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Abstract. Agent-based applications have the potential to assist humans in their 

lifestyle change, for instance eliminating addictive behaviours or adopting new 

healthy behaviours. In order to provide adequate support, agents should take 

into consideration the main mechanisms underlying behaviour formation and 

change. Within this process habits play a crucial role: automatic behaviours that 

are developed unconsciously and may persist without the presence of any goals. 

Inspired by elements from neurological literature, a computational model of 

habit formation and change was developed as a basis for support agents able to 

assist humans in lifestyle and behaviour change. Simulations are presented 

showing that the model exhibits realistic human-like behaviour.  
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1 Ambient Support for Lifestyle Change 

In Western societies health policy is directed at the reduction of medical costs by 

switching more and more from the treatment of diseases resulting from unhealthy 

lifestyle to promotion of healthy lifestyle habits [18]. Lifestyle change may comprise 

eliminating bad habits, for example addictive behaviours (e.g., smoking, alcohol or 

drugs use), and may simultaneously be directed at adopting new healthy habits, such 

as dieting and increasing physical activity (e.g., [13], [20], [24], [29], [30]). 

Considering the fact that lifestyle change requires intensive support, monitoring and 

supervision (e.g., [25]), the potential of smart ambient applications that assist humans 

in their daily life is substantial, as they allow for constant monitoring and instant 

feedback. In order to provide adequate support for humans, these support applications 

should be able to reason about the main determinants of human behaviour and the 

mechanisms underlying behaviour change. 

Apart from conscious goals and decisions, human behaviour is often based on 

habits – automatic behaviours that can be developed and maintained unconsciously. 

Habits may persist without the presence of any clear and definite goals and are very 

difficult to overcome. The model for habit learning and change presented In this paper 

can be used as basis for ambient intelligence applications to support lifestyle change. 

Using the model, an ambient application can predict – given a certain context or cue – 

the behaviour of a person with already formed habits. In addition, the system can 



exploit the model to reason about required changes in the context or goals that need 

more attention in order to form new habits or get rid of old ones.  

The proposed computational model of habit learning was inspired by elements 

from the neurological literature on habit learning (e.g., [1], [8], [10], [31]), and neural 

plasticity, such as Hebbian learning (e.g., [3], [11]), and adopts such adaptive 

mechanisms. The model has been formally specified in an executable manner, in 

order to conduct experiments and to allow the model to be embedded in an intelligent 

software agent that can support humans in their lifestyle and behaviour change. 

This paper is organized as follows. Section 2 addresses some background 

information on habit learning and change and the neural mechanisms underlying these 

processes. In Section 3 the description of the model is presented, Section 4 

demonstrates some simulation results. Automated verification of the model is 

presented in Section 5, and finally, Section 6 contains discussion on the topic. 

2 Background on Habit Learning 

Habits are learned dispositions to repeat past responses (cf. [31], p. 843), which by 

themselves were goal-driven. Once habits have been acquired, they are triggered by 

the cues in a certain context that co-occurred frequently with past performance, and 

which activate habitual responses directly, without the mediation of goals. These cues 

can be locations, objects, sequence of actions or presence of particular persons during 

or preceding the action performance. Habits formation corresponds thus to a context-

response learning that is acquired slowly with experience ([31], p. 844).  

Behaviourists described habits as behaviour as creation of connections between 

stimulus and a particular response (e.g., [26], [28]). The cognitivist perspective on 

human behaviour suggests the existence of a central executive controller of behaviour 

(e.g., [21]). Nowadays, neurological literature describes the mechanisms underlying 

habit formation, which explain the behaviourists’ stimulus-response-based learning 

phenomenon, and introduces the concept of neural plasticity. Learning occurs due to 

the change of the connections strengths, for example, based on a principle known as 

Hebbian learning (e.g., [3], [11], [16]). It states that if two or more neurons are co-

activated, the connections between these neurons strengthen. For example, repeated 

action in a certain context results to the gradual strengthening of the connection 

between the context representation and this particular response.  

