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Abstract— In this paper an approach is proposed to handle 
complex dynamics of large-scale multi-agents systems modelling 
social diffusion processes. Based on local properties of the 
individual agents and their connections, groups and dynamic 
properties of these groups are identified. To determine such 
dynamic group properties two abstraction methods are 
proposed: determining a group invariant and approximation of 
group processes by weighted averaging of interactions. This 
enables simulation of the multi-agent system at a more abstract 
level by considering groups as single entities substituting a large 
number of interacting agents. In this way the scalability of large-
scale simulation can be improved significantly. Computational 
properties of the developed approach are addressed in the paper. 
The approach is illustrated for a collective decision making 
model. 

Keywords – social contagion, group abstraction, agent-based 
simulation, large-scale multi-agent systems 

I.  INTRODUCTION 

Social diffusion models describe spread and changes of 
attitudes in a group or community of agents under the impact 
of social interaction. Such models have been extensively used 
to study diverse social processes: such as dynamics of social 
power [3], polarization of opinions of individuals in a group 
[8,2], and spread of innovation [11]. Although the local 
behaviors of an agent may be simple, global patterns that 
emerge from interaction between the agents in large-scale 
social diffusion systems are far from trivial. Such patterns are 
difficult to infer directly from the local dynamic properties of 
the agents. A high computational complexity of large-scale 
multi-agent systems hinders automated analysis of such 
systems by simulation and verification. 

In this paper an approach is proposed to handle complex 
dynamics of large-scale agent-based social diffusion models by 
using abstraction. The approach is based on identifying groups 
of interacting agents with similar states (e.g., opinions on an 
issue) in a society of agents. The idea is that an approximate 
form of simulation is obtained by using such groups as single 
entities representing abstractions of large numbers of 
interacting agents. In such a way the scalability of large-scale 
multi-agent simulation can be improved. The obtained 
abstracted process provides an approximation with a 
behavioural error that can be estimated.  

To determine global emerging dynamic properties of 
groups based on local dynamic properties of the interacting 
group members, two group abstraction methods are proposed. 
In the first method relative degrees of importance of the agents 
in a group are determined. The degree of importance of an 
agent is in proportion to the strength of the agent’s influence on 
the group. The aggregated state of the group is determined by 
the weighted average of the states of the group members with 
the weights defined by the relative degrees of importance of the 
members. In the paper this method is called abstraction by 
weighted averaging. 

The second group abstraction method is based on 
identifying an invariant for a state of a group: an expression in 
terms of states of group members that does not change over 
time, as long as no input from outside the group occurs. The 
existence of an invariant can be considered to provide a kind of 
preservation law for the (collective) support for an opinion in a 
group. An invariant determines a state of a group and how this 
state depends on the states of the group members. In the paper 
the abstraction method based on considering an invariant 
instead of the individual states is called invariant-based 
abstraction. 

The proposed group abstraction approaches are illustrated 
by a case of a collective decision making model for scenarios, 
which may exist in real social systems. The approximation 
errors and time complexity of the proposed abstraction 
methods applied for this case were evaluated. 

The paper is organized as follows. An agent-based 
collective decision making model is described in Section II. 
The proposed methods for group abstraction are explained in 
Section III. Some simulation results are discussed in Section 
IV. In Section V the proposed abstraction methods applied to 
the collective decision making model are evaluated. Section VI 
concludes the paper.  

II. THE COMPUTATIONAL MODEL 

In the computational model collective decision making is 
modeled as a process of social diffusion of opinions of agents 
on decision options. Without loss of generality the agents are 
assumed to consider two different decision options s1 and s2 
for one issue (e.g., two exits of a burning building).  



In most existing social diffusion models (e.g., [8,10,4]), 
opinions of agents are represented by binary variables, which 
reflect the opposite attitudes of an agent towards an issue. The 
choice for binary variables is well motivated for models, which 
focus on attitudes of agents towards highly salient events, for 
which strong opinions are common (e.g., in voting). However 
continuous variables are suited better than binary variables for 
representing doubts of agents, e.g., when they are situated in 
uncertain environments with scarce information. Furthermore, 
the change of the agent’s opinion to the opposite one occurs 
gradually, through a number of phases [7]. This can be 
captured better by a continuous variable than by a binary 
variable. In contrast to these models, the opinions of an agent 
in the model used here are described by continuous variables 
within the range [0,1]. These variables reflect the degrees of 
support of an agent for the decision options s1 and s2.  

