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ABSTRACT

As modern operating systems and software become larger
and more complex, they are more likely to contain bugs,
which may allow attackers to gain illegitimate access. A fast
and reliable mechanism to discern and generate vaccines for
such attacks is vital for the successful protection of networks
and systems. In this paper we present Argos, a containment
environment for worms as well as human orchestrated at-
tacks. Argos is built upon a fast x86 emulator which tracks
network data throughout execution to identify their invalid
use as jump targets, function addresses, instructions, etc.
Furthermore, system call policies disallow the use of net-
work data as arguments to certain calls. When an attack
is detected, we perform ‘intelligent’ process- or kernel-aware
logging of the corresponding emulator state for further off-
line processing. In addition, our own forensics shellcode is
injected, replacing the malevolent shellcode, to gather in-
formation about the attacked process. By correlating the
data logged by the emulator with the data collected from
the network, we are able to generate accurate network in-
trusion detection signatures for the exploits that are immune
to payload mutations. The entire process can be automated
and has few if any false positives, thus rapid global scale
deployment of the signatures is possible.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Invasive software

General Terms

Security, Design, Experimentation, Performance
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”And [Hera] set a watcher upon her [Io], great
and strong Argos, who with four eyes looks every
way. And the goddess stirred in him unwearying
strength: sleep never fell upon his eyes; but he
kept sure watch always.” - Homerica, Aegimius

1. INTRODUCTION
The rate at which self-propagating attacks spread across

the Internet has prompted a wealth of research in automated
response systems. We have already encountered worms that
spread across the Internet in as little as ten minutes, and re-
searchers claim that even faster worms are just around the
corner [40]. For such outbreaks human intervention is too
slow and automated response systems are needed. Impor-
tant criteria for such systems in practice are: (a) reliable
detection of a wide variety of zero-day attacks, (b) reliable
generation of signatures that can be used to stop the attacks,
and (c) cost-effective deployment.

Existing automated response systems tend to incur a fairly
large ratio of false positives in attack detection and use of
signatures [43, 37, 23, 15, 27]. A large share of false positives
violates the first two criteria. Although these systems may
play an important role in intrusion detection systems (IDS),
they are not suitable for fully automated response systems.

An approach that attempts to avoid false positives alto-
gether is known as dynamic taint analysis. Briefly, untrusted
data from the network is tagged and an alert is generated
(only) if and when an exploit takes place, e.g., when data
from the network are executed. This technique proves to be
reliable and to generate few, if any, false positives. It is used
in current projects that can be categorised as (i) hardware-
oriented full-system protection, and (ii) OS- and process-
specific solutions in software. These are two rather different
approaches, and each approach has important implications.
For our purposes, the two most important representatives of
these approaches are Minos [12] and Vigilante [28], respec-
tively.

Minos does not generate signatures at all and for cost-
effective deployment relies on implementation in hardware.
Moreover, by looking at physical addresses only, it may de-
tect certain exploits, such as a register spring attacks [39],
but requires an awkward hack to determine where the at-
tack originated [13]. Also, it cannot directly handle physical
to virtual address translation at all.

In contrast, Vigilante represents a per-process solution
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that works with virtual addresses. Again, this is a de-
sign decision that limits its flexibility, as it is not able to
handle DMA or memory mapping. Also, the issue of cost-
effectiveness arises as Vigilante must instrument individual
services and does not protect the OS kernel at all. Unfortu-
nately, kernel attacks have become a reality and are expected
to be more common in the future [26]. For signature gen-
eration it relies on replaying the attack which is often not
possible due to challenge/response interaction with nonces,
random numbers, etc.

We believe that both hardware-oriented full-system solu-
tions, and OS- and process-specific software solutions are
too limited in all three aspects mentioned in the beginning
of this section. It is our design to present a third approach
that combines the best of both worlds and meets all of the
criteria.

In this paper we describe Argos which explores another
extreme in the design space for automated response sys-
tems. First, like Minos we offer whole-system protection in
software by way of a modified x86 emulator which runs our
own version of dynamic taint analysis [31]. In other words,
we automatically protect any (unmodified) OS and all its
processes, drivers, etc. Second, Argos takes into account
complex memory operations, such as memory mapping and
DMA (commonly ignored by other projects), and is at the
same time quite capable of handling complex exploits (such
as register springs). This is to a large extent due to our
ability to handle both virtual and physical addresses. Third,
buffer overflow and format string / code injection exploits
trigger alerts that result in the automatic generation of sig-
natures based on the correlation of the exploit’s memory
footprint and its network trace. Fourth, while the system
is OS- and application-neutral, when an attack is detected,
we inject OS-specific forensics shellcode. In other words, we
exploit the code under attack as the attack is happening
to extract additional information about the attack which is
subsequently used in signature generation. Fifth, by com-
paring signatures from multiple sites, we refine Argos’ signa-
tures automatically. Sixth, signatures are auto-distributed
to remote intrusion detection and prevention systems (IDS
and IPS).

We focus on attacks that are orchestrated remotely (like
worms) and do not require user interaction. Approaches
that take advantage of misconfigured security policies are
not addressed. Even though such attacks constitute an am-
ple security issue, they are beyond the scope of our work
and require a different approach. Specifically, we focus on
exploits rather than attack payloads, i.e., we capture the
code that triggers buffer overflows and injects code in order
to gain control over the machine, and not the behaviour of
the attack once it is in. In our opinion, it is more useful to
catch and block exploits, because without the exploits the
actual attack will never be executed. Moreover, in practice
the same exploit is often used with different payloads, so
the pay-off for stopping the exploit is potentially large1. In
addition, exploits are less mutable than attack payload and
may be more easily caught even in the face of polymorphism.

Argos is designed as an ‘advertised honeypot’, i.e., a hon-
eypot that runs real services and differs from normal hon-
eypots in that we don’t hide it. Rather, we actively link
to it and ‘advertise’ its IP address in the hope of making it

1Nevertheless, we do dump the entire attack to file for man-
ual analysis.

visible to attackers employing hitlists rather than random
IP scanning to identify victims. The price we pay for this
is that unlike conventional honeypots we expect to receive
a fair amount of legitimate traffic (e.g., crawlers). On the
other hand, since Argos is targeted as a honeypot, we do
not require our solution to perform as well as unprotected
systems. Nevertheless, it should be fast enough to run real
services and have reasonable response time.