These associations are difficult to override, though it is possible to influence 

habits (indirectly) via the activation of new goals. Strong goals that aim to direct 

one’s behaviour are associated with activation in the prefrontal cortex. This activation 

can inhibit the activation of subcortical structures (e.g., basal ganglia and cerebellum), 

associated with habitual behavior (e.g., [1], [8], [19], [27], [28]). Thus, when habits 

and goals are both present to guide action, they interact such that under some 

circumstances humans respond habitually and under other they exert regulatory 

control to inhibit the cued response. 

Although a habit is no longer goal-mediated, it can be regulated by post-hoc goal 

inference or cue control, for example, by 1) inhibiting the performance of responses, 

2) drawing one’s attention to the undesired behavior, 3) associating the learned 

context with multiple responses or 4) altering exposure to the cues in the context [31]. 



Summarising, from neurological literature such as [1], [8], [10], [15], [19], [23], [27], 

[32], [36] the following characteristics of habit learning have been identified: 

1. Under repeated occurrence of cues and under influence of goal-directed behaviour leading 

to satisfaction, habits are developed. 

2. When a habit has developed, the behaviour will also occur without the presence of a goal, 

when the cue is present. 

3. A developed habit will persist when the relevant goal is present, also in absence of the cue. 

4. When a habit was developed based on a goal, and this goal is changed to another 

(competitive) goal, then the habit can change to a new habit. 
 

These patterns have served as requirements for the design of the adaptive 

computational model described in Section 3. The patterns themselves will be 

formalized in Section 4 and checked for simulation traces of the computational model. 

3 The Computational Model for Habit Learning 

The structure of the computational model presented in this section is based on the 

literature described in the previous section. The model is at a cognitive level, which 

still reflects the underlying neurological concepts, but without taking into account too 

many neurological details. It uses temporal relationships to describe the mechanisms 

at work. An overview of the model is depicted in Fig. 1. It enables two alternative 

ways (paths) in which behaviour can be generated. The first is by the activation of a 

long term goal (e.g., loose weight), a short term goal corresponding to this long term 

goal (reduce consumption of high calorie food), generation of an intention (able to 

achieve the goals), and finally execution of this intended action. The second path goes 

directly via cue activation in a certain context to the activation of a particular 

intention that leads to the action execution. This path corresponds to the habit, which 

is learned over time: the connection between cue and intention changes dynamically 

after their simultaneous activation according to the Hebbian learning principle.  

In the model also the influence of feeling on the chosen action has been 

incorporated: frequent execution of a particular action provides a reinforcement by the 

feeling of satisfaction after the performed action, and this feeling leads in turn to the 

higher activation of the intention related to this action. For example, a positive feeling 

of satisfaction resulting from the consumption of delicious cookies will lead to higher 

activation of the intention of eating these cookies. The model allows for multiple 

goals and intentions that result in behaviour. In principle each long term goal has 

connections with different strengths to short term goals, and the same holds for cues.  

The dynamical relationships below describe the model in semi-formal form and in 

a formal temporal relation notation in LEADSTO (cf. [6]). Within LEADSTO a 

dynamic property or temporal relation a →→ b denotes that when a state property a (or 

conjunction thereof) occurs, then after a certain time delay, state property b will 

occur. Below, this delay will be taken as a uniform time step ∆t. The first dynamic 

relationship addresses the Hebbian learning principle applied for the connections 

between cues en intentions, as also described in ([11], p. 406). 
 

LP1  Cue-intention connection adaptation  

If relevant cue C with level V1 occurs and intention I has value V2 

and learning rate from cue C to intention I is η   and  extinction rate from cue C to intention I is ζ 



and the connection strength between cue C and intention I is w1 

then after ∆t the connection from cue C to intention I will have  

 strength w1 + (η*V1*V2( 1 - w1) - ξ *w1)* ∆t 

cue(C, V1) &  intention(I, V2)  & learning_rate(C, I, η) &  extinction_rate(C, I, ζ)  & connection_strength(C, I, w1)  

→→  connection_strength(C, I, w1 + (η*V1*V2( 1 - w1) - ζ *w1)* ∆t) 

 

  
Fig. 1. Computational model for habit learning: overview 

 
 

The following relationship specifies how activations of short term goals are 

determined based on long term goals and cues. 
 