The initial values of the opinions of the agents on both 
options are uniformly distributed in the interval [0,1]. By 
interaction the agents start to influence each other’s opinions. 
The strength of social influence of an agent i on another agent j 
is determined by parameter γi,j within the range [0, 1]. This 
parameter may be refined, e.g., by distinguishing 
expressiveness of the sender (agent i), openness of the receiver 
(agent j), the strength of the channel between i and j [5]. This 
parameter may also refer to a distance between i and j in 
‘social’ space. For simplicity γi,j will be used without 
refinement.  

Two modes of interaction of agents are considered:  

- parallel mode, in which agents interact synchronously 
with each other, and all states of the agents are updated 
in parallel, e.g., as in [10]; 

- sequential mode, in which at each time point at most 
one agent is chosen at random to interact with its 
neighbours, e.g., as in [6]. 

Take qs,j(t) to denote the strength of support of agent j of 
decision option s. The strength of the social influence of the 
other group members j on agent i with respect to decision 
option s at time t is determined by:  

δs,i(t) = ∑j≠i γj,i(qs,j(t)- qs,i(t))/∑j≠i γj,i      when ∑k≠i γk,i  ≠ 0 

and  

     δs,i(t) = 0     when ∑k≠i γk,i  = 0 

The update of the strength of support of agent i for s is 
determined by: 

qs,i(t+∆t) = qs,i(t) + η i δs,i(t)∆t 

Here ηi is an agent-dependent (openness) parameter within the 
range [0,1], which determines how fast the agent adjusts to the 
opinion of other agents.  

In the parallel mode the states of all agents are updated at 
every time point, whereas in the sequential mode the states of 
one randomly chosen agent is updated at every time point. 

First an initial consolidation phase takes place during the 
interval [0, tend_init], in which the agents exchange opinions on 
the options. After this phase the whole population of agents is 
divided into two groups G1 and G2 depending on which from 
two options s1 or s2 is preferred:  

G1 = {i | qs1,i(tend_init) ≥  qs2,i(tend_init)}  

G2 = {i | qs2,i(tend_init) > qs1,i(tend_init)} 

Each group can be viewed as a connected directed graph 
G=<V, E> with a set of vertices V representing agents and a 
set of directed edges E representing influence relations between 
the agents. It is assumed that there are less interactions between 
members of different groups than within the groups. This 
assumption is partially supported by social studies [2].  

In the paper scenarios will be addressed based on the 
following topologies of groups (see Figure 1).  

Definition 
(a) A subset S of G is called isolated from impact by others if it 
is nonempty and not G and for all group members i, j∈ G  with 
i∈ S and j∉  S it holds γj,i  = 0. 

(b) A group G is called cohesive if no subset S of G is isolated 
from impact by others.  

(c) A group G is called fully connected when γj,i  > 0 for all 
group members i, j∈ G  with i≠j. 

Note the following: 
•  Every fully connected group is cohesive, but not 

conversely 
•  Applied to a singleton subset S = {i} for any i the 

cohesiveness criterion implies that ∑k≠i γk,i  > 0.  

 

 
 

Figure 1. An example of a group topology considered in the paper 
 

For cohesive groups the following theorem on equilibria holds. 

Theorem  
A cohesive group is in an equilibrium state if and only if all 
members have equal values. 
 
This can be shown as follows. From the equations it is 
immediately clear that any state in which for any s the qs,i(t) are 
equal for all i is an equilibrium. Conversely, for a cohesive 
group it can easily be shown that all equilibria have equal 
values for all of the members. First note that  

 

dqs,i(t)/dt ≥ 0  iff   ∑j≠i (γj,i /∑k≠i γk,i ) qs,j(t) ≥  qs,i(t) 

 



In particular, for i with lowest qs,i(t) (i.e., qs,i(t) ≤ qs,j(t) for all j) 
it follows that qs,i(t) is monotonically increasing at t (similarly a 
highest qs,i(t) is monotonically decreasing). This can include 
nonstrict monotonicity: remaining equal. However, suppose not 
all values qs,j(t) are equal; due to the cohesiveness condition, 
within the set Slowest of agents i with lowest qs,i(t) at least one 
agent i ∈  Slowest exists that is affected by an agent m ∉  Slowest 
with nonlowest value, i.e., with γm,i >0. Then by  

∑j≠i (γj,i /∑k≠i γk,i ) qs,j(t) > qs,i(t)  

it follows that strict monotonicity occurs. From this it follows 
that no equilibria can occur when the values are not all equal. 
Therefore the only equilibria are when all values are equal. 
Note that this is also implied by general mathematical theorems 
as described, for example, in [9]. 

