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Abstract—This paper presents a similarity measure that com-
bines low-level trajectory information with geographical domain
knowledge to compare vessel trajectories. The similarity mea-
sure is largely based on alignment techniques. In a clustering
experiment we show how the measure can be used to discover
behavior concepts in vessel trajectory data that are dependent
both on the low-level trajectories and the domain knowledge. We
also apply this measure in a classification task to predict the type
of vessel. In this task the combined measure performs better than
similarities based on domain knowledge or low-level information
alone.

Index Terms—vessel trajectories; trajectory alignments; geo-
graphical domain knowledge; trajectory clustering

I. INTRODUCTION

To gain insight into the behavior of moving objects, such as
vessels, it can be useful to cluster their trajectories into groups
of similar movement patterns. Moving object trajectories are
a kind of multivariate time-series. They have the property
that they are usually different in temporal length, distance
traveled and the number of data points. Alignment methods,
such as dynamic time warping or edit distance, are designed
to handle these kinds of variations. Thus, such methods can
make suitable similarity measures for clustering moving object
trajectories.

The trajectories of moving objects exist in spaces where
places and regions have semantics of their own. In the case of
vessels there are concepts such as anchoring areas, sea lanes
and harbors. If we add this information to the trajectories and
incorporate it in the similarity measure, then we can potentially
discover more complex and interesting behavior patterns.

A simple example of such a pattern is the trajectories of
large cargo ships and tankers that use a shipping lane to sail
north. Using the shipping lane information the trajectories of
these vessels can be discriminated from other vessels moving
in that direction, such as the fishing vessels that do not use
a shipping lane to go fishing up north. Also different types
of ports, e.g. petrol docks and cargo terminals, can help us
discriminate between the trajectories of tankers and those of
cargo vessels, which look really similar in terms of movement.

In this paper we present an alignment based similarity
measure that combines low-level vessel trajectories with geo-
graphical information, such as the name and type of the regions

that vessels pass through and where they stop. We use this sim-
ilarity measure in a clustering experiment and a classification
task. The clustering experiment shows a number of interesting
vessel behaviors that are discovered based on the combination
of trajectories and geographical domain knowledge. In the
classification task we try to predict the type of the vessel,
e.g. tanker, tug or cargo vessel, that a trajectory belongs to.
Again, we see the power of the combination of trajectories
and domain knowledge, since this combination gives the
best average classification accuracy. For both clustering and
classification we use kernel based algorithms, so our measure
is presented in the form of a kernel.

Our work has similarities with [2], where the authors use
a series of clusterings with different similarity measures to
discover interesting movement patterns. In this paper we
incorporate more domain knowledge and also provide the
combination of trajectory and domain knowledge as one
measure where weights can be used to determine the influence
of each component.

There are more papers researching the problem of clustering
trajectories, mostly coming from the Moving Object Database
community. The authors of [17] take an alignment based
approach to clustering, as we do. In [11] the distance between
trajectories is computed based on the area between them. And
in [10] the authors use compression based on the minimum
description length principle to simplify trajectories. Then all
three above use a density based clustering algorithm. Using
a density based clustering algorithm assumes that clusters are
not (densely) connected. However, we do not know whether
this is actually the case when using the complex alignment
based similarity that we define below, therefore, we prefer a
k-means based method. In [13] trajectories are first converted
into a grid based representation and then clustered using fuzzy
c-means. Using a c-means method is closer to our approach,
however we do not use a grid representation.

The rest of this paper is organized as follows. In Section
II we will describe the geographical domain knowledge that
we have used. Then we will define trajectories and how
we enriched them with the domain knowledge in Section
III. Our similarity measure for low-level trajectories labeled
with geographical information is described in Section IV. The



clustering and classification experiments that we on vessel
trajectory data, using this measure, are presented in Section
V. We end with some conclusions and suggestions for future
work.