LP2  Short term goal from cue and long term goals  
If relevant cue C with level V0 occurs, 

and long term goal LG1 has value  V1 …  and long term goal LGn has value  Vn 

and the connection strength between cue C and short term goal SG is w0 

and the connection strength between long term goal LG1 and short term goal SG is w1 

and the connection strength between long term goal LG2 and short term goal SG is w2 



 … 

and the connection strength between long term goal LGn and short term goal SG is wn 

and short term goal SG1 has value V3 

then short term goal SG1 after ∆t will have  

level V3 + α(g(σ1,τ1, V0, V1 , V2, …, Vn,  w0, w1, w2, …, wn) – V3) ∆t 

cue(C, V0) &  ltgoal(LG1, V1) & … ltgoal(LGn, Vn) & connection_strength(C, SG, w0) &  

connection_strength(LG1, SG, w1) & … connection_strength(LGn, SG, wn) & stgoal(SG1, V3) 

→→  stgoal(SG1, V3 + α(g(σ1, τ1, V0, V1 , V2, Vn,  w0, w1, w2, wn) – V3) ∆t) 
 

Here α is a speed parameter that defines the impact of long term goals and context 

cues upon the new activation value of the short term goal. Moreover, g is a 

combination function for which various choices are possible; a logistic threshold 

function has been chosen:  g(σ, τ, V0, …, Vn,  w0, …, wn)  =  th(σ, τ, w0V0+  … + wnVn) with 

 th(σ, τ, V) = 1/(1+ e - 4σσσσ (V- τ)) 

Parameters σ  and τ define steepness and threshold values of the function. The 

threshold function ensures that the value of the goal is most often either close to zero 

or close to one. Only when the input for the threshold function is close to the 

threshold value itself, the values of the goal are somewhere between 0 and 1. In all 

subsequent formulae the combination function g is always based on a threshold 

function of this form.  

The third relationship of the model describes how intentions are determined. 

Intentions depend on short term goals and cues, and the feelings of satisfaction for 

both short and long term goals. Moreover, different intentions also affect each other 

by a form of mutual inhibition. Note that for the sake of simplicity in LP3 only two 

long term and short term goals are considered. 
 

LP3  Intention dynamics 

If short  term goal satisfaction SGSAT1 has value V1 

and long  term goal satisfaction LGSAT1 has value V2 

and short  term goal satisfaction SGSAT2 has value V3 

and long  term goal satisfaction LGSAT2 has value V4 

and relevant short term goal SG1  has value V5 

and relevant cue C has value V6  

and  intention I1 that corresponds to these goals has value V7 

and  intention In has value V8 

and the connection strength between intention I1 and intention In  is w1 

and the connection strength between short term goal SG1 and intention I1 is w3 

and the connection strength between cue C and intention I1 is w4 

and the connection strength between short  term goal satisfaction SGSAT1 and intention I1 is w5 

and the connection strength between long term goal satisfaction LGSAT1 and intention I1 is w6 

and the connection strength between short  term goal satisfaction SGSAT2 and intention I1 is w7 

and the connection strength between long  term goal satisfaction LGSAT2 and intention I1 is w8 

then intention I1 that corresponds to these goals after ∆t will have value  

V7 + β (g((σ2,τ2, V8, V9, V1, V2 , V3, V4, V5, V6, w 3, w 4, w 5, w 6, w 7, w 8,  w 1 ) – V7) * ∆t  

stg_satisfaction(SGSAT1, V1) & ltg_satisfaction(LGSAT1, V2) & stg_satisfaction(SGSAT2, V3) &  

ltg_satisfaction(LGSAT2, V4) & stgoal(SG1, V5) & cue(C, V6) & intention(I1, V7) & intention(In, V8) & 

connection_strength(I1, In, w1)  & connection_strength(SG1, I1, w3) & connection_strength(C, I1, w4) & 

connection_strength(SGSAT1, I1, w5) & connection_strength(LGSAT1, I1, w6) & 

connection_strength(SGSAT2, I1, w7) & connection_strength(LGSAT2, I1, w8)  

→→  intention(I1, V7 + β (g(σ2, τ2, V8, V9, V1, V2 , V3, V4, V5, V6, w3, w4, w5, w6, w7, w8,  w1 ) – V7)  ∆t)  
 



