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Abstract
As next-generation computer worms may spread within
minutes to millions of hosts, protection via human in-
tervention is no longer an option. We discuss the im-
plementation ofSweetBait, an automated protection sys-
tem that employs low- and high-interaction honeypots
to recognise and capture suspicious traffic. After dis-
carding white-listed patterns, it automatically generates
worm signatures. To provide a low response time, the
signatures may be immediately distributed to network in-
trusion detection and prevention systems. At the same
time the signatures are continuously refined for increased
accuracy and lower false identification rates. By moni-
toring signature activity and predicting ascending or de-
scending trends in worm virulence, we are able to sort
signatures in order of urgency. As a result, the set of sig-
natures to be monitored or filtered is managed in such a
way that new and very active worms are always included
in the set, while the size of the set is bounded.Sweet-
Bait is deployed on medium sized academic networks
across the world and is able to react to zero-day worms
within minutes. Furthermore, we demonstrate how glob-
ally sharing signatures can help immunise parts of the
Internet.

1 Introduction

As new breeds of worms are expected to spread to mil-
lions of hosts in minutes, if not seconds, it is imperative
to automate both outbreak detection and response [1, 2].
Worse, in order to be effective the automated system
should take appropriate counter measures in a fraction
of the time that it takes the worm to spread. Previous at-
tempts to develop such detection systems have built on
flow-based anomaly detection, honeypots, and end-host
detection [3, 4, 5]. Several projects have addressed the
problem of automatic signature detection [6, 7]. Unfor-
tunately, most existing approaches exhibit one or more
of the following problems:

1. False positives. For any automated response sys-
tem holds that misclassifying and blockingbona
fide traffic may result in unleashing a denial of ser-
vice attack by the defence mechanism.

2. Instances rather than variations.Most existing sys-
tems extract the signature of an individual worm
with no attempt to check whether this is a variation
of a worm that was previously detected.

3. Presence rather than virulence.Anyone brave
enough to connect an unprotected machine to the
Internet will soon discover that there are many dif-
ferent worms out there. In addition to an exhaustive
list of what worms have been encountered in var-
ious places, a security system would benefit from
information about the worm activity level. Viru-
lent worms may require more drastic and immediate
measures than worms that spread slowly.

4. ffective only for known worms rather than zero-day
attacks.

In SweetBaitwe address the problem of fast worms
by means of honeypots. The system also detects worms
that spread slowly and even other forms of malware, but
these are not its focus. We discuss the design and imple-
mentation of an automated response system that aims to
protect small and medium sized networks from random
IP scanning worms. The size of the networks in focus
was motivated by a desire to avoid performance issues
that arise with systems on backbone links. Our goal is to
automate the procedures of both worm signature genera-
tion and signature distribution. Signatures are distributed
both to external network intrusion detection and network
intrusion prevention (NID and NIP) systems, and to ex-
ternal host-based intrusion prevention (HIP) systems. At
the same time we aim to achieve a low reaction time
to new outbreaks. The challenging task of identifying
new worms is performed by honeypots. InSweetBait
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the honeypots along with the NID and NIP systems will
be managed by acontrol centre(CC), which will be able
to respond to outbreaks even when unattended. Some
contributions of this paper are summarised below:

1. reduce false positives by requiring confirmation
from multiple sensors and by ‘whitelisting’ benev-
olent traffic;

2. continuously refine worm signatures to provide au-
tomated signature revision;

3. employ HID, NID and NIP systems for detection
and containment;

4. predict worm aggressiveness by monitoring a
worm’s activity level;

5. through an open design, allow different types of
honeypots to be plugged in;

6. distribute signatures through aglobal control cen-
tre (GCC) to all instances of the system to achieve
possible immunisation of parts of the Internet.

To prove point (5) we implemented two different sig-
nature generators. One is known asSweetSpotand is
based on alow-interactionhoneypot similar to honeyd.
The other, known asArgos, is still experimental and only
partially integrated withSweetBait. It consists of an in-
novativehigh-interactionhoneypot on top of an x86 em-
ulator.

We chose honeypots rather than network taps for sev-
eral reasons. First, network administrators feel more
comfortable with handing out chunks of unused IP ad-
dress space than with systems that snoop on user traf-
fic. Second, while it is true that honeypots by themselves
never see hit-list worms, this was easily remedied by di-
recting suspicious traffic to the honeypot. Indeed,Argos
is used to deploy anadvertised honeypot: unlike most
honeypots, we do not try to makeArgosinvisible. On the
contrary, it is intended thatArgos honeypots are linked
to actively. For instance, hidden links can be added to
webpages that point toArgossensors. While no human
would normally follow these links, one should expect
a fair amount of benevolent traffic in the from of web
crawlers etc. For this reason, the issue of false positives
is even more important than forSweetSpot.

To ensure that we do not generate signatures in re-
sponse to benevolent traffic, we demand the number of
false positives in the intrusion detection component of
Argos to be zero. At the same time, we demand that the
number of false negatives for the types of attack that are
recognised byArgos to be zero. While we have imple-
mented a functional prototype ofArgos, and verified ev-
ery aspect of the full system using real services and real

attacks, it is currently only partially embedded inSweet-
Bait. Unlike SweetSpot, we have therefore not deployed
it beyond our own laboratory testbed.

Even withSweetSpotsensors it is possible to capture
certain hitlist worms by actively directing traffic to the
honeypot. In this case, the NID would function as a two-
tier system that uses anomaly detection in the network
as a first, and theSweetSpothoneypots as a second tier
in the detection process. Whenever unusual behaviour is
detected, the corresponding traffic is forwarded to hon-
eypots for further analysis. In this way, we preserve the
property that all traffic arriving at the honeypot is sus-
pect. This is in contrast to both ourArgossignature gen-
erator and all approaches that protect against attacks at
the user’s machine, e.g., [8] and our own [9]). These lat-
ter approaches must therefore work harder to weed out
the false positives.

Note that a third argument is sometimes made in
favour of honeypots, namely that random IP scanning
worms have been much more popular than hit-list worms
and scanning worms are responsible for the fastest
spreading behaviour to date. While true, we do not con-
sider this a valid assumption for a future-proof system.
For instance, Staniford, Paxson and Weaver have demon-
strated that in theory hit-list worms have the potential to
spread faster than scanning worms [1]. We therefore ex-
pect to see more of these attacks in the future.

Currently, we have a fully functional implementation
of SweetBait/SweetSpot, and an experimental prototype
of SweetBait/Argos (Argos is in the process of being
fully incorporated intoSweetBait). In this paper we de-
scribe theSweetBaitarchitecture, as well as the main
components that were implemented. In Section 2 we will
give a detailed description of the system’s architecture.
In Section 3, we outline our implementation. We eval-
uate the system in Section 4. Since the embedding of
Argos in SweetBaitis work in progress, whileSweet-
Bait/SweetSpothas already been actively deployed at
several sites around the world, evaluation for both hon-
eypots will be along different lines. Related work is dis-
cussed throughout the text and also in Section 5. Finally,
we will present our conclusions and future work in Sec-
tion 6.

2 System Overview

SweetBaitis comprised of multiple components with dis-
tinct roles, which can be roughly classified into two cat-
egories: sensors and control elements. Honeypots, in-
trusion detection and prevention systems are all sensors,
while control centresand aglobal control centreconsti-
tute the control components. The honeypots are set up to
receive data destined to nonexistent IP addresses of the
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Figure 1: Architecture overview

corresponding subnet as well as any traffic that is explic-
itly directed to them as explained in the previous section.