II. GEOGRAPHICAL DOMAIN KNOWLEDGE

Our geographical domain knowledge comes in the form
of two simple ontologies. Both ontologies are stored as
RDF. One ontology contains the definition of different an-
chorages, clearways and other areas at sea, which we call
AnchoragesAndClearways. All of these geographical features
were converted to RDF from shape files from Rijkswaterstaat
(RWS), part of the Netherlands Ministry of Transport, Public
Works and Water Management. The other ontology has defi-
nitions for different types of harbors, such as liquid bulk and
general cargo (containers), which we call Harbors. All harbors
were manually copied from the harbor branches map of the
Port of Rotterdam Authority.1 The concepts in these ontologies
have a unique identifier, are assigned polygon regions, and
have a type.

The modeling of the concepts follows the Geon-
ames ontology, with the exception of the position-
ing properties (wgs84 : {lat|long}) and the type property
(geo : featureCode). Geonames specifies feature types with
the geo : featureClass property for general classes, like
geo : P for populated feature types and geo:H for hydrographi-
cal feature types. Specific types, like geo : H.HBR for harbors,
are specified with the geo : featureCode property. For our
experiment we require more specific types than just harbor,
e.g. dry bulk harbor. We assigned these specific types as
extra types to the features. The specific types are modeled as
subclasses of the original geo : featureCodes. To allow RDFS
reasoning over the featureCodes and their new subclasses we
temporarily asserted that geo : featureCode is a subproperty
of rdf : type, which makes each featureCode an rdfs : Class
containing all the features of that type as instances. Geonames
uses WGS84 latitude longitude coordinates, while we use
polygons of WGS84 coordinates which we express in the
GeoRSS Simple vocabulary2.

The polygons that define the different regions can be
overlapping. For example, an anchorage area can overlap with
a harbor approach. Each of the harbor regions is assigned a
polygon demarcating the land area of the harbor (the port) and
not the part of the water (the dock), because the same dock
can be shared by two ports of different types. For instance,
there can be container cranes on one side of the basin and oil
valves on the other. This is not the case for harbors found in
Geonames, because these are located by points in the middle
of the dock. An example of the representation of a harbor with
a specific type and polygon shape can be found in Figure 1.

We have created two web services to enrich trajectories with
geographical features. One of these services, NearestHarbor,
matches a latitude, longitude point to the nearest harbor

1http://www.portofrotterdam.com/en/Port/port-maps/Pages/branches.aspx
2See http://www.georss.org/simple and http://www.georss.org/rdf rss1
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Fig. 1. Example of the RDF representation of the geographical domain
knowledge using a combination of the Geonames ontology and GeoRSS. This
figure shows a dry bulk cargo harbor.

in Harbors within a predetermined range, the actual range
used in this experiment will be discussed in Section V.
The label and most specific type of this harbor is then
returned, e.g. ‘place DryBulk4’ and ‘ptype DryBulkHarbor’.
Similarly, the other service, Intersection, returns a set of
label, most specific type pairs corresponding to the regions in
AnchoragesAndClearways that intersect with a given point.
Both web services were implemented in SWI-Prolog using the
Space package [15].

We represent the geographical domain knowledge in RDF
using the Geonames and GeoRSS ontologies. Besides these
ontologies, the SWI-Prolog Space package also supports other
geolocation representations in RDF, like those used by DBpe-
dia,3 Freebase4 and LinkedGeoData (OpenStreetMap).5 There-
fore the services that match the trajectories to geographical
features could just as well use RDF from these sources by di-
rectly loading them over the web. The main reason to use RWS
sea maps and manually converted Port of Rotterdam harbor
types is that currently there are hardly any maritime polygons
to be found on the web. Moreover, the maritime features that
do exist are not of the suitable level of abstraction. In the
case of Geonames, the lowest level of abstraction is often not
low enough, as discussed before, while in LinkedGeoData the
existing levels of abstractions are too low or inappropriate. For
example, harbors are categorized as leisure areas for angling,
and each separate trash bin is listed as such.

