij, L. Sharpanskykh, A., and Treur, J.: Specification and
Verification of Dynamics in Agent Models. International Journal of Cooperative Information Systems,

vol. 18, pp. 167-193 (2009)
3. Bosse, T. Jonker, C.M., Meij, L. van der, and Treur, J.: A Language and Environment for Analysis of

Dynamics by Simulation. International Journal of Artificial Intelligence Tools, volume 16, issue 3, pp.
435-464 (2007)

4. Endsley, M.R.: Toward a theory of Situation Awareness in dynamic systems. Human Factors 37(1), 32-
64 (1995)

5. Hoogendoorn, M., van Lambalgen, R.M., and Treur, J.: Modeling Situation Awareness in Human-Like
Agents using Mental Models. In: Walsh, T. (ed.), Proceedings of the Twenty-Second International Joint

Conference on Artificial Intelligence, IJCAI'11, pp. 1697-1704 (2011)
6. Jacobs, J.W. and Dempsey, J.V.: Simulation and gaming: Fidelity, feedback, and motivation. In: J. V.

Dempsey & G. C. Sales (Eds.), Interactive instruction and feedback (pp. 197-227). Englewood Cliffs,
NJ: Educational Technology (1993)

7. Jones, R.M., Laird, J.E., Nielsen, P.E., Coulter, K.J., Kenny, P. & Koss, F.V.: Automated intelligent
pilots for combat flight simulation. AI Magazine 20(1), 27-42 (1999)

8. Juarez-Espinoza, O. and Gonzalez, C.: Situation awareness of commanders: a cognitive model. Paper
presented at the conference on Behavior representation in Modeling and Simulation (BRIMS),

Arlington, VA (2004)
9. Salas, E. and Cannon-Bowers, J.A.: The science of training: a decade of progress. Annual Review of

Psychology 52, 471-499 (2001)
10. Silverman, B.G., Cornwell, J, Johns, M., and O‟Brien, K.: Human behavior models for agents in

simulators and games: part I: enabling science with PMFserv. Presence: Teleoperators and Virtual
Environments 15(2), 139-162 (2006)

11. So, R. and Sonenberg, L., Situation Awareness in Intelligent Agents: Foundations for a Theory of
Proactive Agent Behavior. In: Proceedings of the IEEE/WIC/ACM International Conference on
Intelligent Agent Technology (IAT‟04), pp. 86-92 (2004)

12. Wickens, C.D., McCarley, J.S., Alexander, A.L., Thomas, L.C., Ambinder, M., and Zheng, S.:
Attention-Situation Awareness (A-SA) model of pilot error. In: D.C. Foyle, & B.L. Hooey (Eds.)
Human Performance Modeling in Aviation. CRC Press, Taylor and Francis Group, NW (2008)