These data are first filtered to exclude any known
benevolent traffic patterns. The remainder is treated as
of malicious origin and is processed to generate NID sig-
natures that we claim to belong to malware. The gener-
ated signatures are then posted to the CC, where they
are compared with the ones already known. Based on
the incidence reports from multiple locations, the CC de-
cides which signatures to transmit to the NID and NIP
components. NID and NIP sensors return feedback to
the CC concerning the number of hits for the signatures
they have been monitoring or filtering. Finally, the CC is
responsible for exchanging signatures and activity statis-
tics with a GCC. The presence of a GCC enables coop-
eration of instances ofSweetBaitglobally, which is nec-
essary to achieve worm containment [1].

A typical configuration ofSweetBaitcomponents is
shown in Figure 1. In the remainder of this section we
will describe each component in detail.

2.1 Honeypot sensors

Honeypots are powerful devices for capturing random IP
scanning worms. These worms discover new victims to
attack by randomly generating IP addresses. We distin-
guish between two types of honeypots: hidden and ad-
vertised.

The IP address of a hidden honeypot is by its nature
unadvertised on the Internet, and as such it does not ex-
change any legitimate data with the rest of the network.
We may therefore assume that all traffic destined to it is
suspect. By populating dark IP space of a network with
hidden honeypots, there is a high probability of finding a
scanning worm in its early stages.

For advertised honeypots the assumption that all traf-

fic is suspect does not hold. Hence, it must have a way to
separate the good from the bad. As shown in Section 3.2,
the way we do this inSweetBaitis by generating signa-
tures only for data that is demonstrably malignant. In
essence, we use memory tainting to trigger an alarm if
we catch in the act either a stack-smashing/heap over-
flow or a format string attack [10]. Similar techniques
were used in projects like Minos and Vigilante. How-
ever, unlike Minos,Argosaims to provide adeployable
system in software, rather than hardware, and unlike Vig-
ilante we do not monitor individual services. Rather, we
guard theentiresystem, including the OS kernel.

Deploying a honeypot presents us with two further
possibilities. The first is to sacrifice a real host run-
ning real services(high-interaction), while the second is
to simulate servicesand/or hosts (low-interaction). The
former offers high-interactivity with attackers and makes
the honeypot almost indistinguishable from other hosts,
but it requires additional protection mechanisms such
as sandboxing [11, 12]. Since no real services are run,
the latter offers a lower level of interaction, but requires
less maintenance and supplies a greater degree of secu-
rity [13, 14]. Also, it was shown in NoSEBrEaK that
some high-interaction honeypots can be easily discov-
ered as such by intruders [15].

SweetBait uses both low-interaction and high-
interaction honeypots. The main advantages of low-
interaction honeypots forSweetBaitare the low main-
tenance requirements and security considerations, which
makes it easier to deploy. Other projects such as
Leurre.com also opted for low-interaction for this rea-
son. The low-interaction honeypot, known asSweetSpot,
is able to simulate multiple hosts, permitting us to popu-
late unused IP address space easily and to maximise the
amount of captured traffic.

The high-interaction honeypot inSweetBait, known as
Argos, is much more complex. It captures both known
worms and zero-day attacks. In addition, it can be used to
generate both network signatures and signatures for end
systems. We will discussArgos in detail in Section 3.2.

Even though we consider all traffic received by the
SweetSpothoneypot suspect, in practice a small amount
of non-worm related, or even legitimate traffic is also
captured. A well-known source of spurious traffic, for
instance, is back-scatter from DDoS attacks. Broadcast
messages, or attempts to scan the network are examples
of traffic that for our purposes may be ignored. To tackle
this we introduce the notion of awhitelist: a list consist-
ing of patterns that are considered benevolent, or at least
irrelevant for NID signature generation. A filter placed
at the honeypot rejects all traffic matching awhitelisted
pattern. The filter can be largely auto-generated by train-
ing the system on a network when it is unconnected to
the larger Internet. This simple step reduces the number
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of false postives and increases significantly the accuracy
of the signatures that are generated.

Consequently, the sensors process the remainder of in-
coming data. The way the data is processed is specific to
the sensor. The sigantures that are generated, however,
must conform to theSweetBaitformat.

For instance, low-interactionSweetSpots scan traffic
for repeated byte sequences in an attempt to identify
worm propagation and to generate a signature. For the
scanning process to be effective it is necessary to utilise
stream reconstruction for sequenced, connection-based
protocols such as TCP, since the underlying IP layer may
deliver packets out of order impeding our capability to
identify patterns spanning multiple packets. The high-
interactionArgoshoneypot pushes the data up to the ap-
plication and triggers a signature generation phase when-
ever a violation is detected. It is able to generate different
types of signature, one of which is a network signature
similar to the one generated bySweetSpot.

All signatures conform toSweetBait’s format. The
format consists of a small header identifying the type of
signature, the system that generated it, etc. As an exam-
ple, Figure 2 shows the headers for two differenttypesof
signatures generated by the two honeypots:

Finally, we transmit the generated signatures from the
sensor to thecontrol centre, where subsequent actions
are taken. The transmission is done in a secure manner
that guarantees the authentication of both parts, as well
as the integrity of the transmitted data.

2.2 Network Intrusion Detection and Pre-
vention Sensors

We use network intrusion detection sensors to passively
monitor ingress and egress traffic for worms, based on
the signatures of type network signature generated by the
honeypots. Whenever a signature is matched, the NID
sensor reports it by issuing an alert that also includes the
IP addresses involved in the transaction. Besides allow-
ing us to quantify a worm’s activity, this information also
enables us to:

• populate an Internet map with infected IP addresses;

• block infected remote hosts from accessing our net-
work;

• identify infected hosts in our network, and initiate
immunisation procedures.

NIP sensors, besides monitoring and reporting worms
by issuing alerts, assume the active role of filtering
ingress and egress traffic based on signatures of type
‘network’ . If initiated before any host in the network
has been compromised, blocking worms from entering

the network will lead to immunisation. On the other
hand, obstructing worms from leaving the network is tan-
tamount to ‘team play’ on our part that helps contain the
worm, and earns time for other networks to raise their de-
fences.We realise that network administrators today
are reluctant to filter traffic unless the false positives
ratio is close to zero. It may be that the attitude will
change when the problem of automated attacks in-
creases, perhaps leading to an approach similar to
that of fighting spam, whereby ISPs do filter traffic
destined for their clients even if they do get it wrong
occasionally. For the time being, however, any sys-
tem performing automated filtering needs to be ex-
tremely accurate. But even if administrators are re-
luctant to block traffic automatically, our system is
still of great value by alerting them of the presence
of an attack.

Most NID and NIP systems today are manually up-
dated each time a new worm appears, while alert reports
are being used purely for historical purposes. TheSweet-
Bait sensors are in constant communication with thecon-
trol centre, which is responsible for automatically updat-
ing the sensors with the signatures that need to be moni-
tored or filtered, respectively. Additionally, we immedi-
ately post the alerts generated by the sensors to the CC
for storage, as well as for estimating worm aggressive-
ness. Again, the communication channel is secure to en-
sure only authorised access to the CC.

2.3 Host-based Intrusion Detection and
Prevention Sensors

AlthoughSweetBaitas it is deployed only uses NID and
NIP sensors, the version under development employs
other sensors as well. For instance, as theArgos hon-
eypot generates network signatures as well as host sig-
natures, we are able to send signatures to hosts automat-
ically. While one could, in principle, employ signatures
similar to self-certifying alerts as employed in Vigilante,
we have focused primarily on host-basedfiltering and
left the distribution and verification of signatures for fu-
ture work.

As Argos automatically generates signatures when
buffer overflows or certain format string attacks occur,
we have no problem in catching zero-day worms. Gen-
erating the signature is more difficult as we shall see in
Section 3.2.