III. TRAJECTORIES

Vessel trajectories are an example of moving object trajecto-
ries. A moving object trajectory in 2-dimensional space is rep-
resented by a sequence of vectors 〈x1, y1, t1〉, . . . , 〈xn, yn, tn〉.
Where xi and yi represent the position of the object at time
ti. However, in this paper we ignore the temporal dimension
and consider a trajectory as T = 〈x1, y1〉, . . . , 〈xn, yn〉. The
length of a trajectory, i.e. the number of vectors, is denoted
as: |T |. Furthermore, let T (i) = 〈xi, yi〉. The sample rate of
trajectories is not fixed, thus the temporal difference between

3http://dbpedia.org
4http://freebase.com
5http://linkedgeodata.org



Fig. 2. Visualization of the geographical domain knowledge in KML. All the clearways and approach areas (translucent), anchorages (dark red), restriction
zones (dark blue), and separation zones (yellow) are shown in the picture on the left. The various harbor types and the deep water lane (light blue) for large
vessels is shown in the picture on the right, which corresponds to the rectangular area outlined with a white line in the picture on the left.

consecutive samples 〈xi, yi〉 and 〈xi+1, yi+1〉 is not the same.
Also, there are more dimensions to trajectories that can be
derived from the x, y, t information that we do not consider,
such as speed and direction. In some tasks and applications
these attributes might be more relevant than the absolute
position x, y. In principle these dimensions could just be
added. In the following we refer to a vector 〈xi, yi〉 as
trajectory element or point.6 In the stop and move model of
[14], the trajectories in our experiment are moves. They are
delimited by the vessel entering the area of observation or
starting (from being stopped) and the vessel leaving the area
of observation or stopping.

Using the Intersection service we create a sequence of sets
of geo-labels TL = L1, . . . , L|T | for a trajectory T , where
Li = {(name1, type1), . . . , (namem, typem)}. Thus, each Li
is a set of pairs where namej is the label of the region such
that T (i) is contained in the polygon that defines that region
and typej is the type of that region. Let TL(i) = Li. Li is
a set because a point can be in multiple regions. Li can be
empty since the defined regions do not cover everything.

We treat the start T (1) and end T (|T |) of a trajectory
with special interest and define for a trajectory T the objects
T start = (stopped, Lstart) and T end = (stopped, Lend).
stopped is a boolean value indicating whether the ves-
sel is stopped. Lstart, respectively Lend, is a set of pairs
(name, type). To add domain knowledge about whether a
vessel is docked at a port we use the NearestHarbor service
to find the geographically closest harbor (name, type) to the
point T (1), respectively T (|T |). If this service returns a harbor
and the vessel is also stopped, then we put this pair in Lstart,
respectively Lend. If the vessel is stopped but there is no harbor
close, then we use the Intersection service to find the regions

6We use the generic symbols x and y, but in our experiment, depending
on the context, these are longitude and latitude coordinates or projections of
these coordinates to an x, y-plane.

that T (1), respectively T (|T |), is in, and add those to Lstart,
respectively Lend. We do the same if the vessel is not stopped.
Thus, we are interested in harbors if a vessel is docked there,
where docked is defined as being close to that harbor and
stopped. We could have also added the start and stop harbors
to the sequence of geo-labels TL, however, by treating these
separately we have more flexibility in weighing the importance
of the start and stop harbors.

So, for each trajectory we have four objects, the trajectory
itself, T , a sequence of sets of geo-labels, TL, and start and
end information, T start and T end.

The above labeling process has similarities with the work in
[1]. However, we label not only the stops (or starts and ends
in our terminology), but also the moves. Furthermore we use
RDF based web services instead of a geographic database.

IV. TRAJECTORY SIMILARITY

Both the trajectory T and the sequence of sets of geo-
labels TL are sequences. Similarity between sequences can
be computed using alignment methods, such as dynamic time
warping and edit distance. In previous work [6] we studied
the performance of different alignment measures on a vessel
trajectory clustering task under the influence of trajectory
compression. The best performing alignment in this work was
a form of edit distance, similar to [4]. We define this alignment
below, with notation taken from [16].