The abstraction approaches introduced apply to cohesive 
groups, but as illustration the fully connected case is used in 
the simulations.  

Usually groups do not function in isolation from agents 
outside the group. Every now and then members of a group 
receive information from diverse external sources via peer-to-
peer communication. The degree of influence of external 
source k (e.g., an agent from another group) on a group 
member i is represented by the already introduced parameter 
γk,i. When impact from other agents is assumed not present, 
based on the states of k and i concerning option s, agent i 
updates its state as follows:  

qs,i(t+∆t) = qs,i(t) + η i γj,i(qs,k(t)- qs,i(t))∆t 

If after interaction with an external source, agent i from group 
G1 supporting option s1 changes its preference from s1 to s2, 
and qs2,i(t)- qs1,i(t) > threshold, then an agent is considered to 
leave G1 and become a member of G2 supporting s2. In the 
scenarios considered in the paper threshold=0.3. By sensitivity 
analysis similar outcomes for all threshold values from (0,1) 
were obtained. 

III. METHODS FOR GROUP ABSTRACTION  

To model abstracted states of a group two group abstraction 
methods are proposed in this section: abstration based on 
weighted averaging, and invariant-based abstraction. 

A. A Method based on Weighted Averaging 

The first method is based on an estimation of an aggregated 
group state by determining the contribution of each group 
member to this state as follows. It is assumed that the 
contribution of an agent is in proportion to the strength of 
influence of the agent on the group. An agent may influence 
another agent directly or indirectly through other agents. In the 
direct case the strength of influence of i on j is determined by 
γi,j. If i influences k through j, the strength of indirect influence 
of i on k via j is determined by γi,j γj,k., and in total by  

Σj≠i,j≠k γi,j γj,k. 

In the general case, the strength of influence of an agent on any 
other agent via an arbitrary number of mediating agents (hops) 

can be calculated recursively. Thus, for each agent a network 
of influence can be identified, through which an agent exerts 
influence and is influenced by other agents. In such a network 
the strength of influence of an agent i (soii) is calculated as 
follows: 

soii= ∑i≠j γi,j(1 +∑k≠i, k≠j γj,k(1+…))/ 
  (1+∑i≠j γj,i(1 +∑k≠i, k≠j γk,j(1+…))) 

The denominator contains the term 1 to ensure that it is not 
equal to 0 for the agents isolated from impact by others. The 
precision of estimation of the group state depends on the 
number of hops in a network of influence for which indirect 
influences are calculated. However, the more hops are taken 
the more intensive computation is required for abstraction by 
this method. In this paper two hops in a network of influence 
are used. In the single-hop variant of the method (called first-
order weighted averaging) soii is calculated as: 

soii = ∑i≠j γi,j /(1+∑i≠j γj,i) 

For the two-hop variant (called second-order weighted 
averaging) soii is: 

soii= ∑i≠j γi,j(1 +∑k≠i,k≠j γj,k)/(1+∑i≠j γj,i(1 +∑k≠i, k≠j γk,j)) 

Initially and after each interaction of an agent from group G 
with an external agent, the aggregated state of group G for 
option s is estimated by the following weighted average: 

  qs,G(t+∆t) = qs,G(t) + ν  [ ∑i∈ G soii qs,i(t)/ ∑i∈ G soii  - qs,G(t) ] ∆t 

This state qs,G(t) represents a common opinion of all agents in 
the group for decision option s. It persists until a new 
interaction with an external agent occurs. Then, the formula for 
qs,G(t+∆t) is applied again. The parameter ν is a speed 
parameter which represents how fast such an update takes 
place. 

B. An Invariant-Based Method  

In this section it is discussed how an invariant can be found 
and used to serve as an aggregate group state and to determine 
equilibrium values. 