The sensor that we implemented thus far is really in-
termediate between host-based and network-based, as it
is implemented in software on a programmable NIC. It
scans all incoming traffic for the occurrence of signature
of worms and viruses. It is described in detail in [9].
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SIGNATURE 1 SIGNATURE 2:
generated by: SweetSpot generated by: Argos
source: 10.0.0.1 source: 10.0.0.2
destination: 192.168.2.1 destination: 192.168.2.2
type: network signature type: host signature
subtype: string subtype: string
description: longest common substringdescription: max protocol field length for IIS version X

Figure 2: Different types of signatures

2.4 Control Centre

If honeypots and intrusion detection/prevention systems
are the arms and legs ofSweetBait the control centre
is the brain. The CC collects information from the sen-
sors, processes it and instructs the sensors on future ac-
tions. Information exchange between the CC and con-
nected sensors is performed based on a well-defined pro-
tocol, decoupling the exchanged data from specific sen-
sor types. The CC gathers two types of incidence reports:
network intrusion signatures and alerts.

Signatures are compared with every known signature
to detect overlaps. When significantly sized overlaps ex-
ist, the received signature is considered to be aspecial-
isation of the stored one, and it is stored as a new ver-
sion. Besides the actual network intrusion signature, the
stored data consist of accompanying meta-information.
Such data include the timestamp to indicate the time of
generation, the source of the signature (e.g., the IP of the
honeypot), and various flags to indicate whether it has
been verified by an expert to be a valid or a false sig-
nature. The latter is essential information that permits
humans to affect the decision making process that is de-
scribed later to increase the effectiveness of the system.

The CC also collects alerts generated by NID and NIP
components when network traffic is found to match one
of the known signatures. Each alert contains information
that identifies the signature, as well as the source and
destination IP addresses involved in the data exchange.
The information is stored in a database both for auditing
and the reasons mentioned in Section 2.2. Furthermore,
the number of occurrences of a worm in the network is
an indication of its aggressiveness, and will be used to
classify the signatures based on the threat they pose. We
discuss later how administrators may require signatures
to be confirmed by multiple sites to reduce the number
of false positives.

Besidesgatheringthese incidence reports, the CC also
pushesinformation to HID, NID and NIP sensors auto-
matically. A sensor that identifies itself as able to per-
form either intrusion detection or prevention receives pe-
riodic reports about what packets it should monitor or
block. This automates the deployment of NID signatures,
and represents a significant step to zero-hour detection

and containment.
In most implementations, the number and size of sig-

natures that each NID or NIP is looking for determines its
maximum throughput, therefore we enforce a limit on the
size in bytes of the signatures that are pushed to the sen-
sors. We adopt the notion of asignature budget, signa-
tures are sorted based on their virulence and we push as
many as the budget permits. Additionally, a policy dic-
tates which of these signature are to be filtered. When a
signature’s activity exceeds a configurable threshold, the
sensors will be instructed to filter the offending traffic.
Using budget and virulence, sensors may limit the
amount of information that needs to be processed
and, more importantly, ensure that in the case of re-
source scarcity the most virulent attacks are given
priority. Whether a signature is verified to be valid or
false, can also be used to exclude false or even unverified
signatures from being filtered, preventing in this way the
system from accidentally stopping legitimate traffic.

Finally, the CC periodically exchanges information
with the global control centre(GCC). This includes
newly generated signatures, as well as activity statistics
of known signatures. The statistics received by the GCC
are accumulated with the ones generated locally to de-
termine a worm’s aggressiveness. This accumulation en-
sures that the CC is able to react on a planetary outbreak,
even if it has not yet been attacked itself, achieving im-
munisation of the protected network.

2.5 Global Control Centre

The detailed specification of a planetary scale centre for
worm control is beyond the scope of our work, never-
theless we briefly mention the aspects of such a centre
that are necessary forSweetBaitand that we have im-
plemented. The GCC collects signatures and statistics in
a similar way to a CC, with the main difference being
the lack of a signature budget when pushing signatures
to CCs. Additionally, because of performance, as well as
privacy concerns only the number of alerts is exchanged
discarding the source and destination IPs information.
As a single GCC obviously is susceptible to attacks and
could become itself a liability, a distributed solution is
preferable both for performance and security reasons.
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2.6 Reducing System Vulnerability

SweetBaithas been designed to protect sensors, con-
trol elements and the communication channels between
them. However, like in most automated response sys-
tems, it may be possible to manipulate the signatures that
are generated, e.g., by bombardingSweetSpotwith iden-
tical harmless packets. The packets cause the system to
incur a high incidence rate for the corresponding signa-
tures, and hence may lead to an automated response that
blocks the traffic in the network. In this way attackers
might even be able to causeSweetBaitto block user traf-
fic. To do so, attackers need to discover the honeypot
first. Alternatively they could flood the entire network
with the traffic, but this would be soon detected. While
whitelistinghelps a little to counter such manipulations,
it is by no means sufficient.

The presence of a GCC may be more effective in miti-
gating these effects by ensuring that attackers cannot eas-
ily manipulate activity rates. A worm’s activity is deter-
mined by accumulating the rates reported by allSweet-
Bait instances through the GCC, therefore the effects of
such an attack would be dulled.

For stronger protection,SweetBaithas a configurable
parameter that indicates how strongly the incidence re-
ports should be confirmed by other honeypots. As it is
much harder to discovern > 1 honeypots rather than just
a single one, theSweetBaitCCs may require incidences
to be confirmed by at leastn sensors, trading response
time for robustness.Nevertheless, like many low-
interaction honeypot systems, SweetBaitis prone to
such spoofing attacks. In case more reliability is
needed, administrators will have to reduce the num-
ber of SweetSpotsensors in favour of Argos honey-
pots which will not produce false positives in signa-
ture generation, as it only triggers an alert when a
real security violation has occurred.

3 System Implementation

This section discusses the implementation of the sen-
sors and the CC. We have employed off-the-shelf solu-
tions wherever possible in an attempt to allow already
deployed systems to be integrated inSweetBait. As we
only started to incorporateArgos in SweetBaitrecently,
and its integration is only partially complete, it was not
part of the deployed architecture. In addition,Argosem-
ploys novel ways of detecting worms and generating sig-
natures and for this reason it will be evaluated along dif-
ferent dimensions thanSweetSpot.

3.1 Low-Interaction Honeypot Sensor:
SweetSpot

ForSweetSpotwe usehoneyd, a virtual honeypot frame-
work that provides multiple low-interaction virtual hon-
eypots on a single host [4]. It captures traffic destined to
unused IP addresses on the deployed network and sup-
ports third party plug-ins that can access and process the
captured traffic. EverySweetSpotis attached to an op-
erating system (OS) profile that results in the simula-
tion of its TCP stack on established connections. This
approach protects the host from tools like xprobe and
nmap [16, 17] that fingerprint TCP packets to identify its
implementation and expose the host’s OS. Besides sim-
ulating operating systems, honeyd supports scripts that
emulate services such as a web server or a telnet daemon.

For automatically generating NID signatures from the
captured traffic, we employhoneycomb, a honeydplug-
in that scans incoming traffic and detects repeating pat-
terns using the longest common substring (LCS) algo-
rithm [7]. In addition,honeycombperforms flow recon-
struction, and is able to detect patterns even when they
are segmented in multiple IP packets. Signatures are pe-
riodically written out to a log file in pseudo-snort rule
format along with a timestamp that can be later read and
distributed to the CC.

