
A System to Support Attention Allocation:
Development and Application*

Tibor Bosse1, Rianne van Lambalgen1, Peter-Paul van Maanen1,2, and Jan Treur1
1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
{tbosse,rm.van.lambalgen,treur}@cs.vu.nl
2 TNO Human Factors, Soesterberg, The Netherlands
peter-paul.vanmaanen@tno.nl

Abstract. This paper discusses and evaluates an agent model that is able to manipulate the visual attention of a human, in order
to support naval crew. The agent model consists of four submodels, including a model to reason about a subject’s attention. The
model was evaluated based on a practical case study which was formally analysed and verified using automated checking tools.
Results show how a human subject’s attention is manipulated by adjusting luminance, based on assessment of the subject’s
attention. These first evaluations of the agent show a positive effect.

*Parts of this article appeared in the Proceedings of the Ninth IEEE/WIC/ACM International Conference on
Intelligent Agent Technology (IAT'09) and the Proceedings of the Fifth International Workshop on Attention in
Cognitive Systems (WAPCV’08).

Keywords: Human Experimentation, Attention, Interface Agent, Formal Analysis.

1. Introduction

In the domain of naval warfare, it is crucial for the
crew of the vessels involved to be aware of the
situation in the field. One of the crew members is
usually assigned the task to identify and classify all
entities in the environment (e.g., [10]). This task
determines the type and intent of a multiplicity of
contacts on a radar screen. Attention is typically
directed to one bit of information at a time [21], [23],
[25]. A supporting software agent may alert the human
about a contact if it is ignored. To this end the agent
has to maintain a model of the cognitive state of the
human including the human’s distribution of attention.
Existing cognitive models on attention show that it is
possible to predict a person’s attention based on a
saliency map, calculated from features of a stimulus,
like luminance, colour and orientation [13], [20]. In
this study, a Theory of Mind (or ToM, e.g., [6]) model
is exploited within the agent model to analyse attention
of the human. Attention can then be influenced (or
‘manipulated’) by changing features of stimuli, e.g., its
contrast with stimuli at other locations [13], [15], [19],
its luminance [24], [26], or its form [26].

Some approaches in the literature address the
development of software agents with a Theory of Mind
(e.g., [6], [16], [17]), but only address a model of the
epistemic (e.g., beliefs), motivational (e.g., desires,
intentions), and/or emotional states of other agents. For
the situation sketched above, attribution of attentional
states has to be addressed. In the current paper, an
agent model has been developed, which uses four
specific (sub)models. The first is a representation of a
dynamical model of human attention, for estimation of
the locations of a person’s attention, based on
information about features of objects on the screen and
the person’s gaze. The second model is a reasoning
model which the agent uses to reason through the first
model, to generate beliefs on attentional states at any
point in time. With a third model the agent compares
the output of the second model with a normative
attention distribution and determines the discrepancy.
Finally, a fourth model is used to direct the person’s
attention to relevant contacts based on the output of the
third model.

Initial versions of the first two models were adopted
from earlier work [7]. The current paper focuses on the
use of the last two models, where input from [5] was

adopted. Section 2 gives a literature review on the
manipulation of attention, Section 3 describes a
formalisation of the different models, and in Section 4
the global behaviour of the model is tested by
simulation experiments. In Section 5, the model is
implemented in the context of a case study where a
software agent is used to manipulate a subject’s
attention. Based on this case study, Section 6 addresses
experimental validation of the results, and Section 7
addresses automated verification of different important
properties of the submodels used in the agent. In
Section 8, a formal mathematical analysis of the model
is given. Finally, Section 9 is a discussion.

2. Manipulation of Attention

Typically, a person’s attention is influenced both by
top-down and by bottom-up processes. The former
means that observers orient their attention in a goal-
directed manner, as a consequence of their
expectations or intentions [21]. For example, when
searching for a friend in the crowd, attention is guided
top-down [23]. In contrast, the latter means that
attention is elicited by a (highly salient) trigger from
the environment. For example, one green circle among
several blue circles will “pop-out” and attention will be
directed to this object [25]. In this project the focus is
primarily on adjusting the features of a specific
location, such that only bottom-up attention is
manipulated. Features that are mainly known to
influence attention are intensity (luminance), colour
and orientation. Previous research shows that attention
can be elicited both by the contrast with stimuli at
other locations [13], [15], [19] and the abrupt change
of a feature, like luminance [24], [26] or form [26].

Several cognitive models on attention have been
proposed and show that it is possible to predict
attention allocation based on a saliency map, calculated
from features of a stimulus, like luminance, colour and
orientation [14], [20]. Furthermore, other features like
effort and expectancy have been incorporated in
attention models [12], [27]. These proposed models are
not dynamic in the sense that they take changes of
information from the environment into account.
However, if indeed the change of a specific feature
(like luminance) can cause an attention shift in the
human performing a task considered, a support model
can be used to realise this change. This way, humans
who have to direct their attention to a large number of
locations in parallel can be supported to adequately
perform their task.

Although much is known on the features that guide
attention [13], [23], there are few other attempts to
design a system for attention allocation support.

Automated attention guidance has been investigated,
by providing either a tactical cue [22] or a visual cue to
a relevant location [11]. However, this automated
cueing is based on features of the task (i.e. threat of an
object) and not on the human’s actual distribution of
attention.

3. A Theory of Mind for Attention

3.1. Overall Setting

A Theory of Mind enables an agent to analyze
another agent’s mind, and to act according to the
outcomes of such an analysis and its own goals. For
the general case such processes require some specific
facilities.

A representation of a dynamical model is needed
describing the relationships between different mental
states of the other agent. Such a model may be based
on qualitative causal relations, but it may also concern
a numerical dynamical system model that includes
quantitative relationships between the other agent’s
mental states. In general such a model does not cover
all possible mental states of the other agent, but
focuses on certain aspects, for example on beliefs and
desires, on emotional states, on the other agent’s
awareness states, or on attentional states as in this
paper.

Furthermore, reasoning methods to generate beliefs
on the other agent’s mental state are needed to draw
conclusions based on the dynamical model in (1) and
partial information about the other agent’s mental
states. This may concern deductive-style reasoning
methods performing forms of simulation based on
known inputs to predict certain output, but also
abductive-style methods reasoning from output of the
model to (possible) inputs that would explain such
output.