For given initial values qs,i(0) for i = 1, .., only one of the 
possible equilibria with equal values will be actually reached 
both in the parallel and sequential modes of interaction (see 
Figure 2). How this equilibrium value depends on the initial 
values can be described by an invariant: an expression in terms 
of the qs,i(t) for i = 1, .., that does not change over time. In this 
case an invariant invs as a weighted sum 

 

invs = invs(t) = ∑i λs,i qs,i(t) 

 

can be obtained where the weights λs,i depend on the 
coefficients ηi and γj,i (and not on initial values).  
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Figure 2. Convergence of the decision states of 50 agents in a group with the parallel (left) and sequential (right) modes of interaction; no external messages are 

provided to the group 
 
These weights can be taken (normalised) with ∑i λs,i = 1, so 

that when all qs,i(t) = 1 for all i, also the invariant is 1. Below it 
will be discussed how an invariant can be found. 

Using an invariant to determine an equilibrium 
Given an invariant, for the cohesive case an equilibrium can be 
determined easily from this invariant and the initial values as 
follows (taking into account that the equilibrium concerns 
equal values qs,i(t) = qs): 

∑i λs,i qs,i(0)  = invs  = ∑i λs,i qs,i(t) =  qs ∑i λs,i =  qs 

Therefore the equilibrium value is obtained as a weighted 
sum of the initial values:  

 

qs = ∑i λs,i qs,i(0) 

 

Note that agents i with higher λs,i contribute more to the 
group’s equilibrium. This shows that the coefficients λs,i of the 
invariant can be interpreted as the relative importance of agent 
i for the group’s collective support of s. Note that this shows 
that the equilibria depend on the initial values, and therefore 
cannot be determined by solving equilibrium equations 
obtained from the differential equations. Indeed these 
equilibrium equations obtained from the differential equations 
are 

ηi δs,i(t)= 0    where    δs,i(t) = ∑j≠i γj,i(qs,j(t)- qs,i(t))/∑j≠i γj,i      

These equations are fulfilled always when all values qs,i(t) are 
equal, but do not give any information about a specific value, 
and how that depends on the initial values. An invariant 
provides exactly this connection to the initial values. 
 
Using an invariant for group abstraction 
An invariant can be considered as a kind of preservation law 
for the (collective) support for option s in the considered group. 
By internal (intragroup) interactions this collective support for 
s can be redistributed over persons in the group, but this does 
not change the collective amount. During time intervals where 
no external interaction is coming in, the group’s collective 
support for s will not change. This provides an interesting use 

of the invariant: as a means of abstraction from the internal 
processes by using a descriptor at the group level. In contrast, 
incoming external (intergroup) interaction can change the 
collective support of the group for s. This can be done as 
follows. Suppose agent i with level qs,i(t) within the group gets 
incoming interaction from agent j external from the group, with 
level qs,j(t). Then the value of agent i’s level is updated as 
follows: 

 

qs,i(t+∆t) = qs,i(t) + η i γj,i (qs,j(t) - qs,i(t)) ∆t 

 

Accordingly the group’s invariant invs is updated as follows: 
 

invs(t+∆t) = invs(t) + λs,i ηi γj,i (qs,j(t) - qs,i(t)) ∆t 

 

Note that for the general case in the time intervals where 
no external interaction comes in, internal interactions take 
place that may lead to an equilibrium. The internal group 
dynamics is assumed to take place with higher frequencies 
than external interactions, so that each time a group 
equilibrium is approximated before a next external interaction 
occurs. 

 
Determining an invariant 
The weights λs,i for the invariant invs can be determined from 
the differential equations: from  

∑i λs,i qs,i(t+∆t) = ∑i λs,i qs,i(t) 

it follows 

∑i λs,i ηi  [ ∑j≠i γj,i(qs,j(t) - qs,i(t))/∑k≠i γk,i  ] = 0 

This can be rewritten as: 

∑i λs,i ηi ∑j≠i γj,iqs,j(t)/∑k≠i γk,i  = ∑i λs,iηi ∑j≠i γj,i qs,i(t)/∑k≠i γk,i  

∑i ∑j≠i λs,i ηi γj,iqs,j(t)/∑k≠i γk,i  = ∑i λs,iηi qs,i(t)  

∑j ∑i≠j λs,i ηi γj,iqs,j(t)/∑k≠i γk,i  = ∑i λs,iηi qs,i(t)  
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∑m ∑i≠m λs,i ηi γm,iqs,m(t)/∑k≠i γk,i  = ∑m λs,mηm qs,m(t)  

∑m (∑i≠m (λs,i ηi γm,i /∑k≠i γk,i )) qs,m(t) = ∑m λs,mηm qs,m(t)  

One way to satisfy this is by taking the coefficients of qs,m(t) in 
the above expression on both sides equal; this provides the 
following set of linear equations for the λs,i for all m: 

