Vrije Universiteit Amsterdam

MSc. Business Analytics

Sales forecasting at Ace & Tate

Author:
Niamh Bermingham-McDonogh

VU supervisor:
Dr. Mark Hoogendoorn

Ace&Tate Supervisor:
Milan Van Eeden

August 2016
Abstract

It is important for businesses to forecast their sales accurately and at different product levels. Forecasts enable efficient supply chain planning and equip businesses with information on which to base strategic decisions. Through the study of literature we discuss several popular forecasting techniques and through empirical research we explore the differences between a traditional time series technique and a machine learning technique. Primarily, this thesis investigates the application of the ARIMA model and the ESN for forecasting sales at Ace & Tate at an overall level, per product category, and per individual frame level.
Preface

This thesis was completed alongside an internship at Ace & Tate and is the final stage of the Master programme Business Analytics at the Vrije Universiteit, Amsterdam. Business Analytics is a multidisciplinary programme that focuses on the application of mathematics and computer science in a business setting.

Hereby, I would like to thank all of my colleagues at Ace & Tate for their guidance and support throughout the internship. Special thanks to Milan van Eeden and Roderick Kasteel for their invaluable guidance, ideas and feedback.

Furthermore, I would like to thank Mark Hoogendoorn for his supervision throughout this research project, and Rob van der Mei for being the second reader.

Niamh Bermingham-McDonogh
August 2016
Contents

1 Introduction 7
 1.1 Background 7
 1.2 Research question 8

2 Background 10
 2.1 Ace & Tate 10
 2.2 Current forecasting and buying process description 11
 2.2.1 AW16 forecasting and buying model 11

3 Literature Review 18
 3.1 Time series models 18
 3.1.1 Linear models 19
 3.1.2 Nonlinear models 22
 3.2 Multivariate time series analysis 23
 3.3 Artificial Neural Networks 26
 3.4 Sales forecasting techniques in retail and ecommerce 32

4 Data 34
 4.1 The dataset 34
 4.2 Exploratory analysis 39
 4.3 Data Quality 45
 4.4 Train and test datasets 46

5 Model 47
 5.1 ARIMA 47
 5.1.1 Theory 47
 5.1.2 Choosing an ARIMA model 48
 5.2 ESN 49
 5.2.1 Building the ESN 50
 5.2.2 Tuning the ESN parameters 51
 5.3 Forecasting new products 54
 5.3.1 Method 1: Applying ARIMA or ESN to the mean distribution 54
 5.3.2 Method 2: shifting the mean distribution 55
 5.3.3 Shifting the mean distribution and normalising by product type 56
5.4 Error measures .. 57

6 Experimental results and discussions ... 58
 6.1 Univariate case ... 58
 6.1.1 Overall sales ... 58
 6.1.2 Sales by product type 64
 6.1.3 Sales by SKU ... 69
 6.2 Multivariate case ... 72
 6.2.1 Overall sales ... 72
 6.2.2 Sales by product type 75
 6.2.3 Sales by SKU ... 76
 6.3 Investigating the forecast horizon 78

7 Conclusions and recommendations ... 82
 7.1 Conclusions ... 82
 7.2 Strengths and limitations ... 84
 7.3 Further research ... 85

A The Goldfeld-Quandt test ... 87

B Seasonal trend decomposition by Loess (STL) 88

C The Box-Cox transformation ... 89
References