Moreover, when in one way or the other an
estimation of the other agent’s mental state has been
found out, it has to be assessed whether there are
discrepancies between this state and the agent’s own
goals. Here also the agent’s self-interest comes in the
play. It is analyzed in how far the other agent’s mental
state is in line with the agent’s own goals, or whether a
serious threat exists that the other agent will act against
the agent’s own goals.

Finally a decision reasoning model is needed to
decide how to act on the basis of all of this
information. Two types of approaches are possible. A
first approach is to take the other agent’s state for
granted and prepare for the consequences to
compensate for them as far as these are in conflict with
the agent’s own goals, and to cash them as far as they

can contribute to the agent’s own goals (anticipation).
For the navy case, an example of anticipation is when
it is found out that the other agent has no attention for a
dangerous object, and it is decided that another
colleague or computer system will handle it (dynamic
task reallocation). A second approach is not to take the
other agent’s mental state for granted but to decide to
try to get it adjusted by affecting the other agent, in
order to obtain a mental state of the other agent that is
more in line with the agent’s own goals
(manipulation). This is the case addressed in this
paper.

The general pattern sketched above is applied in this
paper to the way in which a (software) agent can
attempt to adjust the other (human) agent’s attention,
whenever required. To this end the software agent uses
the following four different models: Dynamic
Attention Model, Model for Beliefs about Attention,
Model to Determine Discrepancy and Decision Model
for Attention Adjustment. In this section, each of these
models are described in detail. The agent and its
interaction with the environment (involving a complex
task and an eye-tracker, see Section 5) are
schematically displayed in Figure 1.

Figure 1. Overview of the ambient agent and

its environment

3.2. Dynamic Attention Model

This model is taken over from [7] and is only
briefly summarised in this section. The model uses
three types of input: information about the human’s
gaze direction, about locations (or spaces) and about
features of objects on the screen. Based on this, it
makes an estimation of the current attention
distribution at a time point: an assignment of attention
values ܸܣሺݏ, .ሻ to a set of attention spaces at that timeݐ
The attention distribution is assumed to have a certain
persistency. At each point in time the new attention
level is related to the previous attention, by

,ݏሺܸܣ ሻݐ ൌ ,ݏሺܸܣ ߣ ݐ െ 1ሻ ሺ1 െ ܣ ሻ ߣ ܸሺݏ, ሻݐ

Here, ߣ is the decay parameter for the decay of the
attention value of space s at time point ݐ – 1, and
ܣ ܸሺݏ, ሻ is determined by normalisation for theݐ
total amount of attention ܣሺݐሻ, described by:

,ݏnormሺܸܣ ሻݐ ൌ
,ݏnewሺܸܣ ሻݐ

∑ ,ᇱݏnewሺܸܣ ሻ௦ᇲݐ
 · ሻݐሺܣ

,ݏnewሺܸܣ ሻݐ ൌ
,ݏpotሺܸܣ ሻݐ

1 · ߙ ,ݏሺݎ ሻଶݐ

Here ܣ ܸ௪ሺݏ, ሻ is calculated from the potentialݐ
attention value of space ݏ at time point ݐ and the
relative distance of each space ݏ to the gaze point (the
centre). The term ݎሺݏ, ሻ is taken as the Euclidianݐ
distance between the current gaze point and ݏ at time
point ݐ (in the previous formula multiplied by an
importance factor ߙ which determines the relative
impact of the distance to the gaze point on the
attentional state, which can be different per individual
and situation):

,ݏሺݎ ሻݐ ൌ ݀euclሺ݃ܽ݁ݖሺݐሻ, ሻݏ

The potential attention value AVpot(s,t) is a
weighted sum of the features of the space (i.e., of the
types of objects present) at that time (e.g., luminance,
colour):

,ݏpotሺܸܣ ሻݐ ൌ ,ݏሺܯ ሻݐ · ,ݏெሺݓ ሻݐ
௦ ெ

For every feature there is a saliency map ܯ, which
describes its potency of drawing attention (e.g. [8],
[13], [14]). Moreover, ܯሺݏ, ሻ is the unweightedݐ
potential attention value of ݏ at time point ݐ, and
,ݏெሺݓ where ,ܯ ሻ is the weight used for saliency mapݐ
1 ,ݏሺܯ ሻ and 0 ݐ ,ݏெሺݓ ሻݐ 1.

Figure 2 shows an overview of this model. The
circles denote the italicised concepts introduced above,
and the arrows indicate influences between concepts.

3.3. Model for Beliefs about Attention

This (reasoning) model is used to generate beliefs
about attentional states of the other agent. The software
agent uses the dynamical system model as described in
Section 3.2 as an internal simulation model to generate
new attentional states from the previous ones, gaze
information and features of the object, with the use of a
forward reasoning method (forward in time) as
described in [2]. The basic specification of the
reasoning model can be expressed by the
representation leads_to_after(I, J, D) (belief that I leads to
J after duration D). Here, I and J are both information
elements (i.e., they may correspond to any concept
from Figure 2, e.g., gaze_at(1, 2) or has_value(av(1,2),

0.68).

Figure 2. Overview of attention model

In addition, the representation at(I, T) gives information
on the world (including human processes) at different
points in time. It represents a belief that state I holds at
time point T. For example, at(gaze_at(1,2), 53) expresses
that at time point 53, the human’s gaze is at the space
with coordinates {1,2}.

3.4. Model to Determine Discrepancy

With this model the agent determines the
discrepancy between actual and desirable attentional
states and to what extent the attention distribution has
to change. This is based on a model for the desirable
attention distribution (prescriptive model). For the case
addressed this means an assessment of which objects
deserve attention (based on features as distance, speed
and direction). To be able to make such assessments,
the agent is provided with some tactical domain
knowledge, in terms of heuristics (also see Section 5)

3.5. Decision Model for Attention Adjustment

The model for adjustment of the attention distribution
has as input the discrepancy determined by the model
described in Section 3.4, and also makes use of the
explicitly represented dynamical model as described in
Section 3.2. The general idea is that the relations
between variables within this model are followed in a
backward manner, thereby propagating the desired
adjustment from the attentional state variable to the
features of the object at the screen. The general pattern
behind this operation on a dynamical model
representation is illustrated in Figure 3. Here v1 is the
(desired) output of a model, and by branches the
variables on which this depends are depicted, until the
leaves where actual adjustments can be made. 1

1 For the moment, deterministic relationships between
variables are assumed. However, in a later stage, the agent
might learn such relationships.