∑i≠m (ηi γm,i /∑k≠i γk,i ) λs,i = ηm λs,m 

Taking into account that ∑i λs,i = 1 this can be rewritten into: 

∑i≠m (ηi γm,i /∑k≠i γk,i ) λs,i = ηm (1 – ∑i≠m λs,i) 

∑i≠m (ηi γm,i /∑k≠i γk,i ) λs,i  + ηm  ∑i≠m λs,i = ηm  

∑i≠m (ηi γm,i /∑k≠i γk,i ) + ηm ) λs,i = ηm  

∑i≠m (ηi γm,i /ηm ∑k≠i γk,i ) + 1 ) λs,i = 1  

Thus a system of linear equations 

∑i≠m µm.i λs,i = 1  

is found with coefficients   

µm.i = (ηi γm,i /ηm ∑k≠i γk,i ) + 1 ≥ 1 

This system can be described in matrix form as  

Aλs = 1 

where 1 is the vector with all components 1,  

λs = (λs,1,…)  

and A is a square matrix with only zeros at the diagonal and all 
other entries ≥ 1 (expressed in ηi and γm,i). When it is assumed 
that the determinant det(A) ≠ 0, then this system has a unique 
solution. Indeed, for the general case this condition is fulfilled, 
and the weights λs,i of the invariant can be obtained as a 
solution; this is illustrated in Sections IV and V. 

IV. SIMULATION 

The methods described in Section III were implemented in 
Matlab. Simulation time was 1030 with the initial stabilization 

interval [0, 30]. For each simulation setting 50 iterations were 
executed. The number of agents was varied across simulation 
runs: 50, 100, 200, and 500. The initial states of each agent for 
the strengths of support for the two decision options s1 and s2 
were uniformly distributed in the interval [0,1]. 

In addition to the agents external sources were used, which 
number was 10 times less than the number of agents. The 
average time between two subsequent messages provided by 
each external source to a randomly chosen agent was varied 
across simulation runs: 1, 2, 5, and 10. 

Each average time value can also be interpreted as a ratio of 
the time scale of the group’s internal dynamics to the time scale 
of the external dynamics. The impact of these ratios on 
approximation errors was investigated. The parameters γ  and η 
of each agent were taken from the uniform distribution in the 
interval ]0,1]. Moreover, ∆t = 1.25 and ν = 0.8. 

In the simulation the first and second-order weighted averaging 
methods and the invariant-based method were used for 
abstraction of the model. The simulation was performed both 
for the parallel (Figure 3) and sequential (Figure 4) interaction 
modes of agents. The peaks in the graphs indicate incoming 
messages from external sources. In the parallel interaction 
mode, after receiving each message the group quickly reaches a 
new stable state (Figure 3). In the sequential mode the 
relaxation time is much longer (Figure 4). Because of this, the 
approximation of the group dynamics by the developed 
abstraction techniques is less precise in comparison with the 
parallel case. A detailed evaluation of efficiency and quality of 
the proposed abstraction methods is considered in the 
following Section V. 

I. EVALUATION OF THE ABSTRACTION METHODS 

In this section the time complexity and approximation errors of 
the methods are considered. 

A. Time Complexity Results 

The mean time complexity for the original model from 
Section II and for the proposed abstraction methods is provided 
in Tables I and II. The variances of these results are very low 
(of the order of 10-5).  
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Figure 3. The dynamics of valuation of option 1 by 50 agents in a group in the parallel interaction mode (left) and the abstraction of the group dynamics 
obtained by the invariant-based method (center) and by the 2nd order weighted averaging (right); the average time between messages is 10. 
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Figure 4. The dynamics of valuation of option 1 by 50 agents in a group in the sequential interaction mode (left) and the abstraction of the group dynamics 
obtained by the invariant-based method (center) and by the 2nd order weighted averaging (right); the average time between messages is 10. 

 

Table I. Mean simulation time in seconds for the original and abstracted models 
 
 
 
 
 
 
 
 
 

 
Table II. Mean simulation time in seconds for the original and abstracted models 

 
 
 
 
 
 
 
 
 

 

B. Time Complexity Results 

The mean time complexity for the original model from 
Section II and for the proposed abstraction methods is provided 
in Tables I and II. The variances of these results are very low 
(of the order of 10-5).  

