

COMMUNICATIONS OF THE ACM July 2007/Vol. 50, No. 7 67

By NIKUNJ RAGHUVANSHI, CHRISTIAN LAUTERBACH,
ANISH CHANDAK, DINESH MANOCHA, and MING C. LIN

Simulating the complete process of sound synthesis and
propagation by exploiting aural perception makes the experience
of playing games much more realistic and immersive.

Crowd simulation in an urban scene. (Geometric Algorithms for Modeling, Motion, and Animation
Research Group, The University of North Carolina at Chapel Hill.)

Real-Time Sound
Synthesis and
Propagation for Games

T
he believability of a computer game depends on three
main components: graphics, behavior (including
physics and AI), and sound. Thanks to years of
research in computer graphics and the advent of mod-
ern graphics hardware, many of today’s games render
near-photorealistic images at interactive rates. To fur-
ther increase immersive gameplay, several recent games
(such as Valve’s Half Life 2 and Crytek’s Far Cry) have

added an integrated physics and behavior engine to enhance that realism, as objects
interact with one another in a more physically plausible way. In contrast, sound gen-
eration and propagation have not received as much attention due to the extremely
high computational cost for simulating realistic sounds.

The state of the art for sound production in games, even those with integrated
physics engines, is to use recorded sound clips that are triggered by events in the

�

�

� }

68 July 2007/Vol. 50, No. 7 COMMUNICATIONS OF THE ACM

game, not unlike how recorded animation
sequences were once used to generate all char-
acter motion in games. Artist-placed precom-
puted effects are applied when playing back the
sound to mimic spatial effects (such as echoes
in a large room) caused by the reflections of
sound waves in the scene. Although this tech-
nique has the obvious advantage of being sim-
ple and fast, it also has major drawbacks. First,
the sound it generates is repetitive. Real sounds
are dependent on how objects collide and
where the impact occurs; prerecorded sound
clips fail to capture these factors [7, 9, 10]. Sec-
ond, recording original sound clips and rever-
beration filters for all sound events in a game is
labor-intensive and tedious. Finally, a static
effect that is supposed to represent the acoustic
properties of a room can be only a coarse
approximation of the real sound and cannot
account for many other important contribu-
tions that affect immersion in a game environ-
ment.

Physically based sound synthesis has clear
advantages over recorded clips, as it automati-
cally captures the subtle shift of tone and tim-
bre due to change in impact location, material
property, object geometry, and other factors.
Physically based sound synthesis has two key
requirements:

Physics engine. An underlying physics engine must be
able to inform a sound system of the exact collision
geometry, as well as the forces involved for every
collision, in the scene; many recent commercial
games meet this requirement (www.havok.com/);
and

Compute power. Physically based sounds take signifi-
cantly more compute power than recorded sounds.
Thus, brute-force sound simulation cannot achieve
real-time sound synthesis.

Physically based sound propagation algorithms
simulate a sound source in a virtual scene by comput-
ing how the sound waves are transmitted in the scene.
Broadly, sound propagation simulation involves two
different approaches:
Numerical. Numerical methods numerically solve the

wave equations to obtain more exact solutions but
are impractical for interactive applications due to
their demanding computational requirements; and

Geometric. Geometric methods explicitly model the
propagation of sound from the source based on rec-
tilinear propagation of waves, accurately modeling
early specular reflections and transmissions while

accounting for wave effects; solutions for doing this
include path-tracing [3] and beam-tracing [2] meth-
ods. While the latter are the best of the geometric
methods, existing implementations need pre-
processed, static acceleration structures for the scene
and do not work for either dynamic or general envi-
ronments (such as those in games).

Here, we describe techniques we’ve developed to make
sound simulation for synthesis, as well as for propaga-
tion, much more efficient, thereby enabling realistic
sound for games.

SOUND SYNTHESIS

Sound in nature is produced by surface vibrations of an
elastic object under an external impulse. The vibrations

Figure 1. System overview. In the preprocessing step, the
input mesh for each sounding object is converted to a

spring-mass system by replacing the mesh vertices with point
masses and the edges with springs. The force matrix for each

spring-mass system is preprocessed to yield its characteristic mode
frequencies and damping parameters. At runtime, the game engine’s

physics simulator reports the impulses and their locations for each
object to the sound system. The impulses are then used to determine

the proportion in which the object’s modes are to be mixed. The
mixed modes are then sent as output to the audio card.