Figure 3. Dependencies between variables in
a dynamical system model

This is a form of desire refinement: starting from the
root variable, by a step-by-step process a desire on
adjusting a parent variable is refined to desires on
adjustments of the children variables, until the leave
variables are reached. The starting point is the desire
on the root variable, which is the desired adjustment of
the attentional state; this is determined by.

belief(av(s)<h) desire(a(v)>h) belief(has_value(av(s), v))
 desire(adjust_by(av(s), (h-v)/v)

Note that here the adjustment is taken relative
(expressed by division of the difference h-v by v).
Suppose as a point of departure (given the discrepancy
assessment) an adjustment v1 is desired, and that v1

depends on two variables v11 and v12 that are adjustable
(the non-adjustable variables can be left out of
consideration). Then by elementary calculus as a linear
approximation the following relations between
required adjustments can be obtained:

v1 =
డ௩ଵ

డ௩ଵଵ
 v11 +

డ௩ଵ

డ௩ଵଶ
v12

This formula is used to determine the desired
adjustments v11 and v12, where by weight factors 11
and 12 the proportion can be indicated in which the
variables should contribute to the adjustment: v11/v12
= 11/12.

v1 =
డ௩ଵ

డ௩ଵଵ
 v12 11/12 +

డ௩ଵ

డ௩ଵଶ
v12 =

features of
objects

attention level
for locations

normalised attention
contribution
of locations

gaze direction

locations of
objects

current attention
contribution
of locations

1

v11

v12

v111

v112

v121

v122

(
డ௩ଵ

డ௩ଵଵ
 11/12+

డ௩ଵ

డ௩ଵଶ
) v12

So the adjustments can be made as follows:

v12 =
௩ଵ

ങೡభ
ങೡభభ

 ଵଵ/ଵଶ ା
ങೡభ

ങೡభమ

v11 = 11/12

௩ଵ
ങೡభ

ങೡభభ
 ଵଵ/ଵଶ ା

ങೡభ
ങೡభమ

 =

1ݒ

1ݒ߲
 11ݒ߲

1ݒ߲
12ݒ߲ 12/11

Special cases are 11 = 12 = 1 (absolute equal
contribution) or 11 = v11 and 12 = v12 (relative equal
contribution: in proportion with their absolute values).
As an example, consider a variable that is just the
weighted sum of two other variables (as is the case, for
example, for the aggregation of the effects of the
features of the objects on the attentional state):

v1 = w11v11 + w12v12

For this case

డ௩ଵ

డ௩ଵଵ
 = w11

డ௩ଵ

డ௩ଵଶ
 = w12

and

v11 =
௩ଵ

 ୵ଵଵ ା ୵ଵଶ ଵଶ/ଵଵ
 v12 =

௩ଵ

 ୵ଵଵ ଵଵ/ଵଶ ା ୵ଵଶ

For example when 11 = 12 = 1 this results in

v11 =
௩ଵ

 ୵ଵଵ ା ୵ଵଶ
 v12 =

௩ଵ

 ୵ଵଵ ା ୵ଵଶ

Assuming w11 + w12 = 1 in addition, this results in
v11 = v12 = v1.

Another setting, which actually has been used in
the model is to take 11 = v11 and 12 = v12. In this case
the adjustments are assigned proportionally; for
example, when v1 has to be adjusted by 5%, also the
other two variables on which it depends need to
contribute an adjustment of 5%. Thus the relative
adjustment remains the same through propagations:

௩ଵଵ

 ௩ଵଵ
 =

௩ଵ

 ୵ଵଵ ା ୵ଵଶ ௩ଵଶ/௩ଵଵ
 / v11 =

௩ଵ

 ୵ଵଵ௩ଵଵ ା ୵ଵଶ ௩ଵଶ
 =

௩ଵ

 ௩ଵ

This shows the general approach on how desired
adjustments can be propagated in a backward manner
through a dynamical model. Thus a desired adjustment
of the attentional state as output at some point in time

can be related to adjustments in the features of the
displayed objects as inputs at previous points in time.
For the case study undertaken this approach has been
applied, although at some points in a simplified form.
One of the simplifications made is that due to the
linearity of most dependencies in the model,
adjustments have been used that just propagate without
any modification. An example of a rule specified to
achieve this propagation process is:

desire(adjust_by(u1, a)) belief(depends_on(u1, u2))
desire(adjust_by(u2, a))

Here the adjustments are taken relative, so, this rule is
based on u2 / u2 = u1 / u1 as derived above for the
linear case. When at the end the leaves are reached,
which is represented by the belief that they are directly
adjustable, then from the desire an intention to adjust
them is derived.

desire(adjust_by(u, a)) belief(directly_adjustable(u))
intention(adjust_by(u, a))

If an intention to adjust a variable u by a exists with
current value b, the new value b+ *a*b to be assigned
to u is determined; here is a parameter that allows the
modeller to tune the speed of adjustment:

intention(adjust_by(u, a)) belief(has_value_for(u, b))
performed(assign_new_value_for(u, b+ *a*b))

This rule is applied for variables that describe features
f of objects at locations s, i.e., instances for u of the
form feature(s, f). Note that each time the adjustment is
propagated as a value relative to the overall value.

4. Simulation results

To test whether the approach described above yields

the expected behaviour, it has been used to perform a
number of simulation experiments in the LEADSTO
simulation environment [4]. This environment takes a
specification of causal relationships (in the format as
shown in the previous sections) as input, and uses this
to generate simulation traces. The simulations shown
here address a slightly simplified case, where the radar
screen has been split up in 4 locations. For the time
being, it is assumed that each location contains one
contact, and that these contacts stay within their
locations.

The features of the contacts that are manipulated are
luminance, size, and level of flashing. Initially, each
contact starts with the same features, but during the
simulation these features are manipulated, based on the
prescribed (or desired) attention. This desired attention
is generated randomly, where every 50 time units a

next location is selected where the attention should be.
Furthermore, the behaviour of the human gaze is
generated as follows: after each adaptation of the
features, the gaze moves to one of the four locations,

with a probability that is proportional to the saliency of
the contact at that location.

Figure 4. Model-based reasoning process. First it is intended (several times) to adjust a feature value at
location 2, then at location 1, then at location 3, and finally at location 4.

Figure 5. Estimated attention at different locations. Initially the highest attention value is estimated to be
at location 2 (with a peak around time point 55), then at location 1, then at location 3, and finally at
location 4.