The developed abstraction methods increase the 
computational efficiency of the simulation of the parallel case 
of the original model significantly. The acceleration factor 
grows with the number of agents: for smaller numbers (~50) it 
is of the order 20 to 25, for larger numbers (~500) it grows to 
the order of 25 to 31. Note that the simulation time of the 
sequential variant of the model is low, and depends weakly on 
the number of agents. This is because the state of only one 
agent is updated at each time point in this case. 

The fastest simulation models are obtained by the 
abstraction by first-order weighted averaging. The slowest are 
the models obtained by the invariant-based abstraction. 
However, as one can see from Tables I and II, the ratio of the 
simulation time of the slowest to the fastest abstraction method 
is less than 1.3 for all cases. The impact of the number of 
messages on the simulation time is stronger for the invariant-

based method than for the weighted averaging methods. This is 
because (large) systems of linear equations need to be solved in 
the former method every time when the structure of a group 
changes. The greatest decrease of the acceleration rate for both 
methods for the settings considered in the paper is of the order 
of 1.4. 

The time ratio between first and second order weighted 
averaging is at most 1.1. Thus, adding the second level in the 
network of influence for each agent does not result in a 
significant increase of simulation time, even for larger numbers 
of agents. 

C. Approximation errors 

The error of approximation of the original model by a 
group abstraction method is defined as  

∑t∈ [31, 1031] (|G1o,t ∪  G1a,t| - |G1o,t ∩ G1a,t|)/1000, 

where G1o,t is the group comprising the agents supporting 
decision option s1 at time point t according to the original 

# of agents 200 500 
Average time between messages 1 2 5 10 1 2 5 10 

Original model (parallel) 96.44 93.49 87.9 82.72 383.7 383.2 365.3 350.8 
Original model (sequential) 0.67 0.63 0.59 0.58 2.14 1.88 1.12 1.03 
Invariant-based abstraction 4.33 3.8 3.37 3.16 15.7 14.2 12.5 11.8 
Abstraction by 1st order weighted averaging 3.32 3.18 3.05 3.01 12.9 12.3 11.9 11.1 
Abstraction by 2nd order weighted averaging 3.71 3.39 3.14 3.06 14.5 13.4 12.4 11.7 

# of agents 50 100 
Average time between messages 1 2 5 10 1 2 5 10 

Original model (parallel) 5.87 5.46 4.98 4.72 23.67 22.75 20.55 19.25 
Original model (sequential) 0.18 0.14 0.11 0.08 0.31 0.27 0.17 0.11 
Invariant-based abstraction 0.30 0.26 0.24 0.23 1.05 0.95 0.85 0.81 
Abstraction by 1st order weighted averaging   0.25 0.22 0.20 0.20 0.88 0.83 0.78 0.76 
Abstraction by 2nd order weighted averaging  0.27 0.24 0.21 0.20 0.96 0.88 0.80 0.78 



model, and G1a,t is the group of the agents supporting s1 at time 
point t according to the abstracted model. 

A comparison of the mean approximation errors for the 
proposed abstraction methods is provided in Figures 5 and 6 
(for 50 agents). The variances of the errors are low (of the 

order 10-6); they are depicted by small error bars in Figures 5 
and 6. 

The invariant-based method outperforms the weighted 
averaging abstraction methods. In the parallel interaction mode 
(Figure 5), the error of the invariant-based abstraction is at 
most 3*10-4. 
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Figure 5. Mean approximation errors for the proposed abstraction methods for 100, 200 and 500 agents with the parallel interaction mode; the horizontal axis is 
the average time between messages. 
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Figure 6. Mean approximation errors for the proposed abstraction methods for 100, 200 and 500 agents with the sequential interaction mode; the horizontal axis 
is the average time between messages. 

 

In the sequential interaction mode the rate of convergence 
of the system is significantly slower than in the parallel mode 
(see Figure 2). This slower convergence rate in the presence of 
(frequent) external perturbations (i.e., messages from external 
sources) causes a high variance of the decision states of the 
agents in a group (see Figure 4). The higher the variance of the 
states of the agents in a group, the higher approximation errors 
of the abstraction methods proposed, as these methods rely on 
reaching a congruent stable state by the group. In contrast to 
the sequential case, in the parallel case groups reach a common 
stable state rapidly after every external disturbance (see Figure 
3). Thus, the approximation errors of the abstraction by the 
proposed methods in the parallel case are significantly lower 
than in the sequential case (see Figures 5 and 6). 