The remainder of this paper is organised as follows. While
related work is discussed mainly throughout the text, we
summarise various approaches in Section 2. In Section 3
we describe the design of Argos. Implementation details are
discussed in Section 4. The system is evaluated in Section 5.
Conclusions are in Section 6

2. BACKGROUND AND RELATED WORK
For an attacker to compromise a host, it is necessary to

divert its conventional control flow to execute his own in-
structions, or replace elements of the host’s control flow with
his own. To accomplish this, an attacker needs to overwrite
values such as jump targets, function addresses and func-
tion return addresses. Alternatively, he can also overwrite a
function’s arguments or even its instructions. Such attacks
have been prominent the last years and can be classified to
the following major categories:

• Stack smashing attacks [3] involve the exploitation of
bugs that allow an attacker to overflow a stack buffer
to overwrite a function’s return address, so that when
the function returns, arbitrary code can be executed;

• Heap Corruption attacks [34, 11] exploit heap overflows
that allow an attacker to overwrite an arbitrary mem-
ory location, and as a result execute arbitrary code;

• Format string attacks [21] are the most versatile type
of attack. They exploit a feature in the printf() fam-
ily of functions, which allows the number of characters
printed to be stored in a location in memory. When
a user supplied string is used as a format string, an
attacker can manipulate the string to overwrite any
location in memory with arbitrary values. These at-
tacks offer more options to the orchestrator, including
overwriting function arguments, such as the file to be
executed of the execve() system call;

The attack methods described above have been the sub-
ject of research by the security community for years. Both
Stackguard, Stackshield and gcc extensions have been used
to protect against stack smashing attacks [8, 25]. Later re-
search has suggested that many of these methods can be
easily bypassed [7]. There exist patches for most OSs to
make the stack non-executable, but this introduces other
problems (e.g., trampolines2 rely on stacks being executable,
and, in Linux at least, so do signals) and can sometimes
be bypassed also. Buffer overflow detection and protection
methods exist in abundance [38, 10, 30, 36]. They make it
difficult/impossible to overwrite specific addresses so as to
divert the control flow, e.g., by modifying the way in which
code and data are stored in memory. In contrast, we desire
a method that permits the overflow, but triggers an alert
whenever the control flow diversion is attempted. Beyond

2
http://gcc.gnu.org/onlinedocs/gccint/Trampolines.html
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that, the addresses should not be changed, as we aim to
generate a reliable signature of the actual attack.

Some existing format string protection methods afford
safety by way of a patch to glibc which counts arguments
to printf() [9] and by using type qualifiers [41]. Both ap-
proaches require recompilation of the code. Code injection
problems have been addressed by instruction set randomisa-
tion and detection of attempts to perform syscalls from ille-
gitimate addresses [16, 18, 24]. As we want to generate sig-
natures, instruction set randomisation is not very useful for
our purposes. The syscall protection offered by Dome [24]
is potentially interesting, but was rejected for its limited
scope (syscalls) and inconvenience (static analysis of every
application is required to determine legitimate addresses for
performing syscalls).

A different approach is to guard against overflows and at-
tacks in hardware. For instance, StackGhost [29] protects
the stack on Sparc architectures. Similarly, [17] uses dy-
namic information flow analysis to guard against overflows
and some format string attacks. None of these mechanisms
are widely available for the most commonly used proces-
sor/OS combinations and indeed, to the best of our knowl-
edge [17] has not progressed beyond simulation. Instead
of real machines Dunlap and Garfinkel suggest virtual ma-
chines [19, 20]. Similar work is presented in [42] which uses a
modified version of the Dynamo dynamic optimiser. While
Argos is different from these projects in many respects, we
do follow a similar approach in that we employ an emulator
of the x86 architecture.

Most closely related to our work are Minos [12] and Vig-
ilante [28]. Like Argos both employ taint analysis to dis-
cover illegitimate use of ‘foreign’ data [31]. The differences
with Argos, however, are manifold. Briefly, Minos is a hard-
ware project that in the current software implementation on
Bochs can only be deployed at a great cost in performance
(up to several orders of magnitude slowdown3). Once misbe-
haviour is detected, Minos also makes no attempt to gener-
ate signatures. One of the reasons for this is that by aiming
at a hardware solution, Minos has had to sacrifice flexibility
for (potential) performance, as the amount of information
available at the hardware level is very limited. For instance,
since the hardware sees physical addresses it is difficult to
deal with complex attacks requiring virtual addresses such
as register spring attacks. Moreover, it seems that gener-
ating signatures akin to the self-certifying alerts (SCAs) in
Vigilante would be all but impossible for Minos. In contrast,
while Argos works with physical addresses also, we explicitly
target emulation in software to provide us with full access
to physical-to-virtual address mapping, registers, etc.

Vigilante differs from Argos in at least three ways: (a) it
protects individual processes (requiring per-process manage-
ment and leaving the kernel and non-monitored services in
a vulnerable position), (b) it is OS-specific, and (c) it deals
with virtual addresses only. While convenient, the disadvan-
tage of virtual addresses is that certain things, like memory
mapped data, become hard to check. After all, which areas
in which address spaces should be tainted is a complex issue.
For this reason, Vigilante and most other projects are un-
able to handle memory mapped areas. By positioning itself
at the application-level, approaches like Vigilante also can-

3Indeed, the Minos authors mention that in the future they
may replace Bochs by Qemu (which is already used by Ar-
gos): wwwcsif.cs.ucdavis.edu/∼crandall/DIMVAMinos.ppt.

not monitor DMA activity. In contrast, Argos uses physical
addresses and handles memory mapping as well as DMA.

3. DESIGN
An overview of the Argos architecture is shown in Fig-

ure 1. The full execution path consists of six main steps,
indicated by the numbers in the figure which correspond to
the circled numbers in this section. Incoming traffic is both
logged in a trace database, and fed to the unmodified ap-
plication/OS running on our emulator 1©. In the emulator
we employ dynamic taint analysis to detect when a vulner-
ability is exploited to alter an application’s control flow 2©.
This is achieved by identifying illegal uses of possibly unsafe
data such as the data received from the network [31]. There
are three steps to accomplish this:

• tag data originating from an unsafe source as tainted;

• track tainted data during execution

• identify and prevent unsafe usage of tainted data;

In other words, data originating from the network is marked
as tainted, whenever it is copied to memory or registers, the
new location is tainted also, and whenever it is used, say,
as a jump target, we raise an alarm. Thus far this is sim-
ilar to approaches like [28] and [31]. As mentioned earlier,
Argos differs from most existing projects in that we trace
physical addresses rather than virtual addresses. As a re-
sult, the memory mapping problem disappears, because all
virtual address space mappings of a certain page, refer to
the same physical address.

When a violation is detected, an alarm is raised which
leads to a signature generation phase 3©- 6©. To aid signa-
ture generation, Argos first dumps all tainted blocks and
some additional information to file, with markers specifying
the address that triggered the violation, the memory area it
was pointing to, etc. Since we have full access to the ma-
chine, its registers and all its mappings, we are able to trans-
late between physical and virtual addresses as needed. The
dump therefore contains registers, physical memory blocks
and specific virtual address, as explained later, and in fact
contains enough information not just for signature genera-
tion, but for, say, manual analysis as well.