An edit distance alignment π, possibly with gaps, of p ≥ 0
positions between two sequences S and T is a pair of p-tuples:

π = ((π1(1), . . . , π1(p)), (π2(1), . . . , π2(p))) ∈ N2p , (1)

which furthermore has the constraints that

1 ≤ π1(1) < π1(2) < . . . < π1(p) ≤ |S| , (2)
1 ≤ π2(1) < π2(2) < . . . < π2(p) ≤ |T | . (3)



This means that not all elements of the two sequences have
to be aligned and there is no repetition of elements.

The edit distance score for an alignment π of two sequences
S and T is equal to:

s(π) =

|π|∑
i=1

sub(S(π1(i)), T (π2(i)))

+ g(|S| − |π|) + g(|T | − |π|) . (4)

To compute this score a substitution function sub is needed
that gives the cost of substituting an element of S with an
element of T . We also need a gap penalty g, which represents
the cost of not aligning an element.

The substitution function for trajectories T , defined below,
is simply the negative of the Euclidean distance between the
two elements 〈xi, yi〉 and 〈xj , yj〉.

subtraj(〈xi, yi〉, 〈xj , yj〉) = −‖〈xi − xj , yi − yj〉‖ (5)

In previous work [6] on the same type of data and in the same
domain we found a good value for g and we use this here.

In case of the similarity between sequences of sets of geo-
labels TL, the substitution function in Equation 6 expresses
how many labels the sets of labels Li and Lj have in common.

sublab(Li, Lj) =∑
l∈Li,k∈Lj

([l1 = k1] + [l2 = k2])

2 max(|Li|, |Lj |)
− 1 (6)

Note the use of the Iverson brackets ([]) which return 1 if the
condition in between is satisfied and 0 otherwise. Furthermore,
l1 and k1 indicate the first element of the (name, type) pair,
i.e. the name, and l2 and k2 the second element, i.e. the type.
Thus, we count the number of names and type labels that both
sets have in common and divide this by the maximum that the
sets can have in common. We subtract 1 to get the maximum
penalty when there are no labels in common. If both Li and
Lj are empty, the score is −1. We set g = −1, the same as
the maximum penalty for a substitution.

The similarity between two sequences S and T is the value
of the function s (Equation 4) for the alignment that maximizes
the function s for the set of all possible alignments between
these sequences ΠS,T . Thus,

Sim(S, T ) =
maxπ∈ΠS,T

s(π)

|S|+ |T |
. (7)

We divide by the sum of the lengths of both sequences to
get an average similarity per element. We do this because
this allows for better comparison between sequences of very
different length, which are quite common in our dataset.

In the experiments we will use kernel based algorithms,
hence we turn the above similarity into a kernel. For all
sequences Ti and Tj in a set of sequences T , we compute
a kernel K in the following way. We first take

K(i, j) = Sim(Ti, Tj) , (8)

and then we normalize K and make a kernel out of it by:

K = 1− K

min(K)
. (9)

We do this for trajectories T to get a kernel Ktraj and for
sequences of sets of geo-labels TL to get a kernel Klab.

Computing the similarity between two start/end objects is
straightforward; it can immediately be put into kernel form.
For all (stoppedi, Li) and (stoppedj , Lj) in a set of start/end
objects, we compute a kernel as:

K(i, j) =

1−
[stoppedi 6= stoppedj ] + sublab(Li, Lj)

2
. (10)

Thus the similarity between two start/end objects is determined
by whether the vessel is stopped or not and how much labels
there are in common. Using Equation 10 we get a kernel Kstart

for the start objects and a kernel Kend for the end objects.
The four kernels defined above are combined together into

a new kernel by taking the weighted sum:

Kall = w1Ktraj + w2Klab + w3Kstart + w4Kend . (11)

To keep the kernel properly normalized the weights should
sum to 1. Clearly, this kernel is symmetric, but it is not
guaranteed to be positive semi-definite (PSD). However, this
does not prevent us from using it in our clustering and
classification tasks. The weighted kernel is inspired by work
in computational biology on combined kernels for comparing
protein sequences and DNA [5].

The Kstart and Kend sub-kernels are cheap to compute. For
Ktraj and Klab we use the dynamic programming approach
that is common for edit distances.