To utilise a filter forwhitelistedpatterns, we developed
a newhoneydplug-in namedhoneybounce. This plug-in
supports a list of rules that specify in snort rule format
the patterns to be excluded from the NID signature gen-
eration. This is achieved by loadinghoneybounceprior
to honeycomband rejecting the matching packets. Since
honeydplug-ins do not support packet rejection, we have
developed a patch that installs this functionality. Cur-
rently, honeybouncedoes not perform flow reconstruc-
tion, because of constraints of thehoneydplug-in archi-
tecture and also to conserve CPU time for pattern detec-
tion by honeycomb. We do not expect this to become an
inconvenience, because of the nature ofwhitelistedtraf-
fic, which is benevolent by definition and consists mainly
of broadcast and multicast messages originating from the
subnet. These messages are mostly small enough to be
contained in a single packet, and in all other cases we ob-
served in practice that fragmentation is predictable, be-
ing the result of regular fragmentation of a stream into IP
packets.

Honeybouncesupports filtering of TCP and UDP
packets based on exact byte sequences and perl regular
expressions. To accelerate the filtering procedure the fil-
ters are classified in three categories based on protocol:
TCP, UDP or ANY. For each of these classes the fil-
ters are hashed based on their destination port number(s),
which can also be ANY. Filters are applied sequentially,
when a match occurs the procedure is terminated by sig-
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nallinghoneydto reject the packet averting its processing
by honeycomband subsequent plug-ins.

The signatures generated byhoneycombare read by a
signature distribution process that transmits them imme-
diately to the CC. The signatures are first examined to
ensure that the content is valid and that they are not older
than the last signature received from the CC. This is ac-
complished by requesting the timestamp of the last sig-
nature received from the CC, when first establishing the
connection. Such an approach is necessary, becausehon-
eycombgenerates signatures even for obscure protocol
flags combinations, and additionally dumps all generated
signatures periodically. Finally, SSL is used between the
honeypot and the CC to perform authentication between
the two using public and private keys, and to ensure that
the exchanged data are secure from eavesdropping.

3.2 High-Interaction Honeypot Sensor:
Argos

Argos is much more complex thanSweetSpotand while
a functional prototype exists, we have just started to ex-
plore the domain of signature generation. As a result,
our current signatures are rather crude, and we expect
more results in this area in future work. A detailed dis-
cussion ofArgos’ implementation is beyond the scope of
this article and is described in [18]. Note that unlike the
signature generator, the intrusion detection part ofArgos
is not a proof of concept solution, but a deployable sys-
tem with reasonable overhead that runs on commodity
hardware and on top of various OSs.

Argos is a high-interaction honeypot based on a mod-
ified x86 processor emulator known as Qemu [19]. On
top of the emulator we run the OS of our choice. No
changes to the OS are required and we can therefore sup-
port any OS running on the IA32 architecture. In prac-
tice, we have succesfully testedArgoswith Linux, Win-
dows 2000 and Windows XP. On top of the OS, we run
the applications we want to track (e.g., Apache, IIS, etc.).
Unlike many other approaches (e.g., Vigilante [8]),Ar-
goshas no knowledge of the applications and protects all
code running on top of it, including the kernel.

Misbehaving code is detected at the level of the emula-
tor. We use dynamic taint analysis [10] to detect when a
vulnerability is exploited to alter the target’s control flow.
Dynamic taint analysis aims to identify the illegal uses of
unsafe data such as data received from the network. For
instance, using values originating in the network as jump
targets, function call, or return addresses is considered to
be illegal. Additionally, executing data originating from
the network is also not allowed, so as to capture attacks
that inject (while control flow is not altered) arbitrary in-
structions into locations known to be jump targets.

The signature that is generated byArgos is crude but

effective. Whenever a violation is detected, we dump
to file all tainted pages that correspond to the currently
active code (the page tables help us determine wich pages
belong to this code).Argosworks at the level of physical
pages, rather than physical addresses. In addition, when
we detect illegal use of tainted data, we also dump the
jump target (a 4-bytevirtual address on our architecture),
and the page containing the jump target.

Furthermore, by inserting our own shellcode in the
code that is currently under attack, we unearth relevant
information about the process. In the current implemen-
tation, we read the process identifier and the executable
name, but in the future we plan to extend this to open
files, open sockets, etc. In other words, we inject our
own ‘attack’ to gather useful information about the real
attack. All this data is written to file for analysis (e.g., by
a human expert) and automatic signature generation.

The taint information maintained by Argos keeps
track of the origins of tainted data in the network
trace. Phrased differently, for every tainted word
in memory we know the corresponding word in the
network trace. Thus we are able to pinpoint the
jump target in the trace quite easily. Even if the
jump target in memory is the result of a computa-
tion on tainted data, the origins of this data can be
tracked. In case of TCP traffic, the network stream is
now first reconstructed. Next, using the location of the
jump target as a basis, we scan for information around
the jump target. Thus we create a maximum-sized net-
work signature for the attack that is subsequently sent to
the CC. In the CC, the signature is specialised to make it
smaller. We have applied the method to real worms and
real traffic and managed to derive working signatures for
real attacks (e.g.,RPC DCOM MSO3-026).

If we did not find the jump target at all, it probably
means that the traffic is encrypted. We have started work
to cope with this type of attack at the application-level.
The details are beyond the scope of this paper and may be
considered future work, but rather than generating a net-
work signature, we auto-generate an application-specific
signature, without having to modify the application.

We stress that theArgos signature generator is only
a first stab at an automated defense against some really
complex attacks and by no means a mature IDS. For in-
stance, in the system described above we do not yet pro-
vide secure communication to the CC, we do not con-
sider signatures other than monomorphic network signa-
tures, etc. All these are fairly prosaic problems which
prevent the system as is from being widely deployed.
However, we believe thatArgos represents an important
step as it explores an extreme in the design space of in-
trusion detection systems: detecting zero-day attacks.

Furthermore, we have recently developed a new
signature generator that takes a protocol-specific
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approach and aims at heap and stack buffer over-
flow attacks. In essence, it traces the security vi-
olation to a specific protocol field and based on its
knowledge about the protocol establishes bounds
on the maximum length the field may have lest the
buffer overflows. While the details of the signature
generator are beyond this paper and the system
was not fully integrated with SweetBait, it demon-
strates that it is possible to extend Argos with new
types of signature generators, as the need arises.

Note that Argosdetects the exploit at the moment
of violation. Regardless of how the attack hap-
pened, whenever tainted data is used to divert the
control flow, Argos triggers an alert. As such, Argos
is able to detect reliably all buffer overflow attacks
and code injection format string attacks that directly
attempt to divert the control flow. Most importantly,
it flags no false positives and so far we have not
found any false negatives either.

3.3 Host Intrusion Detection Sensor

The HID sensor we developed so far includes a pat-
tern matching engine implemented in software on a pro-
grammable network card. This solution, known ascard-
guard, is described in detail in [9] and consist of a parallel
implementation of the well-known Aho-Corasick pattern
matching algorithm on Intel IXP1200 network cards. All
traffic that arrives at the host is subjected to a payload
scan for signatures derived from the snort rule set [20].
For TCP flows, Cardguard first employs stream recon-
struction.

Note that all checks are performed before the traffic
even reaches the host CPU. Besides off-loading the host
CPU this has an additional advantage. Administrators
may be reluctant to trust the software running on a host
CPU. By placing the HIP sensor in the NIC, shielded
from the end-user, the system may be considered more
acceptable from a political viewpoint.

The rules incardguardare encoded as a determinis-
tic finite automaton (DFA) that is generated off-line. A
packet or TCP stream is matched one byte at a time and
for each byte the DFA incurs a single state transition.
Because all rules are encoded in a single DFA, one state
transition matches all rules at once. The overhead in-
curred is therefore proportional to the size of the packets
rather than the number or size of the rules. As there are
many thousands of rules already, this is a very desirable
property.Despite encoding all rules in a single DFA,
cardguardis able to reliably distinguish between dif-
ferent rules whenever it matches subpatterns of dif-
ferent signatures.