In addition, we employ a novel technique to automate
forensics on the code under attack. Recall that Argos is OS-
and application-neutral, i.e., we are able to work out-of-the-
box with any OS and application on the IA32 instruction
set architecture (no modification or recompilation required).
When an attack is detected, we may not even know which
process is causing the alarm. To unearth additional infor-
mation about the application (e.g., process identifier, exe-
cutable name, open files and sockets, etc.), we inject our
own shellcode to perform forensics 3©. In other words, we
‘exploit’ the code under attack with our own shellcode.

We emphasise that even without the shellcode, which by
its nature contains OS-specific features, Argos still works,
albeit with reduced accuracy. In our opinion, an OS-neutral
framework with OS-specific extensions to improve perfor-
mance is a powerful model, as it permits a generic solution
without necessarily paying the price in terms of performance
or accuracy. To the best of our knowledge, we are the first
to employ the means of attack (shellcode) for defensive pur-
poses.
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Figure 1: Argos: High-Level Overview

The dump of the memory blocks (tainted data, registers,
etc.) plus the additional information obtained by our shell-
code is then used for correlation with the network traces
in the trace database 4©. In case of TCP connections, we
reconstruct flows prior to correlation. The result of the cor-
relation phase is a real signature that is, in principle, ready
to be used for filtering. However, we do not consider the
signature optimal and therefore try to refine it. For this pur-
pose, Argos submits the signature to a subsystem known as
SweetBait, which correlates signatures from different sites,
and refines signatures based on similarity [32]. For instance,
a signature consisting of the exploit plus the IP address of
the infected host, would look slightly different at different
sites. SweetBait notices the resemblance between two such
signatures, and generates a shorter more specialised signa-
ture that it is then used in subsequent filtering.

The final step is the automated use of the signature 6©.
Attached to SweetBait are intrusion detection and preven-
tion systems (IDS and IPS), that SweetBait provides with
signatures of traffic to block or track. As IDS we use sensors
based on the well-known open source network IDS snort [35]
and for this purpose, SweetBait generates rules in snort rule
format. The IPS is a relatively simple homegrown solution
that employs the Aho-Corasick pattern matching algorithm
to match network signatures. Although not very sophisti-
cated, we have implemented it as a Linux kernel module
that can be used directly with SweetBait. In a separate ef-
fort, one of the authors developed a high-speed version of the
IPS on Intel IXP1200 network processors that could be used
as an alternative [22]. SweetBait is intelligent in the sense
that it distinguishes between virulent attacks (e.g., many
incidence reports) and rare events, and circulates the signa-
tures accordingly. This is analogous to the way in which the
police puts out APBs for dangerous criminals rather than
for, say, pickpockets.

The focus of this paper is primarily on steps 1©- 4© and
we will limit ourselves to summarising the SweetBait imple-
mentation. Interested readers are referred to [32] for details.

4. IMPLEMENTATION
Argos extends the Qemu [5] emulator by providing it with

the means to taint and track memory, and generate memory
footprints in case of a detected violation. Qemu is a fast and
portable dynamic translator that emulates multiple architec-

tures such as x86, x86 64, POWER-PC64, etc. Unlike other em-
ulators such as Bochs4, Qemu is not an interpreter. Rather,
entire blocks of instructions are translated and cached so
the process is not repeated if the same instructions are exe-
cuted again. Furthermore, instead of providing the software
equivalent of a hardware system, Qemu employs various op-
timisations to improve performance. As a result, Qemu is
significantly faster than most emulators.

Our implementation extends Qemu’s Pentium architec-
ture. In the remainder of this paper, it will be referred to
simply as the x86 architecture. For the sake of clarity we
will also use the terms guest and host to distinguish between
the emulated system and the system hosting Qemu.

We divide our implementation of Argos in two parts. The
first contains our extended dynamic taint analysis which we
used both to secure Qemu and to enable it to issue alerts
whenever it identifies an attack. The second part covers the
extraction of critical information from the emulator and the
OS to generate a signature.

4.1 Extended Dynamic Taint Analysis
The dynamic taint analysis in Argos resembles that of

other projects. However, there are important differences.
In this section we discuss the implementation details.

4.1.1 Tagging

An important implementation decision in taint analysis
concerns the granularity of the tagging. In principle, one
could tag data blocks as small as a single bit, up to chunks
of 4 KB or larger. We opted for variable granularity; per
byte tagging of physical memory, while at the same time us-
ing a single tag for each CPU register. Per byte tagging of
memory does not incur any additional computational costs
i.e. over per double word tagging, and provides higher accu-
racy. On the other hand, per byte tagging of registers would
introduce increased complexity in register operations, which
is unacceptable. It is worth noting that altering Argos to
employ a different granularity is trivial. For reasons of per-
formance and to facilitate the process of forensics at a later
stage, the nature of the memory and register tags is also
different.

4http://bochs.sourceforge.net/, by Kevin Lawton et al.
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Register tagging. There are eight general purpose registers
in the x86 architecture [2], and we allocate a 4 B tag for each
of them. The tag is used to store the physical memory ad-
dress from where the contents of the register originate. Seg-
ment registers and the instruction pointer register (EIP) are
not tagged and are always considered untainted. Since they
can only be altered implicitly and because of their role, they
belong to the protected elements of the system. The EFLAGS

register is also not tagged and is considered untainted, be-
cause it is frequently affected by operations involving un-
trusted data, and tagging it would make it impossible to
differentiate between malicious and benevolent sources. By
default, MMX and FPU registers are treated similarly, although
Argos is able to tag them if required. We implemented tag-
ging for these registers as an option only, since they are
involved in very specific operations that are rarely, if ever,
involved in attacks. For the sake of performance, we ignore
them by default.

Memory tagging. Since we do not store any additional
data for physical memory tags, a binary flag for tagging
would suffice. Nevertheless, one could also use a byte flag in-
creasing memory consumption in exchange for performance
enhancement. This might seem costly, but recall that we tag
physical rather than virtual memory. While virtual memory
space may be huge (e.g., 264 on 64-bit machines) the same is
not true for physical memory, which is commonly on the or-
der of 512 MB - 1GB. Moreover, the guest’s ‘physical’ RAM
need not correspond to the physical memory at the host,
so the cost in hardware resources can be kept fairly small.
The scheme to be used can be configured at compile time.
Following, we will discuss the two tagging schemes in more
detail.

A bitmap is a large array, where every byte corresponds
to 8 bytes in memory. The index idx of any physical mem-
ory address paddr in the bitmap can be calculated by first
shifting the address right by 3 (idx = paddr ≫ 3) to locate
the byte containing the bit flag (map[idx]). The individ-
ual bit flag is retrieved by using the lower 3 bits of paddr

(b = map[idx]
L

(0x01 ≪ (paddr
L

0x07))). The size of
the bitmap is an eighth of the guest’s total addressable phys-
ical memory RAMSZ (size = RAMSZ

8
), i.e. the bitmap for

a guest system of 512 MB would be 64 MB.
Similarly, a bytemap is also a large array, where each byte

corresponds to a byte in memory. The physical address
paddr of each byte is also the index idx in the bytemap.
Its total size is equal to the guest’s total addressable phys-
ical memory RAMSZ (size = RAMSZ).