V. EXPERIMENTS

In this section we present the dataset and the clustering and
classification experiments that we used this dataset in.

A. Dataset

Our dataset consists of 1917 vessel trajectories in a 50km
radius around the Port of Rotterdam, collected using the
Automatic Identification System (AIS). The position data of
these vessels was originally recorded in a latitude, longitude
format, but has been converted, using a suitable map projec-
tion, to allow for normal Euclidean geometry in compression
and alignment. These ship trajectories are compressed with
a trajectory compression algorithm [8]. We took the com-
pression settings from earlier work [6], in which we showed
that compression actually improves performance on a vessel
trajectory clustering task. Under the used settings the amount
of data is reduced by 95%, which reduces computation time
for trajectory similarity drastically.

Within the above mentioned 50km radius, the
AnchoragesAndClearways ontology contains the names
and polygons for approximately 50 regions of 6 different
types. There are around 90 different harbors in Harbors that
are distinguished into 7 different types. For each of the 1917



trajectories we created a sequence of sets of geo-labels, a
start object and an end object. The threshold used in the
NearestHarbor service is set to 100m. This threshold range
was determined manually and is suitable given the size of
the vessels, docks and clearways, and is of a larger order
of magnitude than the GPS and compression errors. Due to
the use of a trajectory compression algorithm there is the
potential risk that a trajectory is not labeled with a region that
a vessel has actually passed through. However, under the used
compression settings, the amount of points that are retained is
high compared to the number of traversed regions. Moreover,
visual inspection of some of the labeled trajectories suggests
that no regions are missed.

B. Clustering

In the first experiment we use our similarity measure for
clustering the dataset. We evaluate the clustering by giving a
number of examples of clusters that are the result of combining
trajectories with geographical domain knowledge.

1) Setup: One of the more recent, flexible and advanced
clustering algorithms is spectral clustering [12]. This algorithm
can deal well with arbitrarily shaped clusters and clusters
with different densities. Clustering is done by treating the
similarity matrix as graph adjacency matrix and computing a
type of graph cut, for instance the normalized one. Just as with
standard k-means, this algorithm requires a parameter k for
the number of clusters. Ordinarily spectral clustering involves
the computation of eigenvectors, which can sometimes be
computationally problematic. In [7] the authors show how
a weighted kernel k-means approach can be used to do
spectral clustering without computing eigenvectors. In our
experiments we will use weighted kernel k-means to compute
the normalized graph cut. Therefore, we have defined our
similarity measure as a kernel. It is remarked in [7] that, if a
kernel is not PSD, then the weighted kernel k-means algorithm
is not guaranteed to converge. However, clustering results are
often better with non-PSD kernels. To overcome the potential
non-convergence problem, and the fact that k-means can get
stuck in local optima, we run the weighted kernel k-means
algorithm a number of times (100), with different random
initializations. As in regular k-means, we keep the result that
has the lowest inter cluster spread.

In the following we will show three clustering examples
for three different settings of the weights in equation 11,
thus, for three different kernels. The first setting is w1 =
1
2 , w2, w3, w4 = 1

6 , the resulting kernel being Kcomb. This
setting weighs the trajectory information and the ontological
information equally. There is also a setting for just the tra-
jectory information, w1 = 1, w2, w3, w4 = 0, Ktraj, and one
for just the ontological information w1 = 0, w2, w3, w4 = 1

3 ,
Konto. We define these three distinct settings to investigate the
effect of using low-level trajectory information and domain
knowledge in clustering.

We have no gold standard clustering that we wish to
achieve or a specific criterion that we want to optimize, thus
it is difficult to determine a good value for the number of

clusters parameter k. Therefore, we manually experimented
with different values and finally selected k = 40, which gave
cluster examples that show the differences between the three
kernels well. We could have also used a clustering algorithm
that has no parameter k, e.g. density based ones are popular in
combination with moving object trajectories. However, these
algorithms have other parameters that need to be determined,
which also is a manual process. Moreover, we are not sure that
the combined kernel that we have defined induces a feature
space in which density based algorithms work well.