Cardguarduses the measured locality of reference in
DFA accesses to steer the memory layout of the DFA.

In other words, states that are needed frequently are
placed in highspeed memory (on-chip instruction store),
while less frequently states are placed in off-chip SRAM
or DRAM. While IXP1200s are now considered obso-
lete, the performance ofcardguard(600 Mbps for UDP,
100 Mbps for TCP) is quite acceptable for most end-host
systems.

We recently improved the cardguardin a new sys-
tem known as safecard[21]. Safecard is able to pro-
cess a more generic regular expression language
on reconstructed TCP streams at close to a gigabit
per second on an IXP2400 network processor us-
ing techniques similar to those used in cardguard.
In addition, it has several other intrusion detection
techniques implemented on the network card.

3.4 Network Intrusion Detection and Pre-
vention Sensor

Snort [20] is one of the most popular open source NID
systems, and is deployed in many networks. This along
with the fact thathoneycombgenerates signatures in
snort rule format motivated the adoption of snort as the
base of NID sensors. Snort scans received traffic for a
set of rules and generates an alert each time a match oc-
curs. These alerts are logged in a file and subsequently
transmitted to the CC. The information contained in an
alert includes a custom annotation, which we use to iden-
tify the rule that caused it, and the involved IP addresses.
Such an alert is shown in Figure 3. Snort can also re-
act (in a passive way) when a TCP flow has been found
to match a rule by using control packets to terminate it.
This is accomplished by transmitting a TCP FIN packet
to both ends of a TCP flow, when a corresponding rule
is matched. Unfortunately, in the case of worms such
a mechanism is not sufficient, since the original packets
containing the worm have already reached their destina-
tion, and have probably infected it.

Since snort is not deployed in-line and does not of-
fer an efficient protection mechanism, along with the
lack of open NIP alternatives, we implemented a simple
NIP system based on Linux netfilter (http://www.
netfilter.org ). Netfilter on a Linux router permits
us to intercept packets before being routed, and thus filter
them at the point of entry in the network.

We developed a Linux kernel module, named
CBFilter , based on Netfilter to perform content-based
filtering. The module scans for byte sequences in pack-
ets’ payload using the well-known Aho-Corasick al-
gorithm [22]. If (a) a packet arrives with a proto-
col and portnumber combination that is specified ‘to be
checked’, and (b) the payload matches a target pattern
corresponding to one of the rules, and (c) the protocol
and destination port number also match, then the packet
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[ ** ] [1:2003:4] MS-SQL Worm propagation attempt [ ** ]
[Classification: Misc Attack] [Priority: 2]
08/24-16:03:13.805589 XXX.XXX.X.XX:1178 -> XXX.XXX.XX. XX:1434
UDP TTL:108 TOS:0x0 ID:30134 IpLen:20 DgmLen:404
Len: 376
[Xref => http://vil.nai.com/vil/content/v_99992.htm]
[Xref => http://www.securityfocus.com/bid/5311]
[Xref => http://www.securityfocus.com/bid/5310]

Figure 3: Example of a Snort alert

is dropped. We have chosen to scan first the payload of
a packet and then check the protocol and port number to
avoid instantiating multiple search trees for each protocol
and port number pair. Such an approach would diminish
the benefits of using the Aho-Corasick algorithm, reduc-
ing performance to that of a serial search algorithm. Note
that even though the algorithm is the most effective we
could use, this procedure remains computationally ex-
pensive.

CBFilter is controlled from user-space over a de-
vice file. A process can instruct the module to load new
filters, start and stop filtering, as well as recover statis-
tics. Statistics include the number of packets filtered us-
ing a specific rule, but not the source and destination ad-
dresses involved due to performance restrictions. Each
time statistics are retrieved, the corresponding counter is
reset.

The alerts generated by snort andCBFilter are col-
lected by a signature distribution process that transmits
them to the CC. The same process also listens for signa-
ture updates from the CC, and applies them to snort and
CBFilter . To minimise data transmission, the pro-
cess supports alerts caching: aggregation of the alerts
generated by each rule, and periodic transmission of the
number of hits incurred during each period. This is use-
ful when the number of alerts is sufficiently large to ap-
proach saturation either of the connection with the CC, or
of the CC itself. The aggregation occurs at the expense
of detailed information that may be used for auditing,
as the IP addresses are not included with the aggregate
alerts. As in all cases, we use SSL on this connection for
authentication and security purposes.

3.5 Control Centre

We implemented CC as a multi-threaded server that han-
dles multiple concurrently connected sensors, and uses
a PostgreSQL database for storing its data (http://
www.postgresql.org ). The CC collects two types
of information: signatures and alerts. When a new signa-
tureN is received it is first compared with every stored
signatureS, sharing the same protocol and destination
port number. The comparison is done in a signature-

type-specific manner. Currently, we have only used the
LCS algorithm for all signatures of type string. If an
overlapO exists, then the following applies:

1. Specialisation: the length ofO is at leastX% of
the length ofN .

O will be treated as a new version of the stored
signatureS. In practice we found an initial value
of X = 85 to perform well, as it leaves space
for the generation of more specialised signatures,
while protecting the system from misclassifying a
new worm signatureN as a new version of a stored
signatureS.

2. Generalisation: the length ofO is at leastY % of
the length ofS.

This rule was introduced to keep the system consis-
tent when a new honeypot sensor is introduced or
an already running one is restarted. The honeypot
sensors do not hold persistent information regarding
previously generated signatures; when restarted in
an attempt to generate signatures as soon as possi-
ble they will generate signatures more generic than
the ones already stored at the CC. These signatures
will be large enough to evade the first rule, but will
be captured by this one. The value ofY should be
just below100, or even100 to completely eliminate
the possibility of missing valid new signatures. In
practice, we found a value of95 to be sensible and
effective.

In both cases, ifO is identical withS, it is discarded.
Furthermore, to avoid over-specialisation of signatures
and unreasonable signature lengths, we also introduce a
minimum and maximum. If the length ofN or O do not
fall within these limits it is also discarded. Processing the
alerts is straightforward: whenever an alert is received
the activity counter of the corresponding signature is in-
creased, and the involved IPs are stored in the database.

The CC periodically updates the NID, NIP and HID
sensors with the set of signatures that should be mon-
itored and filtered respectively. Because we enforce a
budget on the maximum size of the signature set de-
ployed on these sensors, we need to sort them based on

9



their expected aggressiveness. To quantify this, we se-
lected the exponentially weighted moving average of the
number of alerts generated by each signature on each pe-
riod. It is defined as

m′ = w × a + (1 − w) × m (1)

where:m′ is the new value,m is the previous value,a
is the number of alerts this period, andw is the weight (a
configurable parameter). Selecting a value for the weight
0 < w ≤ 1 configuresm to follow more or less aggres-
sively the recent changes in activity levels. In practice,
we found that values less then0.5 are not very useful.
The valuem is used to predict future values of a worm’s
aggressiveness. The value of a signature’s activityA that
is eventually used bySweetBaitis biased towards spe-
cific destination ports and protocols:

A = m × portbias × protocolbias (2)

This approach allows us, for instance, to react more
aggressively to UDP than TCP worms, and with caution
to signatures involving web or mail services. This is also
useful as some ports (e.g., ports 139 and 80) and proto-
cols are much more frequently attacked (or scanned) than
others [23].