Finally, incoming network data are marked as tainted.
Since the entire process does not involve OS participation
the tagging is performed by the virtual NE2000 NIC emu-
lated by Qemu. OSs communicate with peripherals in two
ways: port I/O and memory mapped I/O. Qemu’s virtual
NIC though, supports only port I/O, which in x86 architec-
tures is performed using instructions IN and OUT. By instru-
menting these instructions the registers loaded with data
from the NE2000 are tagged as tainted while all other port
I/O operations result in clearing the destination register’s
tag.

4.1.2 Tracking

Qemu translates all guest instructions to host native in-
structions by dynamically linking blocks of functions that

implement the corresponding operations. Tracking tainted

data involves instrumenting these functions to manipulate
the tags, as data are moved around or altered. Besides reg-
isters and memory locations, available instruction operands
include immediate values, which we consider to be untainted.
We have classified instrumented functions in the following
categories:

• 2 or 3 operand ALU operations; these are the most com-
mon operations and include ADD, SUB, AND, XOR, etc. If
the destination operands are not tainted, they result
in copying the source operands tags to the destination
operands tags.

• Data move operations; these operations move data from
register to register, copying the source’s tag to the des-
tination’s tag.

• Single register operations; shift and rotate ops belong
to this category. The tag of the register is preserved
as it is.

• Memory related operations; all LOAD, STORE, PUSH and
POP operations belong here. These operations retrieve
or store the tags from or to memory respectively.

• FPU, MMX, or SSE operations; as explained above, these
are ignored by default (tagging of the corresponding
registers is optional in Argos), unless their result is
stored in one of the registers we track or to memory.
In these cases, the destination is cleared. More ad-
vanced instructions such as SSE2 and 3DNow! are not
supported by Qemu.

• Operations that do not directly alter registers or mem-
ory; some of these ops are NOP, JMP, etc. For most of
these we do not have to add any instrumentation code
for tracking data, but for identifying their illegal use
instead, as we describe in the following section.

• Sanitising operations; certain fairly complex instruc-
tions result in always cleaning the tags of their destina-
tion operands. This was introduced to marginalise the
possibility of false positives. Such instructions are ro-
tate left/right (ROR, ROL), BCD and SSE instructions,
as well as double precision shifts.

Fortunately, we do not have to worry about special in-
struction uses such as xor eax,eax or sub eax, eax. These
are used in abundance in x86’s to set a register to zero, be-
cause unlike RISC there is no zero register available. Qemu

makes sure to translate these as a separate function that
moves zero to the target register. When this function is
compiled it follows the native architecture’s idiom of zero-
ing a register.

Modern systems provide a mechanism for peripherals to
write directly to memory without consuming CPU cycles,
namely direct memory access (DMA). When using DMA
OSs instead of reading small chunks of data from peripherals
they allocate a larger area of memory and send its address
to the peripheral, which in turn writes data directly in that
area without occupying the CPU. Qemu emulates DMA for
components such as the hard disk. Whenever a DMA write
to memory is performed in Argos, it is intercepted and the
corresponding memory tags are cleared.
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4.1.3 Preventing Invalid Uses of Tainted Data

Most of the observed attacks today gain control over a
host by redirecting control to instructions supplied by the
attacker (e.g., shellcode), or to already available code by
carefully manipulating arguments (return to libc). For
these attacks to succeed the instruction pointer of the host
must be loaded with a value supplied by the attacker. In
the x86 architecture, the instruction pointer register EIP is
loaded by the following instructions: call, ret and jmp.
By instrumenting these instructions to make sure that a
tainted value is not loaded in EIP, we manage to identify all
attacks employing such methods. Optionally, we can also
check whether a tainted value is being loaded on model spe-
cific registers (MSR) or segment registers, but so far we have
not encountered such attacks and we are not aware of their
existence.

While these measures capture a broad category of ex-
ploits, they alone are not sufficient. For instance, they are
unable to deal with format string vulnerabilities, which allow
an attacker to overwrite any memory location with arbitrary
data. These attacks do not directly overwrite critical values
with network data, and might remain undetected. There-
fore, we have extended dynamic taint analysis to also scan
for code-injection attacks that would not be captured oth-
erwise. This is easily accomplished by checking that the
memory location loaded on EIP is not tainted.

Finally, to address attacks that are based solely on alter-
ing arguments of critical functions such as system calls, we
have instrumented Qemu to check when arguments supplied
to system calls like execve() are tainted. To reliably im-
plement this functionality we require a hint about the OS
being run on Argos, since OSs use different system calls.
The current version of Argos supports this feature solely for
the Linux OS, but we plan to extend it to support FreeBSD,
and MS Windows operating systems.

4.2 Signature Generation
In this section we explain how we extract useful informa-

tion once an attack is detected, how signatures are gener-
ated, and how they are specialised by correlating memory
and network traces. In addition we show how we refine
signatures with an eye on obtaining small signatures con-
taining an exploit’s nucleus. Also, unlike related projects
like [28], we intentionally investigated signature generation
methods that do not require attacks to be replayed. Re-
playing attacks is difficult, e.g., because challenge/response
authentication may insert nonces in the interaction. While
we know of one attempt to implement replay in the face of
cookies and nonces [14], we don’t believe current approaches
are able to handle most complex protocols.

We emphasize that the signature generation methods de-
scribed in this section are only a first stab and mainly serve
to demonstrate how the wealth of information generated by
Argos can be exploited by suitable back-ends. We are cur-
rently exploring more advanced methods. In our opinion,
the ability to plug in different back-ends (signature genera-
tors) is quite useful.

4.2.1 Extracting Data

An identified attack can become an asset for the entire
network security community if we generate a signature to
successfully block it at the network level. To achieve this,
Argos exports the contents of ‘interesting’ memory areas in

the guest for off-line processing. To reduce the amount of
exported data we dynamically determine whether the at-
tack occurred in user- or kernel-space. This is achieved by
retrieving the processor’s privilege ring bits from Qemu’s
hidden flags register. The kernel is always running on privi-
leged ring 0, so we can distinguish processes from the kernel
by looking at the ring in which we are running.

Additionally, every process is sharing its virtual address
space with the kernel. OSs accomplish this by splitting the
address space. In the case of Linux a 3:1 split is used,
meaning that three quarters of the virtual address space
are given to the process while one quarter is assigned to
the kernel. Windows on the other hand is using a 2:2 split.
The user/kernel space split is predefined in most OS con-
figurations, so we are able to use static values as long as
we know which OS is being run. We take advantage of this
information to dump only relevant data.

To determine which physical memory pages are of inter-
est and need to be logged, we traverse the page directory
installed on the processor. In x86 architectures the physi-
cal memory address of the active page directory is stored in
control register 3 (CR3). Note that because we traverse the
virtual address space of processes, physical pages mapped
to multiple virtual addresses will be logged multiple times
(one for each mapping).

