Chris Verhoef

The dark side of the Millennium Bug

Chris Verhoef is an information scientist who also specializes in
reverse engineering, the theory and practice of recovering
information from existing software and systems. He chaired, with
others, the Fourth IEEE Computer Society Working Conference on
Reverse Engineering, the premier research-oriented conference
dedicated to these problems.

"A troubling aspect of the Y2K problem is the fact that many people regard
the problem as trivial. If one sees it as simply converting two digits into
four, it does seem simple. But, this is a very narrow view of the Y2K
problem."

"The crux of the Year 2000 problem is that it is a very pervasive and
omnipresent problem. The usual definition of this problem concentrates on
the fact that software has to be changed in order to widen two digit years
into four digit years. However, if the databases are huge, this is impossible.
Secondly, the problem is present in operating systems, so these need to be
updated. This means that the assembler code which is geared towards these
operating systems needs to be changed. In typical mainframe environments,
this also implies that the old COBOL dialects need to be updated, e.qg.,
COBOL 74 must be migrated to COBOL 85 dialects. Of course, also the two
digit dates need to be 'windowed' so that correct calculations can be made."

"Another aspect of Y2K problem is that 2000 is a leap year. We know of
real-world examples that do have 4 digit dates, but are still not Y2K
compliant. And this all has to be done simultaneously with the Euro problem,
which is also a very difficult one. In short, there is a lot of work to be done
to get this problem solved and it is not simply a question of screening some
noncompliant code."

"People have waited far too long to attack the renovation problems. Our
approach to this problem is to carry out research in order to facilitate high
speed automation processes for solving this problem. The Year 2000
problem resides in about 500 computer languages. There are search engines
available for only 40 languages, and remediation engines for 10. About 30
% of the world's software is written in COBOL, 10 % is C, 10 % is C++
and 10 % is Assembler. The rest is written in more than 500 often very
obscure languages. To make things worse, computer languages also have
dialects. For COBOL there are more dialects than you can imagine, including
homebrewed ones. Since we are dealing with systems in the range of 1 - 50
MLOC (millions of lines of code) all manual approaches break down.
Therefore, the generation of analysis factories and software renovation
factories is necessary since as much automation as possible is necessary."

"In other words, what we observe is a demand for:

- Very sophisticated parsing technology

- Very sophisticated data and control flow analysis technology - Very
sophisticated computer aided language engineering

- Very sophisticated generic language technology

- Very sophisticated component-based technology
- Very sophisticated pattern recognition technology"

"A crucial part of solving the problem in an automated way, is to parse the
code, like in a compiler. Therefore a grammar is necessary. We built a
factory where we can extract the grammar from the compiler source code.
If the compiler is designed carefully, this means that extracting a grammar
is only about a ten minute job. Of course, when the grammar is deeply
hidden in the compiler this is more work. Since so many languages are
involved (500+) it is no longer possible to think in monolithic architectures
for Year 2000 repair engines. This implies that for every new language we
can effortlessly connect the parser to the existing Year 2000 repair engine.
It is necessary to have a completely open architecture so that "any"
component can be effortlessly connected to an existing tool, or that
components can be switched for newer ones."

"The physical appearance of a typical software renovation factory is a
multi-processor machine with enormous amounts of internal memory and
giant disks for storing the old system, the new system and their abstract
syntax representations. Distributed component technology is used to
distribute the computational expensive process of renovation to its
processors. This technology enables one to switch from one-shift year-2000
repairs to 24-hour around-the-clock repairs by establishing a global network
of year 2000 repair factories, with three year 2000 repair facilities located
eight time zones apart.”

Sponsored by:

"~ INFORMATION
SCHET A

WARE |
. [J‘l TF'E['I‘]_

Compilation ©, 1998 Elsevier Science. All rights reserved.