The signatures are subsequently transmitted to the
NID, NIP and HID sensors, starting with new signatures,
and proceeding with signatures that have the largest ac-
tivity value, going as far as the signature budget allows.
Signatures with a value ofA larger than the filtering
threshold are transmitted to the sensors with the indica-
tion that they should be filtered, unless the administrator
of the system has requested that only verified ones should
be filtered.

Finally, the CC periodically contacts the GCC to ex-
change signatures and global activity statistics. The re-
ceived statistics are aggregated with the local ones to pro-
vide new values ofa and consequentlyA. Again, SSL is
used for communication between CC and GCC.

3.6 Global Control Centre

The global control centreis a stripped-down version of
the CC described above. It is a multi-threaded server that
handles multiple connections from CCs, and exchanges
signatures and statistics. Signature specialisation is done
as described in Section 3.5. Activity statistics received
by the CCs are aggregated, and are periodically cleared
to avoid stale values from inhibiting the ability of detect-
ing new outbreaks.

4 Experimental Evaluation

To evaluateSweetBaitwe deployed it at four different
sites: Vrije Universiteit in Amsterdam, ICS FORTH in
Heraklion, UNINET in Oslo, and University of Pennsyl-
vania in the US. In all cases we deployed aSweetSpot
sensor and a NID. At the time of deployment theArgos
sensor was still incomplete, so we decided to deploy it
only at the Vrije Universiteit Amsterdam. In addition,
the evaluation criteria of theArgos sensor are different
from those ofSweetSpot. For instance, what is crucial
for Argos is whether it catches all attacks that use buffer
overflows and whether or not we incur any false posi-
tives. For this reason, we evaluateSweetSpotandArgos
separately. The prime goal of our evaluation is to prove
the ability of SweetBaitto generate valid worm signa-
tures, and achieve a low reaction time.

The size of unused IP address space varied from 32
IPs in ICS FORTH to two class C subnets in Vrije Uni-
versiteit. As expected, the larger the address space, the
more traffic was captured by the honeypot and conse-
quently more signatures were generated. Additionally,
we noted increased activity in our University of Penn-
sylvania honeypot, which may be caused by the higher
density of IP addresses in this area. As we did not have
access to a router to redirect suspicious traffic to our hon-
eypots, theSweetSpotsensors currently only pick up ran-
dom IP scanning worms.

4.1 SweetSpotexperiments

Initially, we ran SweetBaitwith all SweetSpotsensors
for 24 hour lapses, to get a first glimpse of the generated
signatures, and tune the system. We set upSweetSpotto
emulate hosts running the following operating systems:
Linux kernel 2.4.20-2.5.20, Windows XP Professional
RC+1, and MS Windows Professional Advance Server
Beta3. Additionally, the hosts emulated services such as
FTP, POP3, and IIS application server, while accepting
connections on all ports. Obviously, such a choice is not
suggested for a production system, since it would expose
the honeypot, but it is ideal for maximising the captured
traffic during evaluation.

4.1.1 Signature Generation

Exceeding our expectations we collected a significant
number of signatures in just a couple of hours. Using
the values given in Section 3.5, signature specialisation
reduced the tens of thousands of signatures generated by
honeycombto tens. Table 1 depicts this forsix of our
experiments, while the cumulative number of new signa-
tures found at the honeypot and the CC respectively is
shown in logscale in Figure 4. The plot shows that the
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number of signatures in the CC is a small fraction of the
total number of signatures generated inSweetSpot. Most
are refinements or signatures of previous ones.Sweet-
Bait also generated signatures that could not be applied
to a NIP sensor, because it would not be able to discrim-
inate between legitimate and malicious traffic, resulting
in thewhitelistedsignatures shown in Table 2.

After applying thewhitelist at SweetSpotthe results
were further improved. The generated signatures con-
sisted of well-known older worms such as CodeRedII,
Slammer, MSBlaster and Nimda [24, 25, 26, 27], as
well as many exploit attempts including the more recent
Veritas backup exec and Microsoft WINS [28, 29] vul-
nerabilities. A detailed list of all generated signatures
can be found on-line athttp://www.few.vu.nl/
∼porto/signatures.html . Some of the generated
signatures seem peculiar, because of long repeated se-
quences in their payloads such as NOPs. Nevertheless,
they are still usable and will not cause false positives,
since no legitimate traffic would match the protocol, port
number and content triplet.

A significant number of signatures is indirectly related
to malicious network traffic, e.g., the signatures gener-
ated from traffic targeting backdoors created by worms
on infected hosts (like MyDoom and Sasser [30, 31]).
Additionally, many apparently benevolent messages, un-
der closer inspection proved to be probes looking for ac-
tive hosts and services. An example of such a message
is a NetBIOS name service wildcard query, which pre-
cedes attacks on NetBIOS sessions service [32]. Even
though these signatures are somewhat connected with
malicious activity, they are not applicable, because they
might also hinder access to legitimate users, and have
thus been added to thewhitelist. In our case, this was
a partly automated process, whereby the system
was first run without connection to the Internet. All
patterns received in this timeframe were pushed to
the whitelist. However, administrators are allowed
to add more patterns to the whitelist explicitly, if so
desired and we have done so in our case (e.g., with
the connections to MSSQL servers described next).
In addition, extension of the whitelist may potentially
be automatable using the Argos sensor to validate
signatures. Many whitelisted signatures were generated
when attackers attempted multiple connection attempts
to MSSQL servers. Even though such attempts are obvi-
ously of a malicious nature, the resulting signatures can-
not always be of practical use, since they might block
access to public servers in the network. As discussed ear-
lier, SweetBaitoffers various means to help ensure that
the activity of such signatures does not rise high enough
to cause their filtering.

Most of the signatures are less than 200 bytes long.
Small signatures focus on the exploit used by a worm,

and permit us to deploy more of them on the NID and
NIP sensors. The distribution of the size of the gener-
ated signatures is shown in Figure 5. The fact that the
length of most signatures is smaller than an IP packet
does not imply that the worms used a single packet to
propagate. The majority of the signatures involved the
TCP protocol, and only Slammer’s propagation and an
SNMP attack were performed over UDP. To handle TCP
fragmentationhoneycombemploys flow reconstruction,
and can identify patterns across multiple TCP packets.

In Section 3.5 we described how we quantify the vir-
ulence of each signature. While we only monitored
the portion of the network traffic towards the honeypot,
rather than the total network traffic, we were quite able
to track the virulence of attacks. For example, in Fig-
ure 6 we plot the virulence for three of the most aggres-
sive attacks.The plots shows SweetBait’s estimates
of virulence only. While they coincide with what we
observed in our fairly small testbed, it is left for fu-
ture work to verify the estimates against indepen-
dent measurements on a larger scale.

4.1.2 Performance

To complete the evaluation of our system, we conducted
measurements regarding the performance of the CC. It
has to be able to process all the received information in
a reasonable amount of time to achieve a low reaction
time to worm outbreaks. Because of the nature of the
honeypot sensor, the amount of traffic sent to the CC is
negligible, while the number of alerts generated during
an outbreak could be overwhelming.

We conducted experiments with a NID sensor gen-
erating false alerts to stress test the throughput of the
CC, and locate possible bottlenecks. We set up the NID
sensor to continuously transmit alerts, and measured the
number of alerts that were processed every second at the
CC. To achieve more realistic results, a honeypot sen-
sor was also connected and was sending signatures. Ini-
tially, the NID sensor did not use alert caching, which
resulted in a maximum throughput of just 15 alerts per
second on average. Investigating the cause of such poor
performance, we discovered that the database needed ap-
proximately 70 msec to store a single alert. Using faster
hardware to host thecontrol centrewould definitely im-
prove throughput, since we used a slow PC with 256MB
of memory running at 1.2GHz. At any rate, switching
to alert caching helped us overcome this limitation by
achieving a throughput of approximately 140,000 alerts
per second.