Both invariant-based and weighted averaging abstraction 
methods are sensitive to the average time between messages 

from external sources. The greater the time between messages, 
the more closely a group approaches its equilibrium state, thus 
the smaller the approximation error of the abstraction. When 
the average time is high (10), the error is the lowest. However, 
when the external world interacts with a group every time 
point, the errors of the abstraction methods grow, 15 times in 
the worst case.  

As expected, the abstraction by the second-order weighted 
averaging is more precise than the abstraction by the first-order 
weighted averaging. The difference in precision between the 
weighted averaging methods depends on the density of 
connections in the topology of a group: in general, the higher 
the density, the less the error difference between both variants. 
This is because the density determines how many direct 
neighbors an agent has, and thus, how many agents are 
influenced directly by one-hop message propagation of new 
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information. The more densely a graph is connected, the more 
agents in a group new information reaches by one-hope 
propagation, and the more fully the new group’s state can be 
captured by the first-order weighted averaging. The less the 
graph’s density, the more information about the group 
dynamics each additional hop provides. In a sparsely connected 
graph, one-hope propagation reaches only a small number of 
agents, thus, only partial information about the group dynamics 
can be extracted by the first-order weighted averaging. In this 
case the difference between the first- and second-order 
weighted averaging may be significant. For the experiments 
considered in this paper densely connected groups were used.  

The abstraction by both the invariant-based method and the 
weighted averaging methods becomes more precise with the 
increase of the number of agents. 

II. CONCLUSIONS 

In the paper an approach is proposed to handle complex 
dynamics of large-scale agent-based social diffusion models. 
On the one hand this approach allows identifying global, 
emergent properties of groups of agents. On the other hand, it 
enables a significant increase of the computational efficiency 
of automated analysis of large-scale social diffusion models 
(up to 31 times for larger numbers of agents (~500) in the case 
of parallel interaction of agents). 

The approach comprises two methods dedicated for 
abstraction of the dynamics of social groups: invariant-based 
abstraction, (first- and second-order) weighted averaging. For 
both parallel and sequential interaction modes of agents the 
invariant-based abstraction method is the best choice. In the 
parallel interaction mode it has the approximation error close to 
0. The abstraction by the second-order weighted averaging is 
more precise than the abstraction by the first-order weighted 
averaging. In general, the higher the ratio of the time scale of 
the external world dynamics to the time scale of the group’s 
internal dynamics, the less the approximation error of the 
abstraction methods proposed.  

In the case of sequential interaction a group reaches an 
equilibrium state slowly. When the ratio of the time scale of the 
group’s internal dynamics to the time scale of the external 
dynamics is high (10), then such a group is able to reach a 
congruent decision state. However, when the dynamics of such 
a group is disturbed frequently, the variance of the decision 
states of the agents becomes high. Because of this high 
variance, the proposed abstraction methods based on similarity 
of opinions of agents are less efficient and precise. In this 
situation, when the agents have constantly diverging opinions 
on the decision options, one may question the applicability of 
the concept of a group in general. Moreover, in [10] it is stated 
that the dynamics of group interaction is captured more 
accurately when many individuals are allowed to interact 
simultaneously than by sequential pairwise interaction. 

Note that in many applications the sizes of dynamic groups, 
which could be numerous, are (much) smaller than the total 
number of agents. The developed abstraction techniques were 
applied in a large-scale crowd evacuation study (~10000 

agents) [12]. Although the number of agents was significant, 
the maximal size of emergent dynamic groups was 174. 

Social diffusion models have been studied extensively 
[2,3,10,8]. A common research question of these studies is 
about the existence of equilibrium states of a model for 
different topologies. In contrast to the continuous model 
considered in the paper, most of other studies consider binary, 
threshold-based models. The authors are not aware of any 
existing studies focusing on the behavioral abstraction of 
continuous social diffusion models.  

Currently several techniques for abstraction of models 
based on hybrid automata and differential equations [1] exist. 
However, such approaches can be applied efficiently for 
systems described by sparse matrixes. Social diffusion models 
represent tightly connected systems, which do not allow a 
significant reduction of the state space using such techniques. 
In particular, a previous study showed that common model 
reduction techniques such as balanced truncation [1] do not 
allow decreasing the rank of the matrix describing the model 
from Section II.  

In the future it will be investigated whether the developed 
approach can be applied for abstracting more complex 
cognitive multi-agent systems, involving interaction between 
cognitive and affective processes (e.g., collective decision 
making with emotions and trust). 
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