Figure 6. Dynamics of gaze. The vertical axis denotes the location of the gaze, which switches between
location 1, 2, 3, and 4.

Figure 7. Values of feature ‘luminance’ at different locations. First the luminance at location 2 is
increased, then at location 1, 3, and 4 (note that values are normalised).

The results of an example simulation run are depicted
in Figures 4 to 7. In these figures, time is on the
horizontal axis, and the different state of the process is
shown in the vertical axis. A dark line indicates that a
state is true at a certain time point. Note that some
information has been omitted due to space limitations.
Figure 4 shows the model-based reasoning process of
the agent, in terms of desires and intentions. Figures 5,

6, and 7 show, respectively, the estimated attention, the
human’s gaze, and the value of the feature “luminance”
at different locations over time. As shown in Figure 4,
initially it is desired that at least 50% of the human’s
attention is at location 2 (desire(av(2)>0.5)). Since this is
not the case (see Figure 5), the luminance of the
contact at location 2 is increased (see Figure 6). As a
result, the human’s gaze shifts towards this location

(see Figure 6), which increases his attention for
location 2. In the rest of the simulation, this pattern is
repeated for different locations.

After successfully running simulations of the
models under a number of different parameter settings,
it was considered appropriate to be implemented in a
real world case study. This case study is described in
the next section.

5. Case Study

The different models have been implemented and
tested for a case study. The used case study mimics a
real-world situation, with human subjects executing the
Tactical Picture Compilation Task. In Section 5.1 the
environment is shortly explained. Section 5.2 discusses
some implementation details of the attention
manipulating agent tailored to the environment.

5.1. Environment

The task used for this case study is an altered
version of the identification task described in [8] that
has to be executed in order to build up a tactical picture
of the situation, i.e. the Tactical Picture Compilation
Task (TPCT). The implementation of the software was
done in Gamemaker [29].

Figure 8. Interface of the task environment

In Figure 8 a snapshot of the interface of the task

environment is shown. The goal is to identify the five
most threatening contacts (ships). In order to do this,
participants monitor a radar display of contacts in the
surrounding areas. To determine if a contact is a
possible threat, different criteria have to be used. These
criteria are the identification criteria (idcrits) that are
also used in naval warfare, but are simplified in order
to let naive participants learn them more easily. These
simplified criteria are the speed (depicted by the length
of the tail of a contact), direction (pointer in front of a
contact), distance of a contact to the own ship (circular
object), and whether the contact is in a sea lane or not

(in or out the large open cross). Contacts can be
identified as either a threat (diamond) or no threat
(square).

5.2 Implementation

The support agent was further developed and
evaluated using Matlab (see Appendix A). The output
of the environment described in Section 5.1 was used
and consisted of a representation of all properties of the
contacts visible on the screen, i.e. speed, direction,
whether it is in a sea lane or not, distance to the own
ship, location on the screen and contact number. In
addition, data from a Tobii x50 eye-tracker [28] were
retrieved from a participant executing the TPC task.
All data were retrieved several times per second and
were used as input for the models within the agent.
Once the agent models were tailored to the TPC case
study, the eventual implementation of them was done
in C#.

Figure 9. Interface of the attention allocation
support system

In Figure 9 the interface of the implemented agent

models is shown. This interface consists of four parts
where parameters can be set. In first part the agent
models can be run. Once the button is pushed, both the
input from the TPC task environment and the eye-
tracker are retrieved and the required saliency levels
are communicated back to the TPC task environment.
Also the current settings can be saved; the participant’s
name and the IP-address where the TPC task

environment is running and eye-tracker is connected
can be specified here. In the second part, agent model
parameters can be set. For this paper we used a type of
support where feature manipulation values are to be
communicated to the task environment. These values
cause the saliency of the different objects on the screen
to either increase or decrease, which may result in a
shift of the participant’s visual attention. As a result,
the participant’s attention is continuously manipulated
in such a way that it is expected that he pays attention
to the objects that are considered relevant by the agent.
The increase or decrease of the saliency of objects can
be done on a continuous or discrete scale, with a binary
scale as being discrete. Other types of support can also
be set with the support type parameter, such as the
estimated threat values of each contact. Furthermore
the grid size can be set here. The more fine grained the
grid, the more computationally intensive the running of
the agent models will be. Time lag is also set here
which determines how old (in terms of milliseconds)
data is allowed to be in order to be used by the agent
models. This is needed because the application is run
over a network (though 4 seconds is most likely never
reached). The weights together with the decay are the
same parameters as also described in Section 3.2. The
frequency determines the amount of model loops the
agent is allowed to run. The higher the frequency, the
more computationally intensive the support agent will
be. The third part deals with the frequency of the task
environment. This specifies the amount of times the
information from the task environments is
communicated to the support agent. The fourth part
deals with the parameters of the eye-tracker. The
frequency specifies the amount of times the gaze
location is retrieved. The other options are to visualise
the eye-tracker information in real-time or to simulate
eye-tracker information by mouse movements instead
of gaze behaviour.

5.3. Results

The first results of the agent implemented for this case
study are best described by a number of example
snapshots of the outcomes of the models used in the
agent to estimate (model 1) and manipulate (model 4)
attention in three different situations over time (see
Figure 10).

On the left side of Figure 10 the darker dots
correspond to the agent’s estimation of those contacts
to which the participant is paying attention. On the
right side of the figure, the darker dots correspond to
those contacts where attention manipulation is initiated
by the system (in this case, by increasing its saliency).
On both sides of the figure a cross corresponds to the

own ship, a star corresponds to the eye point of gaze,
and the x- and y-axes represent the coordinates on the
interface of the TPCT. In the pictures to the left, the z-
axis represents the estimated amount of attention.

The darker dots on the left side are a result of the
exceedance of this estimation of a certain threshold (in
this case .03). Thus, a peak indicates that it is estimated
that the participant has attention for that location.

Furthermore, from top to bottom, the following
three situations are displayed in Figure 10:
 After 37 seconds since the beginning of the experiment, the

participant is not paying attention to region A at coordinates
(7.5,1.5) and no attention manipulation for region A is
initiated by the system.

 After 39 seconds, the participant is not paying attention to
region A, while the attention should be allocated to region A,
and therefore attention manipulation for region A is initiated
by the system.

 After 43 seconds, the participant is paying attention to region
A, while no attention manipulation for region A is done by the
system, because this is not needed anymore.