Another aspect of performance is the time it takes
for the control centre to initiate monitoring, and conse-
quently filter a new worm signature. As we have men-
tioned before, the generation of signatures depends on
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Table 1: Specialisation results

Usable signatures Unique signatures CC entries
(honeycomb log) (honeycomb log) (database)

23400 12039 14
2861 439 9
6030 2107 11
35500 7462 20
43470 21957 21
323237 3538 27
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Figure 4: Signature specialisation

repeated byte patterns being identified byhoneycomb.
This implies that the speed at which a signature is gener-
ated, depends on the speed of the worm itself. As soon
as the signature is generated, it is sent to the CC. The
time needed to initiate monitoring, depends solely on
the periodT that the CC updates NID and NIP sensors.
Exchange with the GCC is also performed periodically,
so the maximum time needed for a signature to be dis-
tributed globally is2×T , assuming all deployed systems
have the same period. The same2 × T has to elapse as
well, before filtering a signature, assuming that its activ-
ity has exceeded the defined threshold. To conclude, a
short update period leads to fast reaction times against
new worms, while the signature will be more refined in
later updates. A distributed GCC would overcome po-
tential scalability and availability issues for GCC, but is
beyond the scope of this paper. During our evaluation,T

was set to 2 minutes and we were pleased to observe that
no unexpected performance degradation occurred.

4.2 ArgosEvaluation

We ranArgoswith Windows2000 against a set of attacks
present in the Metasploit framework that we could
run without having to buy additional software [33].
The tests included different types of buffer overflow
(off-by-one, heap, stack). For instance, some fa-
mous exploits included (using Metasploit identifiers):
LSASS MSO4-011 Overflow , PnP MS05-039
Overflow , ASN.1 Library Bitstring Heap
Overflow , and RPC DCOM MSO3-026. No test
incurred false negatives. In addition, we did not incur
false positives while operating the system. As our
experience with Linux is far more extensive than with
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Table 2: Whitelist

alert udp any any -> any 137 (msg: "NetBIOS Name Service Wildc ard Query";
pcre: "\x00 * \x0F * \x00 * \x01\x00 * \s * CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\x00* !
\x00 * \x01 * \$"; )

alert tcp any any -> any any ( msg: "NULL packets"; pcre: "ˆ\x0 0+$"; )

alert tcp any any -> any 80 ( msg: "HTTP Request(Used for DoS)" ; pcre:
"ˆGET / HTTP/1\.1\r\nAccept\x3A image/gif, image/x-xbit map, image/jpeg,
image/pjpeg, \ * /\ * \r\nUser-Agent: Mozilla/4\.0 (compatible; MSIE 5\.5;
Windows 98)\r\nHost\x3A .+\r\nConnection\x3A Keep-Aliv e\r\n\r\n$"; )

alert tcp any any -> any 139 ( msg: " \Session Request to SMBSER VER";
pcre: "\x81\x00\x00D [A-Z]{32}\x00 [A-Z]{32}\x00$"; )

alert tcp any any -> any 139 ( msg: "Session Request to SMBSERV ER";
pcre: "A\x00 [A-Z]{32}"; )

alert tcp any any -> any 80 ( msg: "IIS WebDAV request"; pcre: " ˆOPTIONS
/ HTTP/1\.1\r\ntranslate\x3A f\r\nUser-Agent\x3A Micro soft-WebDAV-

MiniRedir/5\.1\.2600\r\nHost\x3A .+\r\nContent-Lengt h\x3A 0\r\n
Connection\x3A Keep-Alive\r\n\r\n$" );

Windows, we conducted additional homegrown tests
with this OS, including various types of buffer overflow
and format string attacks. Again, all were detected
succesfully and we did not incur false positives.

The injection of our own shellcode in the process was
also tested successfully in Linux and Windows. Cur-
rently, the shellcode extracts the identifier of the process
and sends it via UDP to our signature generator. As far as
we know, no other project has attempted to use the very
methods used by worms for forensics.

On Linux we completed a prototype implementation
of the signature generator. We maintain data traces by
means oftcpdump , periodically garbage collecting the
flows sometime after they have been closed.Using the
jump target and its location in the network trace
we scan for overlap between memory and network
trace. Note that in a previous version of Argos,
we did not know the exact origins of the jump tar-
get in the trace, and therefore tried to locate it by
scanning the trace for the occurrence of the 4-byte
value. Several researchers have suggested that the oc-
currence of a certain combination of 4 bytes in multiple
streams is quite rareand indeed we hardly suffered
from misidentification in practice. Nevertheless, the
latest version of Argos is more accurate and us-
ing it we have successfully generated signature for
real attacks, such as the exploit used by the Raleka
worm/virus (RPC DCOM MSO3-026).

Finally, we tested the performance ofArgos in terms
of overhead generated by the underlying emulation and
instrumentation framework. All tests were conducted on
a 2GHz AMD Athlon XP 2800 processor with 512K L2
cache and 1GB of RAM running Gentoo Linux with ker-
nel 2.6.12.5. The emulated PC was a Pentium IITM with
a 128K L2 cache and 512MB of memory. For optimal
performance we did not use a file as a virtual hard disk,
but instead dedicated a single IDE UDMA133 hard drive
to the emulator. The guest OS used for the benchmark
test was Slackware Linux 10.1 with kernel 2.4.29.

The performance overhead ofArgos in terms of slow-
down compared to native execution is shown in Ta-
ble 3. Two versions of Qemu were used, the original
unmodified Qemu indicated as ‘Vanilla Qemu’, and se-
cure Qemu which uses our memory tracking system. It
should be mentioned that we have measured performance
without the proprietary QEMU accelerator which speeds
up QEMU to roughly half the performance of running
directly on the hardware. The applications/benchmarks
tested where bunzip 2 1.0.3, the httperf 0.8 web server
benchmark, and BYTE magazine’s Unix benchmark
nbench 2.2.2.

We calibrated httperf for each platform separately to
request the web server’s main page ‘index.html’, so as to
maximise the number of processed requests per second.
Individual calibration was necessary, because Qemu’s
virtual network interface architecture introduces lag time
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Table 3:ArgosPerformance Benchmarks Figures

program Vanilla
Qemu

Secure
Qemu

bunzip2 7.77 16.58
httperf 21.6 26.05
nbench in-
teger

10.05 18.89

nbench
float

21.06 25.48

nbench
memory

12.39 21.48

that caused many HTTP requests to timeout when the
same load as the native system was used. The metric
adopted for comparison of web server performance was
the number of milliseconds per request. The web server
employed for the httperf benchmark was apache 2.0.4.
The nbench produces a performance index for each plat-
form’s integer, float, and memory operations. This index
specifies how the system compares with an AMD K6 at
233MHz with a 512K L2 cache, and it was used to com-
pare the platforms.

The performance overhead of secure Qemu varies be-
tween a 16 times slowdown for bunzip2, and a 26 times
slowdown for apache as reported by nbench. Even
though the overhead is certainly not negligible, an OS

running under secure Qemu is still able to function in
sensible margins and could host multiple services. We
emphasize thatArgos is used as a honeypot rather than a
production machine.

4.2.1 Discussion: Signature Aliasing

One aspect of our system that we have not yet explored
is what may be termed ‘signature aliasing’: the phe-
nomenon that sensors of different type generate very dif-
ferent signatures for the same attack. For example, both
SweetSpotandArgosgenerate a signature for the Slam-
mer worm. Because the algorithms used for signature
generation differ consiserably, these signatures will not
be the same.