By locating all the physical pages accessible to the pro-
cess / kernel, and making sure that we do not cross the
user / kernel space split, we dump all tainted memory ar-
eas as well as the physical page pointed to by EIP regard-
less of its tags state. The structure of the dumped data
is shown in Figure 2. For each detected attack the follow-
ing information is exported: the log’s format (FORMAT), the
guest architecture (ARCH could be i386 or x86 64), the type
of the attack (TYPE), the timestamp (TS), register contents
and tags (including EIP and its origin), the EFLAGS regis-
ter, and finally memory contents in blocks. Each memory
block is preceded by the following header: the block’s for-
mat (FORMAT), a tainted flag, the size of the block in bytes,
and the physical (PADDR) and virtual (VADDR) address of
the block. The actual contents of the memory block are
written next. When all blocks have been written, the end of
the dump is indicated by a memory block header containing
only zeroes.

All of the above are logged in a file named ‘argos.csi.RID’,
where RID is a random ID that will be also used in advanced
forensics discussed in the following section.

The data extracted from Argos serve for more than signa-
ture generation. By logging all potentially ‘interesting’ data,
thorough analysis of the attack is made possible. Consider
for example techniques such as register springs, which do
not directly alter control flow to injected code. By also log-
ging the legitimate code that is used for the spring, and
by exploiting the presence of both physical and virtual ad-
dresses in the log, a security specialist can effectively reverse
engineer most, if not all, attacks.

4.2.2 Advanced Forensics

An intrinsic characteristic of Argos is that it is process ag-
nostic. This presents us with the problem of identifying the
target of an attack. Discovering the victim process, provides
valuable information that can be used to locate vulnerable
hosts, and assist in signature generation. To overcome this
obstacle, we came up with a novel idea that enables us to
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Figure 2: Memory dump format

execute code in the process’s address space, thus permitting
us to gather information about it.

Currently, most attacks hijack processes by injecting as-
sembly code (shellcode) and diverting control flow to its be-
ginning. Inspired by the above, we inject our own shellcode
into a process’s virtual address space. After detecting an at-
tack and logging state, we place forensics shellcode directly
into the process’s virtual address space. The location where
the code is injected is crucial, and after various experiments
we chose the last text segment page at the beginning of the
address space. Placing the code in the text segment is im-
portant to guarantee that it will not be overwritten by the
process, since it is read-only. It also increases the probability
that we will not overwrite any critical process data. Having
the shellcode in place we then point EIP to its beginning to
commence execution.

As an example, we implemented shellcode that extracts
the PID of the victim process, and transmits it over a TCP
connection along with the RID generated previously. The in-
formation is transmitted to a process running at the guest,
and the code then enters a loop that forces it to sleep forever
to ensure that while it does not terminate, it remains dor-
mant. At the other end, an information gathering process at
the guest receives the PID and uses it to extract information
about the given process by the OS. Finally, this information
is transmitted to the host, where it is stored.

The forensics process retrieves information about the at-
tacked process by running netstat, or if that is not avail-
able OpenPorts [1]. The above tools offer both the name of
the process, as well as all the associated ports. The set of
ports can be used to restrict our search in network traces
(as discussed in Section 4.2.3) by discarding traffic destined
to other ports. Currently, forensics are available for both
Linux and Win32 systems. In the future, we envision ex-
tracting the same or more information without employing a
third process at the guest.

4.2.3 Information Correlation

The memory fingerprint collected from the guest, along
with the information extracted using advanced forensics are
subsequently correlated with the network trace of data ex-
changed between the guest and the attacker. We capture
traffic using tcpdump and store it directly in a trace database
that is periodically garbage collected to weed out the old
traffic streams. In the next version of Argos we capture

traffic using the home-grown FFPF framework which allows
us to dump different flows in different traces [6].

The collected network traces are first preprocessed by re-
assembling TCP streams to formulate a continuous picture
of the data sent to the guest. For stream reassembly we
build on the open source ethereal library5. This enables us
to detect attacks that are split over multiple packets either
intentionally, or as part of TCP fragmentation.

The current version of Argos uses the attacked port num-
ber provided by forensics to filter out uninteresting network
flows. In addition, the dumped memory contents are also re-
duced. The tag value of EIP is used to locate in the network
trace the tainted memory block that is primarily responsible
for the attack. This block along with the remaining network
flows are processed to identify patterns that could be used
as signatures. Argos uses two different methods to locate
such patterns: (i) longest common sub-string (LCS), and
(ii) critical exploit string detection (CREST).

(i) LCS is a popular and fast algorithm for detecting pat-
terns between multiple strings also used by other automatic
signature generation projects [27]. The algorithm’s name is
self-explanatory: it finds the longest substring that is com-
mon to memory and traffic trace. Along with the attacked
port number and protocol we then generate a Snort signa-
ture. While this method appears promising, it did not work
so well in our setup, as the common substring between the
trace and memory is (obviously) huge. While we are still
improving the LCS signature generation, we achieved the
best results so far with CREST.

(ii) CREST is a novel algorithm. The incentive behind
its development was the fact that the output of Argos offers
vital insight about the internal workings of attacks. The
dumped information allows us to generate signatures tar-
getting the string that triggers the exploit, and that may
therefore be very accurate and immune to techniques such
as polymorphism. Using the physical memory origin (OEIP )
and value of EIP (VEIP ) we can pin-point the memory lo-
cation that acts as the attacker’s foothold to take control
of the guest. The advantage of CREST is that it captures
the very first part of an attack, which is less mutable. The
current version of CREST yields signatures based on this
exploit string. However, we are now working on a more ad-
vanced implementation of CREST, in which we attempt to
isolate exactly the (minimal) part of the network trace that
causes the exploit.

The current implementation of CREST is fairly simple.
Essentially, we locate VEIP in the network traces corre-
sponding to the application’s port and then extend the trace
to the left and to the right. In other words, we match up
individual bytes above and below the OEIP in the memory
dump with bytes before and after the location of VEIP in
the network trace. We stop when we encounter bytes that
are different. Argos uses the resulting byte sequence and
combines it with the port number and protocol to generate
a signature in snort rule format. Signatures generated in
this way were generally of reasonable size, a few hundred
bytes, which makes them immediately usable. Moreover, as
we show in Section 4.2.4, the signatures are later refined to
make them even smaller.

Note that although we currently use only a small amount
of it, for signature generation we are able to work with a

5http://www.ethereal.com/
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Figure 3: Architecture of the SweetBait Subsystem

wealth of information. In practice, Argos produces signif-
icantly more information than other projects [12, 28], be-
cause we have full access to physical and virtual memory
addresses, registers, EIP, etc. So even though it proves to
be very effective even in its current form, CREST should be
considered a work-in-progress and the current implementa-
tion as a proof-of-concept. For instance, CREST would fail
to generate a signature for a format string attack, or any
attack that manages to point EIP to a tainted memory area
without tainting the register itself.