Figure 10. Estimation of the participant’s
attention division and the agent’s reaction

The output of the attention manipulation system and

the resulting reaction in terms of the allocation of the
participant’s attention in the above three situations,
show what one would expect of an accurate system of
attention manipulation. As shown in the two pictures at

the bottom of Figure 10, in this case the agent indeed
succeeds in attracting the attention of the participant:
both the gaze (the star in the bottom right picture) and
the estimated attention (the peak in the bottom left
picture) shift towards the location that has been
manipulated.

6. Validation

In order to validate the agent’s manipulation model,

the results from the case study have been used and
tested against results that were obtained in a similar
setting without manipulation of attention. The basic
idea was to show that the agent’s manipulation of
attention indeed results in a significant improvement of
human performance. Human performance in selecting
the five most threatening contacts was compared
during two periods of 10 minutes (with and without
manipulation, respectively). The type of manipulation
was based on determining the saliency of the objects
on a binary scale. In this way it was easy (opposed to a
continuous scale) to follow the agent’s advice. The
performance measure took the severity of an error into
account. Taking the severity into account is important,
because for instance selecting the least threatening
contact as a threat is a more severe error than selecting
the sixth most threatening contact. This was done by
the use of the following penalty function ():

௫ܲ ൌ
௫

∑
ଶସ

ൌ
௫ݐሺݏܾܽ െ

ହݐ ݐ
2 ሻ

∑
ଶସ

where ௫ is the prenormalised penalty of contact and
 ௫ is the threat value of contact (there are 24ݐ
contacts). Human performance is then calculated by
adding all penalties of the contacts that are incorrectly
selected as one of the top five threats and subtracting
them from 1.

After the above alterations, the average human
performance over all time points of the condition
“support” was compared with the average human
performance of the first condition “no support”, where
“support” (ܯ ൌ ൌܦܵ ,8714. .0569) was found
significantly higher (i.e., ൏ .05) than “no support”
െ ൌܯ) െ ൌܦܵ ,8541. .0667), with ݐሺ݂݀ ൌ
 5632ሻ ൌ ,10.46 ൏ 0.001. Hence significant
improvements were found comparing the first and the
second condition. Finally, subjective data based on a
questionnaire pointed out that the participant preferred
the “support” condition above that of the “no support”
condition.

7. Verification

In addition to this validation, the results of the

experiment have been analysed in more detail by
converting them into formally specified traces (i.e.,
sequences of events over time), and checking relevant
properties, expressed as temporal logical expressions,
against these traces. To this end, a number of
properties were logically formalised in the language
TTL [3]. This predicate logical language supports
formal specification and analysis of dynamic
properties. TTL is built on atoms referring to states of
the world, time points and traces, i.e. trajectories of
states over time. In addition, dynamic properties are
temporal statements that can be formulated with
respect to traces based on the state ontology Ont in the
following manner. Given a trace over state ontology
Ont, the state in at time point t is denoted by state(,
t). These states can be related to state properties via the
formally defined satisfaction relation denoted by the
infix predicate |=, comparable to the Holds-predicate in
the Situation Calculus: state(, t) |= p denotes that state
property p holds in trace at time t.

Based on these statements, dynamic properties can
be formulated in a formal manner in a sorted first-order
predicate logic, using quantifiers over time and traces
and the usual first-order logical connectives such as ,
, , , , . To give a simple example, the property
‘there is a time point t in trace 1 at which the estimated
attention level of space {1,2} is 0.5’ is formalised as
follows (see [3] for more details):

 t:TIME state(trace1,t) |= belief(has_value(av(1,2), 0.5))

Below, a number of such dynamic properties that
are relevant to check the agent’s attention manipulation
are formalised in TTL, in a similar manner as was done
in [6]2 To this end, some abbreviations are defined:

discrepancy_at(:TRACE, t:TIME, x,y:COORDINATE)
 a,h:REAL estimated_attention_at(,t,x,y,a) &
 state(,t) |= desire(has_value(av(x,y), h)) & a<h

This predicate states that at time point t in trace ,
there is a discrepancy at space {x,y}. This is the case
when the estimated attention at this space is smaller

2 Note that the properties introduced in [6] were used mainly
to check whether the attention model (as described in Section
3.2) behaved correctly, whereas the current properties aim to
check for successfulness of the attention manipulation model.

than the desired attention. Next, abbreviation
estimated_attention_at is defined:

estimated_attention_at(:TRACE,t:TIME,

x,y:COORDINATE, a:REAL)
 state(,t) |= belief(has_value(av(x,y),a))

This takes the estimated attention as calculated by
the agent at runtime. This means that this definition
can only be used under the assumption that this
calculation is correct. Since this is not necessarily the
case, a second option is to calculate the estimated
attention during the checking process, based on more
objective data such as the gaze data and the features of
the contacts.

Based on these abbreviations, several relevant
properties may be defined. An example of a relevant
property is the following (note that this property
assumes a given trace , a given time point t, and a
given space {x,y}):

PP1 (Discrepancy leads to Efficient Gaze Movement)
If there is a discrepancy at {x,y} and the gaze is currently at {x2,y2},
then within time points the gaze will have moved to another space
{x3,y3} that is closer to {x,y} (according to the Euclidean distance).

PP1(:TRACE, t:TIME, x,y:COORDINATE)
x2,y2:COORDINATE
discrepancy_at(,t,x,y) &
state(,t) |= gaze_at(x2,y2) & t < LT-

 t2:TIME x3,y3:COORDINATE [t<t2<t+ &
state(,t2) |= gaze_at(x3,y3) &
((x-x2)2+(y-y2)2) > ((x-x3)2+(y-y3)2)]

In the above property, a reasonable value should be

chosen for the delay parameter . Ideally, equals the
sum of 1) the time it takes the agent to adapt the fea-
tures of the contacts and 2) the person’s reaction time.

To enable automated checks, a special software
environment for TTL exists, featuring both a Property
Editor for building and editing TTL properties and a
Checking Tool that enables formal verification of such
properties against traces [3]. Using this TTL Checking
Tool, properties can be automatically checked against
traces generated from any case study. In this paper the
properties were checked against the traces from the
experiment described in Section 5. When checking
such properties, it is useful to know not only if a
certain property holds for a specific space at a specific
time point in a specific trace, but also how often it
holds. This will provide a measure of the
successfulness of the system. To check such more
statistical properties, TTL offers the possibility to test a
property for all time points, and sum the cases that it
holds. Via this approach, PP1 was checked against the
traces of the experiment with = 3.0 sec. These checks
pointed out that (under the “support” condition) in

88.4% of the cases that there was a discrepancy, the
gaze of the person changed towards the location of the
discrepancy. Under the “no support” condition, this
was around 80%.