It may be that aliasing is a good thing, as it increases
the probability of catching a worm. However, multiple
signatures of a virulent attack may also take up a dis-
proportionate amount of a NID/HID/NIP sensor’s signa-
ture budget. One possible solution is to extendSweet-
Bait in such a way that signatures that always coincide
are marked as equivalent, in which case only one will be
activated. However, this is left for future work.

5 Related Work

Much of the related work we already discussed in-line.
In this section we highlight projects or aspects of projects
that did not fit well in the main body of text. Most well-
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known systems (e.g., HayStack [34]) fall in a category of
detection only and no active response. Some, however,
do attempt automated response.

Various types of honeypots have been used for worm
detection. A network of high-interaction honeypots is
used to capture worms in the honeynet project [11]. By
analysing network traffic and the honeypot’s state it is
possible to produce detailed descriptions of worm be-
haviour. Successful application of low-interaction virtual
honeypots was demonstrated by Laurent Oudot in cap-
turing and counter-attacking the MSBlaster worm [35].
LaBrea [36], is a honeypot used as a tarpit: it slows down
scanning worms, by keeping TCP connections open in-
definitely. While effective for some worms, it would
be powerless in the face of a UDP worm like Slammer.
Sombria [37] is yet another honeypot system that has
been setup for research purposes in Japan. All of these
projects differ formSweetBaitin that the focus is on cap-
turing worms, rather than on automated response based
on automatically extracted and refined signatures.

Honeycombautomatically creates signatures based on
a longest common substring and has been successful in
generating accurate signatures for the Slammer and Code
Red II worms [7]. Nevertheless it can be fooled by long
sequences of bytes repeated by certain protocols such
as NetBIOS, creating signatures for otherwise legitimate
traffic. Another system that automatically generates sig-
natures for TCP worms is AutoGraph [38]. It operates

by analysing prevalence of portions of flow payloads and
exhibits a fairly low false positives rate. LikeSweetBait
it operates better in a distributed environment. However,
it is not aimed at finding refinements or generalisation
of signatures, nor is it currently coupled to an automated
response system.

Joukov and Chiueh propose a worm containment en-
vironment that combines anomaly detection, egress fil-
ters and honeypots to generate worm signatures and filter
them at the enterprise firewall [39]. Its major weakness
is that even unsophisticated polymorphic worms may be
able to circumvent detection.

A similar system also addressing the issue of an Inter-
net wide centre to correlate warnings and share informa-
tion is described by Changchun Zou et al. [40]. Ingress
and egress scan monitors are distributed in different parts
of the network and submit their warnings to amalware
warning centre. The monitors are using a Kalman filter
to identify the propagation of a worm based on observed
illegitimated scan traffic. The approach aims to detect
zero-day worms at their early stage, but is vulnerable to
background noise that could cause a high rate of false
alarms.

EarlyBird is another system that aims to fingerprint
worms at an early stage [41]. It scans payloads and cor-
relates the information with a set of unique addresses of
sources that are spreading the worm and destinations un-
der attack. In-band content inspection is also the goal
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of [42]. In this case, however, the authors have pushed
the firewall all the way to the end-node and implemented
the IDS in hardware on the NIC. Neither of the latter
two approaches copes well with polymorphic worms. In
SweetBait, we are currently adding our own in-band con-
tent inspection based on FFPF and Intel network proces-
sors [43].

A fast containment system is presented in [44]. It dif-
fers from most projects described here, including ours,
in that it takes a network-centric view and aims at imple-
mentation in hardware.

A cooperative immunisation system against worms is
described by Anagnostakis et al. [45]. The system con-
sists of distributed nodes exchanging information about
threats and appropriate counter-measures. It is based on
scanning incoming traffic for malware at the hosts and
like SweetBait, it determines which signatures to scan for
based on observed virulence. The system is a network-
centric approach that bears some resemblance toSweet-
Bait’s honeypot approach. As trust is based on validat-
ing information by asking multiple nodes, the system be-
comes vulnerable if a large number of nodes is compro-
mised.

A more aggressive approach is adopted by Sidiroglou
and Keromytis [46]. LikeSweetBaitthey deploy diverse
sensors including network monitors and honeypots. The
honeypots used are highly-interactive, running real ver-
sions of popular applications to be protected. The appli-
cations run in a sandbox environment. They are moni-
tored for illegal behaviour, and when such behaviour is
detected the error that caused it is located and a patch is
automatically generated and distributed through a soft-
ware update service. The risk of such active measures
is that an automatically generated patch could do more
harm than good and it leaves the possibility of gaming
by hackers; carefully crafted input to the honeypots could
cause the generation of patches that create weaknesses.

Honeystat protects against scanning worms by em-
ploying high-interaction honeypots. Once a host is com-
promised it monitors CPU, memory, network and disk
events to capture the behaviour of the worm [6]. It pro-
duces accurate signatures, but has no method of refining
the signatures in the way provided bySweetBait.

Besides Honeypots there are various other approaches
to intrusion detection and prevention. Anomaly detec-
tion systems (ADS) are able to detect zero-day worms
and may even work at high speeds [47, 48, 49, 50]. Un-
fortunately, they tend to be fairly inaccurate and are com-
monly tuned conservatively to keep the number of false
positives low.

Some systems are made intrusion-tolerant and use ap-
plication diversity to compare outcomes of different im-
plementations when it is suspected that a server has been
compromised [51].

A well-known IDS is Vern Paxson’s Bro [52]. Com-
pared toSweetBait, Bro gives more attention to event
handling and policy implementation. On the other hand
it counts over 27.000 lines of C++ code, is implemented
for instance on top oflibpcap and may not assume
that all traffic is suspect. Altogether this makes it a very
different approach.

Argosis related to Minos which uses a similar form of
memory tainting to detect buffer overflows [53]. Unlike
Argos, Minos does not generate signatures. Moreover, it
aims to be used in hardware in new processor designs.
For this reason it uses BOCHS rather than an emula-
tor. As there no such hardware is currently available, the
performance of Minos is almost an order of magnitude
worse than that ofArgos.

Recent work by Microsoft Research has led to Vigi-
lante [8] which shares some of the characteristics ofAr-
gos. However, unlike Vigilante,Argosprotects not just a
single service, but the entire system, as it instruments at
the level of the machine emulator.

6 Conclusions and Future Work

In this paper we discussed the design and implementa-
tion of SweetBait, a system that is a combination of net-
work intrusion detection and prevention techniques. It
employs different types of honeypot sensors, both high-
interaction and low-interaction. It was shown thatSweet-
Bait is able to automatically generate signatures for ran-
dom IP address space scanning worms without any prior
knowledge. For non-scanning worms, we have shown a
solution in which we advertise a high-interaction honey-
pot that uses memory tainting to detect buffer overflows
and automatically generates a signature by correlating
the memory footprint with network traces. A novel as-
pect of the signature generation is the injection of our
own shellcode for doing forensics after an application
has been infected. The shellcode gives us useful infor-
mation about the application that is not available at the
emulated hardware level at which we are working.

We also demonstrated how this information can be dis-
tributed and deployed without any human intervention
minimising reaction time to zero-day worms. Further-
more, the signature specialisation, activity prediction and
automatic deployment techniques introduced provide a
valuable administration tool, which condenses the infor-
mation that needs auditing by administrators, while self-
adapting to ensure a high throughput of the monitoring
nodes.

In the future we plan to improve the high-interaction
honeypots signature generation. We believe that given
the wealth of information about the attack, we should be
able to generate better and more detailed signatures both
for HID/NID systems and human experts. We also plan
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to investigate further ‘signature aliasing’ where different
signatures correspond to the same attack. In addition, we
have already started work on detection of and signature
generation for encrypted traffic.
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