2) Examples: The three examples we give below illustrate
behavior clusters of vessels that arise in the combined setting,
i.e. using kernel Kcomb. For each example we will also show
the clusters from the other two settings (Ktraj and Konto)
that resemble the behavior the most. All figures show the
trajectories in one cluster in black against a background of
all trajectories in gray. For the trajectories in a cluster, the
start of a trajectory is indicated by a dot and the end by an
asterix.

Figure 3 illustrates the behavior of vessels anchoring in
a specified anchoring area. In Figure 3A we show a cluster
resulting from the combined information kernel Kcomb. We
see that all the tracks end up in one anchoring area. If we use
only the trajectory information, i.e. Ktraj, we get the result in
Figure 3B. In this case there are a number of other trajectories
that do not end in the anchoring area. For the clustering with
only the ontological information, Konto, we see something
different (Figure 3C). Here there is another track of a vessel
anchoring in another anchoring area. So, the combination of
trajectory and ontological information results in the discovery
of the behavior “anchoring in a specific anchoring area”.

The cluster in 4A shows the docking behavior of vessels
in a certain part of the harbor. There is some noise in the
cluster, not all trajectories go to that part. This cluster is a
result of clustering with the combined kernel Kcomb. We see
something similar in Figure 4B. However, here we have used
the kernel Ktraj and thus only the trajectory information. The
result is that the cluster also contains trajectories starting from
anchoring areas. This differs from the combined setting, where
we only have trajectories coming from outside the observation
area, i.e. the open sea. In Figure 4C, the ontology only setting,
Konto, we also have trajectories going to the harbor from
outside the observation area, but, all trajectories stop in the
deep water lane, not on a dock. This is somewhat odd and is
the result of only considering ontological information. In the
combined case we have stopped in the deep water lane, but
also in the adjacent docks. Thus, the combined case shows
the behavior of “docking in certain part of the harbor, coming
directly from the open sea”.

The trajectories in Figure 5A, on which we zoom in in
Figure 5B, are a result of clustering with the combined kernel.
The figures show trajectories that do not stop and continue on
the river to the land behind. These vessels are smaller, and
in Figure 5B we see that all of them do not pass through
the deep water lane. Figure 5C is a cluster from clustering
with the trajectory only kernel Ktraj. The trajectories in this
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Fig. 3. Example of a cluster of trajectories showing anchoring behavior. The start of trajectory is indicated by a dot, the end by an asterix.

A B C

Anchorage

Anchorage
Docks

Fig. 4. Example of a cluster of trajectories showing docking behavior. The start of trajectory is indicated by a dot, the end by an asterix.

cluster both stop and go on and some of them go through
the deep water lane and some of them do not. Because no
domain knowledge is used the deep water lane and non-deep
water lane trajectories are difficult to keep apart, since they
do not differ much in shape. The comparable cluster for the
Konto kernel, Figure 5D, shows trajectories that go in different
directions and some noise. Using only domain knowledge does
not guarantee that trajectories that go in different directions are
not put together. The combined kernel discovers the behavior
of “smaller ships coming from sea and continuing directly to
the land behind”.

The above examples show that a combination of low-level
trajectory information and geographical domain knowledge in
one similarity measure can lead to the discovery of interesting
vessel behavior patterns that are indeed due to a combination
of these two information sources.

C. Classification

Because quantitatively evaluating the quality of clustering,
and hence the utility of our similarity measure, is difficult
without a gold standard, we also defined a classification task.

In our similarity measure and thus the clustering task, we
did not use any information about the type of the vessel. But,

because AIS also contains ship type information, all the 1917
trajectories are in fact labeled with one of 18 different vessel
types. Inspection of the clustering results suggests that our
similarity measure can also be used in a classification setting
to identify these vessel types. The 18 types include tanker,
cargo ship, pilot vessel and tug. The distribution of the types
is skewed, with the largest class containing 34% of the dataset
and the smallest class containing just 1 example.