8. Formal Analysis

The results of validation and verification discussed
above may ask for a more detailed analysis. In
particular, the question may arise of how a difference
between 80% without support and 88% with support as
reported above should be interpreted. Here a more
detailed formal analysis is given that supports the
context for interpretation of such percentages. To this
end the effect of arbitrary transitions in gaze dynamics
is analysed, in particular those that occur between the
time points of monitoring the gaze and adjustment of
luminance.

At a given time point, the adjustment of luminance
is based on the gaze at that point in time. A question is
whether at the time the luminance is actually adjusted,
the gaze is still at the same point. When the system is
very fast in adjusting the luminance this may be the
case. However, it is also possible that even in this very
short time the gaze has changed to focus on another
location on the screen. Here it is analysed in how many
cases of an arbitrarily changed gaze the luminance
adjustment by the system should still be sufficient. The
general idea is that this is the case as long as the gaze
transition does not increase the distance between gaze
location and considered discrepancy location. The area
of all locations of the screen for which this is the case
is calculated mathematically below; here the worst case
is analysed, the case when the considered discrepancy
location is at the corner of the screen. The screen is
taken as a square. The function ݂ indicates an under-
approximation of the number (measured by the area) of
locations with distance at most ݎ to ܱ (see Figure 11,
with ݎ ൌ ܱܳ). For ݎ ݀ the area within distance ݎ to
ܱ is a quarter of a circle: /4 ݎଶ; so ݂ሺݎሻ ൌ /4 ݎଶ,
for ݎ ݀. For ݎ ݀ an approximation was made. The
part of distance to ܱ larger than ݎ is approximated by
two triangles as ܴܲܳ in Figure 10.

Figure 11. Gaze area approximation

P

Q

R

O N
d

h

ܱܰ ൌ ݀, ܳܰ ൌ ටݎଶ – ݀ଶ,

ܴܳ ൌ ܴܰ െ ܳܰ ൌ ݀ െ ටݎଶ– ݀ଶ,
ܱܴ ൌ √2 · ݀, ܴܲ ൌ ܱܴ – ܱܲ ൌ √2 · ݀ – ,ݎ
ܴܲܳ ൌ ½ ܴܲ · ݄, with ݄ the distance of ܳ to ܱܴ,

݄ ൌ ½√2 · ܴܳ ൌ ½ √2 · ቆ݀ – ටݎଶ – ݀ଶቇ.

The whole area – 2ܴܲܳ is

݀ଶ – ½ √2 · ቀ݀ – ඥݎଶ – ݀ଶቁ ൫√2 · ݀ – ൯ݎ

Therefore, for r > d, it is taken

݂ሺݎሻ ൌ ݀2 – ½ √2 · ቀ݀ – ඥ2݀ – 2ݎቁ ൫√2 · ݀ – ,൯ݎ
for ݎ ݀

For ݀ ൌ 10 the overall function ݂ divided by the

overall area ݀ଶ (thus normalising it between 0 and 1) is
shown in Figure 12. For example, it shows that when
ൌ ݎ ½݀, then the covered area is around 20% of the
overall screen, but when r is a bit larger, for example
ൌ ݎ ݀, then at least around 80% is covered. Note that
this is a worst case analysis with the location
considered in the corner. In less extreme cases the
situation can differ. When, for example, the considered
location is at the center, then for distance ݎ ൌ ½ ݀,
the covered area would be a full circle with radius ½݀,
so an area of /4 ݀2, which is more than 70% of the
overall area.

Figure 12. Function of the number of locations

within distance ࢘ to ࡻ, divided by ࢊ, for
ࢊ ൌ

Moreover, the distance of the considered location

where a discrepancy is detected to the actual gaze may
not have a uniform probability distribution from 0 to
√2 · ݀. Indeed, the value 0 may be very improbable,
and the larger values may have much higher
probabilities. Suppose ሺݎሻ denotes the probability
(density) that the distance between actual gaze and

considered discrepancy location is ݎ, then the expected
coverage can be calculated by:

 ሻݎሺ · ݂ሺݎሻ݀ݎ
√2·ௗ

For example, if a probability distribution is assumed

that is increasing in a modest, linear way from
ሺ0ሻ ൌ 0 to ሺ√2 כ ݀ሻ ൌ 1/݀2, then for ݀ ൌ 10
with ሺݎሻ ൌ this becomes approximately 100/ݎ
(estimated by numerical integration):

·ሺሻ

ଵ
ݎ݀

ଵସ
 ൌ 0.72

This means that the expected coverage would be

72%. For a bit less modest increase, for example in a
quadratic manner for ݀ ൌ 10 from ሺ0ሻ ൌ 0 to
ሺ14ሻ ൌ 0.2, then the expected coverage is
approximately 80% (estimated by numerical
integration):

ଶ·ሺሻ

ଵ
ݎ݀

ଵସ
 ൌ 0.80

When it turns out that the gaze is often changing,

then a remedy is to base the adjustment of the
luminance on a larger distance for ݎ, thus anticipating
on the possible future states. The graph for f shows that
if ݎ is taken equal to distance ݀, then a coverage of
80% is achieved.

9. Discussion

An important task in the domain of naval warfare is
the Tactical Picture Compilation Task, where persons
have to deal with a lot of complex and dynamic
information at the same time. To obtain an optimal
performance, an intelligent agent can provide aid in
such a task. This paper discussed and evaluated an
initial version of such a supporting software agent.
Within this type of agent an explicitly represented
model of human functioning plays an important role,
for the case considered here the model of the human’s
attention.

To obtain a software agent for these purposes, four
models were used that are aimed at manipulating a
person’s attention at a specific location: (1) a
dynamical system model for attention, (2) a reasoning
model to generate beliefs about attentional states using
the attention model for forward simulation, (3) a
discrepancy assessment model, and (4) a decision
reasoning model, again using the attention model, this
time for backward desire propagation. The first two

models were adopted from earlier work [7], and the
decision model in (4) from [5].