In the next release of our system, we plan to keep track
of the exact origin in the network trace(s) of each word of
tainted memory. As a result, we will no longer need to
scan the trace(s) for the occurrence of specific byte pat-
terns. Rather, we will be able to pinpoint problematic bytes
in the network traces directly, greatly improving speed and
accuracy of signature generation methods.

A final feature of Argos’ signature generation is that it is
able to generate both flow and packet signatures. Flow sig-
natures consist exactly of the sequence of bytes as explained
above. For packet signatures, on the other hand, Argos

maps the byte sequence back to individual packets. In other
words, if a signature comprises more than one packet, Ar-

gos will split it up in its constituent parts. As we keep track
of the contributions of individual packets that make up the
full stream, we are even able to handle fairly complex cases,
such as overlapping TCP segments. Packet signatures are
useful for IDS and IPS implementations that do not perform
flow reassembly.

4.2.4 SweetBait

SweetBait is an automated signature generation and de-
ployment system [32]. It collects snort-like signatures from
multiple sources such as honeypots and processes them to
detect similarities. Even though Argos is its main input
for this project, we have also connected SweetBait to low-
interaction honeypots based on honeyd [33] and honeycomb
[27]. It should be mentioned that to handle signatures of
different nature, SweetBait types them to avoid confusion.
The SweetBait subsystem is illustrated in Figure 3.

The brain of the SweetBait subsystem is formed by the
control centre (CC). CC maintains a database of attack sig-
natures that is constantly updated and it pushes the signa-
tures of the most virulent attacks to a set of IDS and IPS
sensors according to their signature budgets, as explained
later in this section. In addition to the IDS/IPS sensors we
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also associate a set of Argos honeypots with each CC. Hon-
eypots send their signatures to their CC over SSL-protected
channels. The signatures are gathered by the CC and com-
pared against known signatures. In essence, it uses LCS
to find the amount of overlap between signatures. If two
signatures are sufficiently alike, it concludes that the LCS
represents a more specialised signature for the attack and
installs a new signature version that deprecates the older
one. In this way, we attempt to locate the immutable part
of signatures and remove the parts that vary, such as target
IPs, host names, attack payloads etc. Doing so minimises
the number of collected signatures to a manageable size.
For example, we employed SweetBait with low-interaction
(honed/honeycomb) honeypots (since we had a much larger
set of signatures for these honeypots than for Argos) and
were able to reduce the thousands of signatures generated
during the period of three days to less than 30 (Figure 4).

The specialisation process is mainly governed by three pa-
rameters. The minimum match parameter m represents the
minimum amount of overlap that two signatures should have
before the CC decides that they are variations of the same
signature. The value m is expressed as a percentage of the
size of the known signature. For instance, m = 90% means
that the new signature should match at least 90% of the
signature that is already in the database for it to be clas-
sified as a variation of this signature. The minimum and
maximum length parameters L and M represent the min-
imum and maximum length of an acceptable signature re-
spectively. For instance, L = 10 and M = 1500 means that
for a signature to be accepted and stored in the database it
should be longer than 10 bytes and shorter than 1500.

The optimal value for these parameters varies with the
nature of the signatures. For instance, if the signatures are
likely to be unrelated, such as the signatures generated by
honeyd/honeycomb, m should be large to ensure that the
signatures really are related. While in this case the optimal
choice of parameters is a matter of careful tuning, we are in
a much better position when dealing with Argos signatures.
After all, here we may force the subsystem to compare only
signatures that are known to be related. For instance, by
comparing only signatures with the same VEIP during spe-
cialisation, we know that only similar exploits will be con-
sidered. In essence, we can set m and M to an arbitrarily
low and high value respectively, and have L govern the pro-
cess entirely. The value of L was determined by looking at
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the size of real signatures used by the snort framework. In
snort, the content fields of most rules are fairly small, often
less than ten bytes. By choosing a value slightly greater than
that, the signatures are likely to be both accurate and small.
In practice we use L = 12 for the signatures generated by
Argos and make sure that Argos generates signatures that
are related (e.g., that have the same VEIP ) in a separate
bucket to be processed as a separate group by SweetBait.

SweetBait deploys the final versions of signatures to net-
work IDSs and IPSs. To warrant increased performance
levels of the connected IDSs and IPSs and deal with het-
erogeneous capacities of IDSs and IPSs, a signature budget
in number of bytes can be specified, so that the number of
signatures pushed to the sensors does not exceed a certain
level.

To determine the signatures that will be pushed to the
sensors, SweetBait uses network IDS sensors to approximate
the virulence of the corresponding attacks. The density of
generated alerts by the IDS is used as an indicator of aggres-
sion, which in turn determines whether a signature should
be pushed to the prevention system or still be monitored6.
In other words, a signature that is reported frequently by
many sites will have a higher virulence estimation than one
that is reported less frequently and by a smaller number of
honeypots, and is therefore more likely to be pushed to the
IDS/IPS sensors. Additionally, signatures can be manually
tagged as valid, or invalid to increase the level of certainty.
Whether IPS sensors automatically block traffic based on
signatures that are not manually tagged as valid is a config-
urable parameter. Details about the IPS sensors are beyond
the scope of this paper and can be found in [32] and [22].

An important feature of the SweetBait subsystem is its
ability to exchange signatures on a global scale. Global
scale collaboration is necessary for identifying and prevent-
ing zero-day attacks, and SweetBait makes this partially fea-
sible by means of the global control centre (GCC). The GCC
collects signatures and statistics in a similar way to a CC,
with the main difference being the lack of a signature budget
when pushing signatures to CCs.

The CC periodically exchanges information with the GCC.
This includes newly generated signatures, as well as activ-
ity statistics of known signatures. The statistics received by
the GCC are accumulated with the ones generated locally
to determine a worm’s aggressiveness. This accumulation
ensures that the CC is able to react to a planetary out-
break, even if it has not yet been attacked itself, achieving
immunisation of the protected network. Again, we secured
all communication between CC and GCC using SSL.

5. EVALUATION
We evaluate Argos along two dimensions: performance

and effectiveness. While performance is not critical for a
honeypot, it needs to be fast enough to generate signatures
in a timely fashion.

5.1 Performance
For realistic performance measurements we compare the

speed of code running on Argos with that of code running
without emulation. We do this for a variety of realistic
benchmarks, i.e., benchmarks that are also used in real-life

6Specifically, we use an exponentially weighted moving av-
erage over the number of reports per sensor.

Configuration Served Requests/Sec.
Native 499.9
Vanilla Qemu 23.3
Argos-B 18.7
Argos-B-CI 18.3

Table 1: Apache Throughput

to compare PC performance. Note that while this is an hon-
est way of showing the slowdown incurred by Argos, it is not
necessarily the most relevant measure. After all, we do not
use Argos as a desktop and in practice hardly care whether
results appear much less quickly than they would without
emulation. The only moment when slowdown becomes an
issue is when attackers decide to shun slow hosts, because
it might be a honeypot. To the best of our knowledge such
worms do not exist in practice.