Here β is a parameter that defines the impact of inhibition of other intentions, and the 

feeling of satisfaction from the performed actions upon the intention to perform new 

actions. Weight w1 is negative here as it defines inhibition from the alternative 

competing intention(s). It is assumed that different intentions are conflicting, in other 

words one cannot perform two behaviour simultaneously to satisfy different goals; for 

this reason the weights between the intentions are always negative, or inhibitory. The 

step from intention to behaviour has been kept simple: 
 

LP4  From intention to behaviour 

If intention  I with level V occurs,    and V> threshold 

then behaviour with level V will occur 

intention(I, V) &   V> threshold →→  behaviour(B, V) 
 

The feeling of satisfaction for a long term goal was modelled as follows: 
 

LP5  Long term goal satisfaction  
If behaviour B1 with level V1 occurs     and intention I1 has value V2 

and long term goal LG corresponding to this behaviour has value V3 

and long term goal satisfaction LTSAT has value V4 

and connection strength from behaviour B1 to the long term goal satisfaction LTSAT is w1 

and connection strength from intention I1 to long term goal satisfaction LTSAT is w2 

then long term goal satisfaction LTSAT after ∆t will be V4 + θ (f((σ3,τ3, V3 , V1, V2,  w1, w2) – V4) * ∆t 

behaviour(B1, V1) & intention(I1, V2) & ltgoal(LG, V3) & ltg_satisfaction(LTSAT, V4) & 

connection_strength(B1, LTSAT, w1) & connection_strength(I1, LTSAT, w2)  

→→  ltg_satisfaction(LTSAT, V4 + θ (f(σ3, τ3, V3 , V1, V2,  w1, w2) – V4) * ∆t) 
 

Here parameter θ defines the impact of a long term goal, behaviours and intentions 

upon the long term goal satisfaction. The feeling of satisfaction for a short term goal 

was modelled in a similar manner: 
 

LP6  Short term goal satisfaction  

If behaviour B1 with level V1 occurs     and intention I1 has value V2 

and short term goal SG corresponding to this behaviour has value V3 

and short term goal satisfaction STSAT has value V4 

and connection strength from behaviour B1 to the short term goal satisfaction STSAT is w1 

and connection strength from intention I1 to short term goal satisfaction STSAT is w2 

then short term goal satisfaction STSAT after ∆t will  

 be V4 + θ (f((σ4,τ4, V3 , V1, V2,  w1, w2) – V4)  ∆t 

behaviour(B1, V1) & intention(I1, V2) &   stgoal(SG, V3) & stg_satisfaction(STSAT, V4) & 

connection_strength(B1, STSAT, w1) & connection_strength(I1, STSAT, w2)  

→→  stg_satisfaction(STSAT, V4 + θ (f(σ4, τ4, V3 , V1, V2,  w1, w2) – V4) * ∆t)  
 

4 Simulation and Verification 

The cognitive computational model described in the previous section was 

implemented in the Matlab environment. A number of simulations of 50 and 200 time 

steps have been performed. For the sake of simplicity only two initial long term goals 

and the corresponding behaviours were assumed. In this section four example 

simulation runs of 50 time steps are presented. These simulations illustrate the ability 

of the computational model to exhibit important patterns of habit learning and change. 

In Table 1 the values are shown used for learning and extinction rate, steepness and 



threshold values, speed factors, and connection weights (note that weight values for 

interaction between two options are symmetric). In order to investigate whether the 

computational model indeed learns and behaves according to what is expected, some 

logical properties (requirements) have been identified, formalized, and verified 

against the simulation traces of the model (see also the characteristics informally 

described at the end of Section 2). In this section, first the language used to express 

such properties is briefly introduced, followed by the specification of the actual 

properties, presentation of an example trace illustrating the pattern, and the result of 

their verification.  
 