After testing the models via simulation experiments,
they have been implemented within an ambient agent,
in a case study where participants perform a simplified
version of the Tactical Picture Compilation Task.
Within this case study an experiment was conducted to
validate the agent’s manipulation. The participants,
both in the experiment discussed in this paper as well
in earlier pilot studies, reported to be confident that the
agent’s manipulation indeed is helpful. The results of
the validation study with respect to performance
improvement have also been positive.

Further investigation has to be done in order to rule
out any order effects, which suggests more research
with more participants. It is also expected that future
improvements of the agent’s submodels, based on the
gained knowledge from automated verification will
also contribute to the improved success of such
validation experiments.

A detailed analysis and verification of the behaviour
of the agent also provided positive results. Traces of
the experiment were checked to see whether the agent
was able to adapt the features of objects in such a way
that they attracted human attention. Results show that
when there was a discrepancy between the prescriptive
and the descriptive model of attention, the agent indeed
was able to attract the human’s attention.

Note that the model in this paper assumes mainly a
bottom-up influence on attention to a location (i.e.
influence of saliency). An existing model that
incorporates both bottom-up and top-down aspects of
attention is that of [11]. Next to the saliency of a
location, their model predicts attention taking into
account the expectancy of seeing a valuable
(important) event at a location and the effort it takes to
contribute attention at that location (see also [27]).

Although top-down influences are not taken into
account in the current model, previous research shows
that it is possible to extend such models based on a
saliency map with top-down features of attention. In
[9], [18], a map is proposed that shows the relevancy
of a location to the task (task-relevance map) next to
the existing saliency map. As our attention model is
based on the generic notion of features of a location, it
can be easily extended with top-down features as well.
In the future, these possibilities will be explored in
detail.

Acknowledgments

This research was partly funded by the Royal

Netherlands Navy (program number V524).

References

[1] Baron-Cohen, S. Mindblindness: an essay on autism and

theory of mind. MIT Press, 1995.

[2] Bosse, T., Both, F., Gerritsen, C., Hoogendoorn, M., and
Treur, J. Model-Based Reasoning Methods within an Ambient
Intelligent Agent Model. In: M. Mühlhäuser et al. (eds.),
Constructing Ambient Intelligence: AmI-07 Workshops
Proceedings. LNCS, vol. 11, Springer Verlag, 2008, pp. 352-
370.

[3] Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh, A.,
and Treur, J., Specification and Verification of Dynamics in
Agent Models. International Journal of Cooperative
Information Systems, vol. 18, 2009, pp. 167 - 193. Shorter
version in: Nishida, T. et al. (eds.), Proc. of the Sixth Int.
Conference on Intelligent Agent Technology, IAT'06. IEEE
Computer Society Press, 2006, pp. 247-254.

[4] Bosse, T., Jonker, C.M., Meij, L. van der, & Treur, J. (2007).
A Language and Environment for Analysis of Dynamics by
Simulation. International Journal of Artificial Intelligence
Tools, vol. 16, no. 3, pp. 435-464.

[5] Bosse, T., Lambalgen, R. van, Maanen, P.-P. van, Treur, J.,
Automated Visual Attention Manipulation. In: L. Paletta,
Tsotsos, J.K. (eds.), Attention in Cognitive Systems,
Proceedings of the Fifth International Workshop on Attention
in Cognitive Systems, WAPCV'08. Lecture Notes in Artificial
Intelligence, vol. 5395. Springer Verlag, 2009, pp. 257-272.

[6] Bosse, T., Memon, Z.A., and Treur, J., A Two-Level BDI-
Agent Model for Theory of Mind and its Use in Social
Manipulation. In: Proceedings of the AISB 2007 Workshop on
Mindful Environments, 2007, pp 335-342.

[7] Bosse, T., Maanen, P.-P. van, Treur, J., Simulation and
Formal Analysis of Visual Attention, Web Intelligence and
Agent Systems Journal, vol. 7, 2009, pp. 89-105.

[8] Chen, L.Q., Xie, X., Fan, X., Ma, W.Y., Zhang, H.J., and
Zhou, H.Q., A visual attention model for adapting images on
small displays, ACM Multimedia Systems Journal, 2003.

[9] Elazari, L., & Itty, L. (2010). A Bayesian model for efficient
visual search and recognition. Vision Research 50. 1338-1352.

[10] Heuvelink, A., Both, F.: Boa: A cognitive tactical picture
compilation agent. In: Proc. of the Int. Conf. on Intelligent
Agent Technology, IAT ’07, IEEE Comp. Soc. Press, 2007.

[11] Horrey, W.J., Wickens, C.D., Strauss, R., Kirlik, A., &
Stewart, T.R. Supporting situation assessment through
attention guidance and diagnostic aiding: the benefits and cost
of display enhancement on judgment skill. In: Kirlik, A. (ed.)
Human-Technology Interaction, Oxford University Press,
New York, 2006.

[12] Gore, B.F., Hooey, B.L., Wickens, C.D., & Scott-Nash, S. A
computational implementation of a human attention guiding
mechanism in MIDAS v5. In: Duffy, V.G. (Ed.) Digital
Human Modeling, HCII 2009, LNCS 5620, 237-246, 2009.
Springer-Verlag Berlin Heidelberg, 2009.

[13] Itti, L. and Koch, C., Computational Modeling of Visual
Attention, Nature Reviews Neuroscience, Vol. 2, No. 3, 2001,
pp. 194-203.

[14] Itti, L., Koch, U., and Niebur, E. A model of saliency-based
visual attention for rapid scene analysis. IEEE Transactions on
Pattern Analysis and Machine Intelligence 20, 1998, pp. 1254-
1259.

[15] Levitt, J.B., and Lund, J.S. Contrast dependence of contextual
effects in primate visual cortex. Nature, 387, 1997, 73-76.

[16] Marsella, S.C., Pynadath, D.V., and Read, S.J., PsychSim:
Agent-based modeling of social interaction and influence. In:
Lovett, M., Schunn, C.D., Lebiere, C., and Munro, P. (eds.),
Proc. of the Int. C. on Cognitive Modeling, ICCM 2004, pp.
243-248 Pittsburg, Pensylvania, USA.

[17] Memon, Z.A., and Treur, J., Cognitive and Biological Agent
Models for Emotion Reading. In: Jain, L., Gini, M., Faltings,
B.B., Terano, T., Zhang, C., Cercone, N., Cao, L. (eds.),
Proceedings of the 8th IEEE/WIC/ACM International
Conference on Intelligent Agent Technology, IAT'08. IEEE
Computer Society Press, 2008, pp. 308-313.