Performance evaluation was carried out by comparing the
observed slowdown at guests running on top of various con-
figurations of Argos and unmodified Qemu, with the original
host. The host used during these experiments was an AMD
AthlonTM XP 2800 at 2 GHz with 512 KB of L2 cache, 1 GB
of RAM and 2 IDE UDMA-5 hard disks, running Gentoo
Linux with kernel 2.6.12.5. The guest OS ran SlackWare
Linux 10.1 with kernel 2.4.29, on top of Qemu 0.7.2 and Ar-

gos. To ameliorate the guest’s disk I/O performance, we did
not use a file as a hard disk image, but instead dedicated
one of the hard disks.

To quantify the observed slowdown we used bunzip2 and
apache. bunzip2 is a very CPU intensive UNIX decom-
pression utility. We used it to decompress the Linux kernel
v2.6.13 source code (approx. 38 MB) and measured its exe-
cution time using another UNIX utility time. Apache, on the
other hand, is a popular web server that we chose because it
enables us to test the performance of a network service. We
measured its throughput in terms of maximum processed
requests per second using the httperf HTTP performance
tool. httperf is able to generate high rates of single file
requests to determine a web server’s maximum capacity.

In addition to the above, we used BYTE magazine’s UNIX
benchmark. This benchmark, nbench for brevity, executes
various CPU intensive tests to produce three indexes. Each
index corresponds to the CPU’s integer, float and memory
operations and represents how it compares with an AMD
K6TM at 233 MHz.

Figure 5 shows the results of the evaluation. We tested
the benchmark applications at the host, at guests running
over the original Qemu, and at different configurations of
Argos: using a bytemap, and using a bytemap with code-
injection detection enabled. These are indicated in the fig-
ure as Vanilla QEMU, Argos-B, and ARGOS-B-CI respec-
tively. The y-axis represents how many times slower a test
was, compared with the same test without emulation. The
x-axis shows the 2 applications tested along with the 3 in-
dexes reported by nbench. Each colour in the graph is a
configuration tested, which from top to bottom are: un-
modified Qemu, Argos using a bytemap for memory tagging,
and the same with code-injection detection enabled. Apache
throughput in requests served per second is also displayed
in Table 1.

Even in the fastest configuration, Argos is at least 16 times
slower than the host. Most of the overhead, however, is in-
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Figure 5: Performance Benchmarks

curred by Qemu itself. Argos with all the additional instru-
mentation is at most 2 times slower than vanilla Qemu. In
the case of apache and float operations specifically, there is
only an 18% overhead. This is explained by the lack of a
real network interface, and a hardware FPU in the emulator,
which incurs most of the overhead. In addition, we empha-
sise that we have not used any of the optimisation modules
available for Qemu. These modules speed up the emulator
to a performance of roughly half that of the native system.
While it is likely that we will not quite achieve an equally
large speed-up, we are confident that much optimisation is
possible.

Moreover, even though the performance penalty is large,
personal experience with Argos has shown us that it is tol-
erable. Even when executing graphics-intensive tasks, the
machine offers decent usability to human operators who use
it as a desktop machine. Moreover, we should bear in mind
that Argos was not designed as a desktop system, but as
a platform for hosting advertised honeypots. Performance
is not our main concern. Still, we have plans to introduce
novelties that will further improve performance in future
versions of Argos. A related project that takes a similar
approach, but focuses on performance with an eye on pro-
tecting desktops is described in [4].

5.2 Effectiveness
To determine how effective Argos is in capturing attacks,

we launched multiple exploits against both Windows and
Linux operating systems running on top of it. For the Win-
dows 2000 OS, we used the Metasploit framework7, which
provides ready-to-use exploits, along with a convenient way
to launch them. We tested all exploits for which we were able
to obtain the software. In particular, all the attacks were
performed against vulnerabilities in software available with
the professional version of the OS, with the exception of the
War-FTPD ftp server which is third-party software. While
we have also successfully run other OSs on Argos (e.g., Win-

7The Metasploit Project http://www.metasploit.com/

dows XP), we have only just started its evaluation. For the
Linux OS, we crafted two applications containing a stack and
a heap buffer overflow respectively and also used nbSMTP, an
SMTP client that contains a remote format string vulnera-
bility that we attacked using a publicly available exploit.

A list of the tested exploits along with the underlying OS
and their associated worms is shown in table 2. For Win-
dows, we have only listed fairly well-known exploits. All ex-
ploits were successfully captured by Argos and the attacked
processes were consequently stopped to prevent the exploit
payloads from executing. In addition, our forensics shellcode
executed successfully, providing us with process names, IDs,
and open port numbers at the time of the attack.

Finally, we should mention that during the performance
evaluation, as well as the preparation of attacks, Argos did
not generate any false alarms about an attack. A low num-
ber of false positives is crucial for automated response sys-
tems. Even though the results do not undeniably prove
that Argos will never generate false positives, considering
the large number of exploits tested, it may serve as an in-
dication that Argos is fairly reliable. For this reason, we
decided for the time being to use the signatures as is, rather
than generating self-certifying alerts (SCAs [28]). However,
in case we incur false positives in the future, Argos is quite
suitable for generating SCAs.

5.3 Signatures
The final part of the evaluation involves signature gener-

ation. To illustrate the process, we explain in some detail
the signature that is generated by Argos for the Windows
RPC DCOM vulnerability listed in Table 2.

We use the Metasploit framework to launch three attacks
with different payloads using the same exploit mentioned
above, against 3 distinct instances of Argos hosting guests
with different IPs. The motivation for doing so is to force
Argos to generate varying signatures for the same exploit.
In this experiment, we employ the CREST algorithm (Sec-
tion 4.2.3) to generate the signatures, and consequently sub-
mit them to the SweetBait subsystem.
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Vulnerability OS
Apache Chunked Encoding Overflow
(Scalper)

Windows 2000

Microsoft IIS ISAPI .printer Extension
Host Header Overflow (sadminD/IIS)

Windows 2000

Microsoft Windows WebDav ntdll.dll
Overflow (Welchia, Poxdar)

Windows 2000

Microsoft FrontPage Server Extensions
Debug Overflow (Poxdar)

Windows 2000

Microsoft LSASS MS04-011 Overflow
(Sasser, Gaobot.ali, Poxdar)

Windows 2000

Microsoft Windows PnP Service Re-
mote Overflow (Zotob, Wallz)

Windows 2000

Microsoft ASN.1 Library Bitstring Heap
Overflow (Zotob, Sdbot)

Windows 2000

Microsoft Windows Message Queueing
Remote Overflow (Zotob)

Windows 2000

Microsoft Windows RPC DCOM In-
terface Overflow (Blaster, Welchia,
Mytob-CF, Dopbot-A, Poxdar)

Windows 2000

War-FTPD 1.65 USER Overflow Windows 2000

nbSMTP v0.99 remote format string ex-
ploit

Linux 2.4.29

Custom Stack Overflow Linux 2.4.29
Custom Heap Corruption Overflow Linux 2.4.29

Table 2: Exploits Captured by Argos

During the correlation, CREST searches through the net-
work trace and reconstructs the byte streams of relevant
TCP flows. Note that the logs that are considered by the
signature generator are generally fairly short, because we
are able to store separate flows in separate files by using
the home-grown FFPF framework [6]. As a result, CREST
may ignore flows that finished a long time ago and flows to
ports other than the one(s) reported by forensics. The sig-
nature generation times including TCP reassembly for logs
of various sizes is shown in Figure 6.