Table 1. Parameter and connection weight values used 

 

 

 

connection weight connection weight connection weight 

cue-intention1 initially 0.1 stsat1- intention2 0.2 intention1-stsat1 0.9 

cue-intention2 initially 0.1 intention1-behaviour1 1  behaviour1-stsat1 0.9 

cue-stgoal1 0.1 intention2-behaviour2 1  intention2-ltsat1 0.2 

cue-stgoal2 0.1 intention1-intention2 -0.9 behaviour2-ltsat1 0.1 

ltgoal1-stgoal1 0.9 intention2-intention1 -0.9 intention2-stsat1 0.2 

ltgoal1-stgoal2 0.2 intention1-ltsat1 0.9 behaviour2-stsat1 0.1 

ltgoal2-stgoal1 0.2 behaviour1-ltsat1 0.9 behaviour1- ltsat2  0.1 

ltgoal2-stgoal2 0.9 intention2-ltsat1 0.1 behaviour1-stsat2  0.1 

ltsat1- intention1 0.9 intention2-stsat1 0.1 behaviour2- ltsat2  0.9 

ltsat1- intention2 0.2 intention1-ltsat2 0.1 behaviour2- stsat2  0.9 

stsat1- intention1 0.9 intention1-stsat2 0.1   
 

Formal specification of desired properties of the computational model enables 

automatic verification of them against simulation traces. This was performed using 

the hybrid language TTL and its software environment [5]. TTL is built on atoms 

referring to states of the world, time points and traces, i.e. trajectories of states over 

time. Dynamic properties are temporal statements formulated with respect to traces in 

the following manner. Given a trace γ, the state in γ at time point t is denoted by 

state(γ, t). These states are related to state properties via the infix predicate |=, where 

state(γ, t) |= p denotes that state property p holds in trace γ at time t. Based on these 

statements, dynamic properties are formulated in a sorted first-order predicate logic, 

using quantifiers over time and traces and the usual first-order logical connectives 

such as ¬, ∧, ∨, ⇒, ∀, ∃. For more details on TTL, see [5]. 

Each of the three subsections addresses one scenario. In the figures that 

demonstrate the simulation results, time is depicted on the horizontal axis and the 

activation values of the variables of interest are depicted on the vertical axis.1 

                                                                 

1 Note that gradual values for intentions, cues and goals are assumed, which represent the 

strength of the presence of these variables as perceived by the subject. 

η ζ α σ1 τ1 β σ2 τ2 thr θ σ3 τ3 σ4 τ4 

0.5 0.01 0.8 15 0.9 0.8 20 0.5 0.5 0.8 15 0.2 15 0.6 



4.1 Habit formation 

In this simulation a specific behaviour is generated by a strong long term goal related 

to this behaviour in the presence of a strong cue. As a result even after a decrease of 

the value of the goal corresponding to this behaviour after time point 24, the 

behaviour persists up to end of the simulation; see Fig. 2. The value of the second 

long term goal is kept low during the whole simulation; therefore the second type of 

behaviour that corresponds to this goal does not come to expression. To verify this 

pattern formally, it first has to be checked whether a specific behaviour results from 

the presence of a high-level goal and a cue: 
 

P0:  Long-term goal and cue leads to behaviour 

If a cue and a high-level goal are present for a certain time duration MIN_DURATION, then at some 

later time the corresponding behaviour will be present. 

∀γ:TRACE, t:TIME   [ habit_learning_phase(γ:TRACE, t:TIME, MIN_DURATION, ACT_VALUE2) 

 ⇒ ∃t2:TIME > t , R3:REAL     state(γ, t2) |= has_value(beh1,R3) & R3 > ACT_VALUE2 ] 
 

Here (and in the other properties below) the following abbreviation is used: 

habit_learning_phase(γ:TRACE, t:TIME, MIN_DURATION:INTEGER, ACT_VALUE:REAL) ≡≡≡≡ 

∀t2:TIME > t & t2 < t + MIN_DURATION  [ ∃R1:REAL state(γ, t2) |= has_value(ltg1, R1) & R1 > ACT_VALUE2 

&  ∃R2:REAL state(γ, t2) |= has_value(cue1, R2) & R2 > ACT_VALUE2 ] 
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 Fig. 2.  Habit formation and persistence         Fig. 3. Habit formation and cue removal 
 

Property P0 corresponds to characteristic pattern 1 of habits as defined at the end of 

Seciton 2, and has been automatically checked and proven to be true for the following 

values of the constants: MIN_DUR = 2, MAX_LEVEL_P1 = 0.5, ACT_VALUE1 = 0.5, 

ACT_VALUE2 = 0.7. All properties described in the remainder of this section have been 

automatically verified and found satisfied for these values. The pattern of habit 

formation itself (characteristic pattern 2) was specified as follows: 

P1:  Habit persistence 

If a cue and a high-level goal have been present for some time period MIN_DURATION, the 

behaviour will exist in the presence of a cue even if the goal is no longer present. 