[18] Navalpakkam, V., & Itti, L. A goal oriented attention
guidance model. In: Lecture Notes Computer Science 2525,
pp453-461. November 2002.

[19] Nothdurft, H. Salience from feature contrast: additivity across
dimensions. Vision Research 40, 2000, 1183-1201.

[20] Parkurst, D., Law, K., and Niebur, E. Modeling the role of
salience in the allocation of overt visual attention. Vision
Research, 42, 2002, 107-123.

[21] Posner, M. E., Orienting of attention, Q. J. Exp. Psychol., 32,
1980, pp. 3-25.

[22] Sklar, A.E., & Sarter, N.B. (1999). Good Vibrations: tactile
feedback in support of attention allocation and human-
automation coordination in event-driven domains. Human
Factors 41(4), pp. 543-552.

[23] Theeuwes, J., Endogenous and exogenous control of visual
selection, Perception, 23, 1994, pp. 429-440.

[24] Theeuwes, J. Abrupt luminance change pops out; abrupt color
change does not, Perception & Psychophysics, 57(5), 1995,
637-644.

[25] Treisman, A. Features and objects: The 14th Bartlett memorial
lecture. Q.J. Experimental Psychology A. 40, 201-237.

[26] Turatto, M., and Galfano, G., Color, form and luminance
capture attention in visual search. Vision Research, 40, 2000,
1639-1643.

[27] Wickens, C.D., McCarley, J.S., Alexander, A.L., Thomas,
L.C., Ambinder, M., & Zheng, S. Attention-Situation
Awareness (A-SA) model of pilot error. In: Foyle, D.C. and
Hooey, B.L. (eds.). Human Performance Modeling in
Aviation, 2008, pp 213-239 Taylor & Francis Group, Florida.

[28] http://www.tobii.com.

[29] http://www.yoyogames.com/gamemaker

Appendix A: Matlab code attention model

% This matlab code calculates the attention values for each time step of a given data set:
% v_gaze2 (gaze data)
% v_target4, v_target5a (task environment data)
% v_increments (gaze to target data offset conversion data)
% a_parameters (model parameters)
% v_model4 (output data)

% constants initialization
xstep = 20; % x-pixel length in grid
ystep = 20; % y-pixel length in grid
c_gridmaxX = 10;
c_gridmaxY = 10;
c_timeinterval = 500; % number of milliseconds per time step
a_participantnumber = 1;
i_steps = 2000; % number of time steps
v_model1 = zeros(i_steps, c_gridmaxX, c_gridmaxY); % momentaneous
v_model2 = zeros(i_steps, c_gridmaxX, c_gridmaxY); % normalized (1)
v_model3 = zeros(i_steps, c_gridmaxX, c_gridmaxY); % temporal
v_model4 = zeros(i_steps, c_gridmaxX, c_gridmaxY); % normalized (2)

% if gazeweight = 0 then distance between de EPOG and the contact does not
% have any effect, if gazeweight = 'infinity' only the grid coordinates of
% de EPOG will have saliency
gazeweight = 1;

% if decayfactor = 0, then old information is not used
% if decayfactor = 1, then new information is not used
decayfactor = .8;

% initialization model
v_model4(1,:,:) = 1/(c_gridmaxX*c_gridmaxY);
v_model1(1,:,:) = v_model4(1,:,:);
v_model2(1,:,:) = v_model4(1,:,:);
v_model3(1,:,:) = v_model4(1,:,:);

% calculate attention values for each time step
for i = 2:i_steps % "2" because "1" is already initialized
 summodel = zeros(1,3);
 for x = 1:c_gridmaxX
 for y = 1:c_gridmaxY
 taskfactor = 0; % influence by contacts on grid (x,y)
 numberofcontactsonxy = 0;
 if v_increments(i,1,2) > 0 % if there are contacts at this timestep
 for k = 1:v_increments(i,1,2) % go through all contacts
 if v_target4(v_increments(i,1,3)+k-1,3)+1==x && v_target4(v_increments(i,1,3)+k-1,4)+1==y
 % calculate the task factor with the previously specified weights per participant
 % using a_parameters(for each participant, parameternumber)
 average = (a_parameters(a_participantnumber, 1)* ...
 v_target5a(v_increments(i,1,3)+k-1,2) + ...
 a_parameters(a_participantnumber, 2) * ...
 v_target5a(v_increments(i,1,3)+k-1, 3) + ...
 a_parameters(a_participantnumber, 3) * ...
 v_target5a(v_increments(i,1,3)+k-1, 4)) /...
 sum(a_parameters(a_participantnumber, 1:3));
 end
 taskfactor = max(taskfactor, average); % use only maximum task factor
 numberofcontactsonxy = numberofcontactsonxy + 1;
 end
 end
 end
 if numberofcontactsonxy == 0 % is no contacts than use default values
 taskfactor = a_parameters(a_participantnumber, 6);
 numberofcontactsonxy = a_parameters(a_participantnumber, 7);
 end
 if v_gaze2(i,2) >= 0 % if there is a gaze

 gazefactor = 1/(1 + gazeweight * sqrt((xstep*(x - v_gaze2(i,2))).^2 + ...
 (ystep*(y - v_gaze2(i,3))).^2) / sqrt(c_primarymaxX.^2 + c_primarymaxY.^2));
 else
 gazefactor = 1/sqrt(c_primarymaxX.^2 + c_primarymaxY.^2);
 end
 v_model1(i,x,y) = taskfactor*gazefactor;
 summodel = summodel + v_model1(i,x,y);
 end
 end
 % normalize model (1)
 v_model2(i,:,:) = v_model1(i:,:)/summodel;
end

% merge old with new
for i = 2:i_steps
 summodel = zeros(1,3);

 % calculate real attention values
 for x = 1:c_gridmaxX
 for y = 1:c_gridmaxY
 DECAY = decayfactor.^(c_timeinterval/1000);
 OLD = v_model4(i-1,x,y);
 NEW = v_model2(i,x,y);
 v_model3(i,x,y) = OLD*DECAY + NEW*(1-DECAY);
 summodel = summodel + v_model3(i,x,y);
 end
 end

 % normalize (2)
 v_model4(i,:,:) = v_model3(i,:,:)/summodel;
end