SweetBait was configured to perform aggressive signature
specialisation as explained in Section 4.2.4. Examining its
database after the reception of all signatures, we discovered
that it successfully classified them as being part of the same
attack and generated a single specialised signature based
on their similarities. The size of the signatures was effec-
tively reduced from approximately 180 bytes to only 16 as
it is shown in Figure 7. The figure shows the payload part
of the original signatures, generated by Argos without the
SweetBait subsystem, as well as SweetBait’s specialisation.
The signatures are represented in the way content fields are
represented in snort rules, i.e., series of printable characters
are shown as strings, while series of non-printable bytes are
enclosed on the left and right by the character ‘|’ and rep-
resented by their hexadecimal values. Observe that the spe-
cialised signature generated by SweetBait is found in each of
the original signatures, as shown by the boxes in Figure 7.

Furthermore, we used the specialised signature to scan
a benevolent network trace for the possibility of it gener-
ating false positives. Besides homegrown traces, we used
the RootFu DEFCON8 competition network traces that are
publicly available for research purposes. We first verified

8http://www.shmoo.com/cctf/
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Figure 6: Signature generation

that the exploit was not present in the traces, by scanning
the trace with open source community snort rules, using
rules obtained from bleeding snort9. Next, we scanned it
with the signature generated by Argos. Again, there were
no (false) alerts.

Even though our signature generation algorithm is fairly
simple, we are able to automatically generate signatures
with a very small probability of false positives, by means
of the SweetBait subsystem and deployment at multiple Ar-

gos sites.

6. CONCLUSION
In this paper we have discussed an extreme in the design

space for automated intrusion detection and response sys-
tem: a software-only whole-system solution based on an x86

emulator that uses dynamic taint analysis to detect exploits
and protects unmodified operating systems, processes, etc.
By choosing a vantage point that incorporates attractive
properties from both the hardware level (e.g., awareness of
physical addresses, memory mapping and DMA) and also
the higher-levels (virtual addresses, per-process forensics),
we believe our approach is able to meet the demands of au-
tomated response systems better than existing solutions.

The system exports the tainted memory blocks and addi-
tional information as soon as an attack is detected, at which
point it injects forensics shellcode into the code under attack
to extract additional information (e.g., executable name and
process identifier). Next, it correlates the memory blocks
with the network traces to generate a signature. Similar
signatures from multiple sites are later refined to generate
smaller, more specialised signature that are subsequently
transmitted to intrusion prevention systems. Performance
without employing any of the emulator’s optimisation mod-
ules is significantly slower than code running without the
emulator. Even so, as our intended application domain is
(advertised) honeypots, we believe the overhead is accept-
able. More importantly, the system proved to be effective
and was used to capture and fingerprint a range of real ex-
ploits.

9http://www.bleedingsnort.com
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Original signatures:
|98 91|KCBJ7J|99 98|G|F8|@HHA?IK7N|9B F8|N|97 9F 9F|

?JIO| EB 10 EB 19 9F| u| 18 00| #7| F3| w| EB E0 FD 7F |

A|F5|A|FC|F|90 9B|C?|D6 98 91 FC 93 98 92 F9|K|FC|J

|9B 92|H|FC 99 D6|A|96|OJ|93|N|FC|O|FD|CC|97 96|J|91

92|JAKI?|27|B@|99|G|99 F5|I|93 F8|C|D6 27|O7|90 91|

7O|D6 99|@H?|FD 27 91|BI|F9 97|H|D6 96 98|?|91 93 97

F8 FD EB 04 FF FF FF FF|J|92|G|93 92|7|9F 98 EB 04

EB 04 92 9F|?@|EB 04 FF FF FF FF 97|CI|F8 F5 FC|FKK@

OJHF|96|GHN|92 9B|K|93|F7|0A|

|98 99|?B|99|H|99 99|I|96 93|J|F8 D6 F5 90|NKAJ|FC 97

90 91 D6|OA|27 F5 F9 92 EB 10 EB 19 9F| u18 00|#7| F3

| w| EB E0 FD 7F | @N|9F 27 96|JH|FC|N|FC|F|90 D6 90

90 F9 97 9B|J7KO|91 D6|KKG|93 F9 9B 92 92|?KGF|FC|N|

93|F|9F 90 F9 98 92 98 96|A7C|97 99|J|FC|HI7|27|G|98

99|?F|D6 F9 98|@@|9F D6 98|@A|F8 92 93|IB|F8|BFH|98|

NHC|96 90 EB 04 FF FF FF FF|J|98 F8|J|92 9B 90|A|EB

04 EB 04|JKH|91 EB 04 FF FF FF FF F8 FD|J|FD|IH|96|?

?|93 91|C|D6|@NIHI|9F|@|F8 F5|G|D6 0A|

F?F|9B|C?|F5 98|F|27|IO|F9|?|FD|BB?|90 9B F5|?|FC|A

|9B|F|D6 97|CH|F5 EB 10 EB 19 9F| u| 18 00| #7| F3| w

| EB E0 FD 7F 9B|N|9F 27|?GC|F9|JH|F8|B@FICN|99 F9

97|B|9F 90 90 92|?|99 D6|JAB|90|ACO|93 27|N|FD|C|90|

O|96 F5 F9 90|H|98 90|?|93|A|99 93 FC 91 F8|O|9F 93

9B F9|I|D6 92|K@NH|F9 91|F|91|J7A?I|9B 98 93|N7A?|92

27|N|EB 04 FF FF FF FF|HIN7|99|N|98|G|EB 04 EB 04 99|

K|FC D6 EB 04 FF FF FF FF|AACK|98 90|@|92|77|93|?C

|9B|BF|9F 90 F5|A|FD 90 9B 9B 0A 0A|

SweetBait specialised signature:
|EB 10 EB 19 9f|u|18 00|#7|F3|w|EB E0 FD 7F|

Figure 7: Signature Specialisation (snort format)

Future work

Our focus throughout the project was on detecting real at-
tacks and generating usable network signatures. As we have
not yet encountered false positives, the signatures are meant
to be used directly, for instance in IPSs such as our own [22]
and IDSs such as snort [35]. In case of false positives, we plan
to generate signatures as self-certifying alerts [28]. Future
research also addresses more advanced signature generation
and automated analysis of the attack.
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