∀γ:TRACE, t:TIME 

[ habit_learning_phase(γ:TRACE, t:TIME, MIN_DURATION, ACT_VALUE2)   &     

∀t2:TIME > t + MIN_DURATION, R3: REAL   [ state(γ, t2) |= has_value(ltg1, R3) ⇒ R3 < ACT_VALUE1 ]] 

  ⇒ [∀t3:TIME > t2, R4: REAL     state(γ, t3) |= has_value(cue1, R4)  & R4 > ACT_VALUE2   

⇒     ∃t4:TIME>t3, R5:REAL  state(γ, t4) |= has_value(beh1, R5) & R5 > ACT_VALUE2 ]] 



When in the scenario in Fig. 3, after time point 26 the value of the cue is substantially 

decreased, habitual behaviour is not performed anymore from time point 31. As 

expected, and shown in Fig. 3, the second behaviour (‘behaviour 2’) does not occur. 

Formally, the illustrated characteristic is specified as follows. 

P2:  Habit and cue removal 

If a habit is formed and the cue and the goal are no longer present, the behaviour will after some time 

cease to exist. 

∀γ:TRACE, t:TIME [ [habit_learning_phase(γ, t, MIN_DURATION, ACT_VALUE2) & 

∀t2:TIME > t + MIN_DURATION, R1, R2: REAL  [ state(γ, t2) |= has_value(cue1,R1) ⇒ R1 < ACT_VALUE1 & 

state(γ, t2) |= has_value(ltg1, R2) ⇒ R2 < ACT_VALUE1 ] 

⇒   ∃t3:TIME > t2, R3: REAL   state(γ, t3) |= has_value(beh1,R3)  &  R3 < ACT_VALUE1 ] ] 

4.2 Influence of long term goal on behaviour 

This scenario demonstrates how behaviour is influenced by goals in the absence of the 

learned cue; see Fig. 4. In the beginning habitual behaviour is formed: a strong cue is 

present and a behaviour pattern that coincides with the first long term goal. The value 

of the goal remains the same during the whole run, but the cue almost disappears after 

time point 24. The low value of the cue does not prevent the behaviour to occur due to 

the strong influence of the long term goal. This corresponds to characteristic habit 

pattern 3 from Section 2. This was specified as follows. 
 

P3:  Habit and cue removal in presence of strong goal 

If a habit is formed, the behaviour will still exist if the cue is not present any more and 

the high-level goal is present. 

∀γ:TRACE, t:TIME,  

[ [habit_learning_phase(γ, t, MIN_DURATION, ACT_VALUE2)  & 

    ∀t2:TIME > t + MIN_DURATION, R3: REAL    [state(γ, t2) |= has_value(cue1, R3) ⇒ R3 < ACT_VALUE1 ] 

  ⇒ [∀t3:TIME > t2, R4: REAL  

     state(γ, t3) |= has_value(ltg1, R4)  & R4 > ACT_VALUE2  ⇒  

∃t4:TIME>t3,R5:REAL  state(γ, t4) |= has_value(beh1, R5) & R5 > ACT_VALUE2 ]] 
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      Fig. 4. Influence of the goal on behaviour           Fig. 5. Behaviours resulting from the          

               in the absence of the original cue                 goal change 



4.3 The effect of goal change 

In this simulation the result of the switch from one goal to another is demonstrated in 

the presence of a strong cue. As shown in Fig. 5, the habitual behaviour (‘behaviour 

1’ in the picture) does not disappear immediately after adopting a new goal, 

conflicting with the previous one. It takes a little time to perform new behaviour 

pattern after the new goal has been adopted. This simulation demonstrates how the 

old undesired habitual behaviour can be substituted with the new positive behaviour. 