With the similarity already defined as a kernel, we used a
support vector machine (SVM) as our classifier. Even though
the kernels are non-PSD, this is not problematic for using them
in an SVM context [9], though convergence is not guaranteed.
For a number of weight settings we created kernels using
equation 11. There are 5 settings for kernels that only use
domain knowledge, 1 kernel that uses only low-level trajectory
information and 2 kernels that combine domain knowledge and
trajectory information. Among these kernels there are also the
three variants that we used in the clustering experiment.

We train classifiers with the different kernels using the
LibSVM [3] package for MatLab, version 2.91. Apart from
the fact that we use precomputed kernels, all settings are on
default. For each kernel we do a 10 fold cross validation
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Deep water lane

Fig. 5. Example of a cluster of trajectories continuing through the harbor, not going through the deep water lane. The start of trajectory is indicated by a
dot, the end by an asterix.

experiment. We compare the results for each kernel with each
other kernel using a standard paired t-test with p < 0.05. In
Table I we show the average classification accuracy results
for the different weight settings. The results indicated with an
asterix (*) do not differ significantly from each other under
the described t-test. All other results do differ significantly.

From Table I we can see that the kernels that combine
domain knowledge and trajectory information achieve the best
performance in terms of classification accuracy, significantly
outperforming the other kernels. From these two kernels,
the equal weight, w1 = 1

2 , w2, w3, w4 = 1
6 , kernel has the

highest accuracy. Using only trajectory information (w1 = 1)
gives better classification accuracy results than using only
geographical domain knowledge (w1 = 0). Among the kernels
that use only domain knowledge, the kernel that combines the
different types of knowledge (w2, w3, w4 = 1

3 ) significantly

TABLE I
AVERAGE CLASSIFICATION ACCURACY USING AN SVM FOR DIFFERENT

KERNEL WEIGHT SETTINGS.

w1 w2 w3 w4 Average Accuracy

0 1 0 0 52.8%*

0 0 1 0 54.8%*

0 0 0 1 55.1%*

0 0 1
2

1
2

62.1%

0 1
3

1
3

1
3

66.1%

1 0 0 0 72.2%
1
4

1
4

1
4

1
4

74.4%
1
2

1
6

1
6

1
6

75.4%

outperforms the other four domain knowledge-only kernels.
Thus, combining low trajectory information and domain



knowledge into one kernel gives significantly better accuracy
results on the vessel type classification task than using either
the trajectory information or the geographical domain knowl-
edge on its own.

VI. CONCLUSION & FUTURE WORK

In this paper we have defined a similarity measure be-
tween vessel trajectories enriched with geographical domain
knowledge. This similarity measure consists of an edit distance
alignment for trajectories and one for sequences of sets of geo-
labels, combined with information about the start and end of
a trajectory. We applied this similarity in a clustering task and
gave examples of discovered interesting vessel behavior that
is a combination of trajectory information and domain knowl-
edge. The similarity was also used in a classification setting
to predict vessel types where the combined similarity showed
the best performance in terms of classification accuracy.

Evaluating the performance of clustering is difficult. In fu-
ture work we would like to let domain experts label interesting
vessel behavior in order to be able to better evaluate the
quality of the clustering. We also plan to apply the measure
in the task of outlier detection to discover strange vessel
behavior. However, like clustering, this task is difficult to
evaluate without labeled data. Furthermore, we are interested
in applying this kind of similarity in other domains where
comparable domain knowledge exists. The domain knowledge
is a parameter of the similarity measure that can be varied, so
the quality and content of this information is of direct influence
on the similarity. So, next to applying this similarity in other
domains we should also consider other ontologies in the same
domain.

Currently, low-level trajectories and the sequences of sets of
geo-labels are both separately compared using an edit distance.
They are, however, two sequences with the same number
of elements. So, we also want to investigate the result of
integrating these two into one sequence of position and set
of geo-label pairs and apply only one edit distance.

Both in the clustering and classification tasks, more compli-
cated weighting schemes are possible for creating kernels with
Equation 11. In the classification setting finding the optimal
weights can be done automatically. However, for clustering
this is more difficult, and playing around with weight settings
is something left to a domain expert or end-user.
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