The formal specification of this pattern is: 

P4:  New goal results in new habit 

If a habit is formed for long term goal ltg1, which disappears, a new behaviour will be developed if 

another long term goal ltg2 is present 

∀γ:TRACE, t:TIME _DURATION [ [habit_learning_phase(γ, t, MIN_DURATION, ACT_VALUE2)  & 

  ∀t2 > t+MIN_DURATION, R1, R2, REAL   [ state(γ, t2) |= has_value(ltg1,R1) ⇒ R1 < ACT_VALUE1 ] & 

 [ state(γ, t2) |= has_value(ltg2,R2) ⇒ R2 > ACT_VALUE2 ]  

⇒ ∃t3:TIME > t2 , R3, R4, REAL   [ state(γ, t3) |= has_value(beh1,R3) & R3 < ACT_VALUE1 &   

[ state(γ, t3) |= has_value(beh2,R4) & R4 > ACT_VALUE2 ] ] 

Fig. 5 also shows the effects of P1, which demonstrate that the new behaviour results 

in a habit after some amount of time: the behaviour persists even after the 

corresponding long term goal is no longer present.  Combined, P1 and P4 account for 

characteristic habit pattern 4.  

5 Discussion and Conclusions 

The cognitive computational model presented above can form the basis of an 

intelligent ambient support application. To this end, an agent based approach for 

creating ambient intelligence applications can be used [4]. Within such a framework, 

the ambient system consists of components, i.e., agents, that have context awareness 

about human behaviours and states, and (re)acts on these accordingly. For this 

purpose, the behaviour of the subject of the system (a person taken care of) relevant to 

the support provided should be explicitly described, e.g., via a computational model. 

If this is the case, an ambient agent can (re)act by undertaking actions in a 

knowledgeable manner that improve the human’s wellbeing and performance.  

Reasoning using an explicit model of the behaviour of a process is called model-

based reasoning [22]. Basically, there are two ways in which model-based reasoning 

on habits can be used within an intelligent support application. First, predictions can 

be made of what will happen given certain cues /contexts, long term goals and short 

term goals. For example, if the system has identified a specific behaviour – such as 

the eating of cookies at work – several times in the past, and it has knowledge about 

the short-term and long-term goals, it can predict whether a person in the work-

context will again eat a cookie. These predictions capabilities allow a support 

application to take action before an undesired habit actually took place. Second, the 

model can be used to perform analysis of the causes of the undesired behaviour and 

the effect of interventions on the behaviour of a person [9]. Causes of behaviour can 

be determined by backward abductive reasoning. For example, if an undesired 

behaviour is taking place, the presented computational model can be used to find 

hypothetical causes for this behaviour, for example a short term goal that leads to the 



intentions for the undesired behaviours. Symmetrically, forward deductive model-

based reasoning derives the effect of interventions on the behaviour. For example, 

determining the effect of a different or more important long term goal after some 

time. This can be used by the ambient intelligence application to explicitly change the 

situation, e.g. removing cues, generating additional intention for long term goals 

leading to different behaviour, or suggesting actions to create new (more desired) 

habits.  

Existing models of habit learning take either the perspective of behaviourism that 

does not follow the internal mechanisms underlying habit development (e.g., [7], 

[17]) or propose the description of habit learning in a very detailed manner at the 

lowest neurological level (e.g., [2], [7], [14]). The proposed computational model is at 

a cognitive level, between the neurological and behavioural level. The proposed way 

of modeling is a manner to exploit within the computational modeling area principles 

from the neurological literature, by lifting neurological knowledge to a mental 

(cognitive/affective) level. In order to successfully model more complex and human-

like behaviour, for example incorporating mutual cognitive/affective interactions, and 

adaptive behaviour, the modeler has to consider such numerical modeling techniques; 

see also [23]. 

In future work, the model will be deployed on actual data and used to improve 

habit performance. Also, the model could be improved by taking into account the 

environment in which a person is embedded, which is currently limited to perceiving 

cues, but preferably also incorporates socio-environmental factors shown to play a 

role in habit formation development (e.g., [12]).  
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