Raghuvanshi fig 1 (7/07)

Preprocessing

Transform

Object Mesh Spring-Mass System Modes

Diagonalize

Transform

Impulses Modes Output

Add

Frequencies

Runtime

Graphics Card

Audio Card

Impulses

G
am

e
Lo

op

GRAPHICS

PHYSICS

SOUND

disturb the surrounding air, resulting in a pressure wave
that travels outward from the object. If the frequency of
this pressure wave is within the range 20Hz–22,000Hz,
our ears sense it and give us a subjective perception of
sound. The most accurate method for modeling these
surface vibrations is to directly
apply classical mechanics to
the problem while treating the
object as a continuous (as
opposed to discrete) entity.
This method results in equa-
tions for which analytical solu-
tions are not known for
arbitrary shapes. To address
this problem, one option is to
make suitable discrete approxi-
mations of the object geome-
try, making the problem more
amenable to mathematical
analysis [6].

Our approach (see Figure 1)
discretizes an object in the fol-
lowing way: Given an input mesh consisting of vertices
and connecting edges, we construct an equivalent
spring-mass system by replacing the mesh vertices with
mass particles and the edges with damped springs. As
described in detail in [7], given this spring-mass system,
classical mechanics can be applied to yield the spring-
mass system’s equation of motion:

where M is the mass matrix, K is the elastic force
matrix, and y and n are the fluid and visco-elastic
damping constants for the material, respectively. The
matrix M is diagonal, with entries on the diagonal cor-
responding to the masses. The elastic force matrix, K,
incorporates the spring connections between the parti-
cles. The variable r is the displacement vector of the
particles with respect to their rest position, and f is the
force vector. The damping constants, spring constants,
and masses are intuitively determined by the material of
the object alone and serve to capture the material’s char-
acteristic sound (such as, say, the “thud” of a wooden
object, as opposed to the “ring” of a metallic one). The
mass and force matrices encode the geometry of the
object and hence determine the sound’s timbre, as well
as its dependence on the impact forces and position of
impact contained in the force vector, f.

The equation can be solved analytically by “diago-

nalizing” the force matrix, K, as described in detail in
[7]. The intuitive interpretation of the operation is that
it translates the original problem in the spatial domain
to a much simpler problem in terms of the characteris-
tic vibration modes of the object. The sound of each of

these modes is a sinusoid with
a fixed frequency and damping
rate. The key insight is that all
the sounds of an object can be
represented as a mixture of
these modes in varying propor-
tions. From a computational
point of view, the diagonaliza-
tion operation can be done
offline as a preprocess, as the

frequency and damping of the modes depends solely on
the object’s material properties and geometry. The exact
proportion in which these modes are mixed is com-
puted at runtime and depends on the collision impulses
and position of impact. A naive approach to sound sim-
ulation would thus consider all the modes of an object
and mix them in the appropriate proportions at run-
time.

A natural question at this stage concerns the effi-
ciency of the naive approach. Typically, the number of
modes of an object with a few thousand vertices is in
the range of a few thousand, and the procedure
described earlier runs in real time. But as the number of
objects increases beyond two or three, performance
degrades severely, resulting in pops and clicks at run-
time. How can the performance of sound synthesis be
improved to achieve real-time performance for interac-
tive gameplay? The key idea is to somehow decrease the
number of modes being mixed while tricking the lis-
tener’s perception from noticing the difference among
them.

EXPLOITING AUDITORY PERCEPTION

Two main techniques—mode compression and quality
scaling—enhance the efficiency of the approach we’ve
discussed by exploiting human auditory perception:

Mode compression. A perceptual study described in
[8] found that humans have a limited capacity to dis-
criminate between frequencies that are close to each
other. That is, if two “close enough” frequencies are
played in succession, the average human listener is
unable to tell whether they were two different frequen-
cies or the same frequency played out twice. The fre-
quency discrimination at different frequencies are listed
in Table 1. Note, for instance, that at 2KHz, the fre-
quency discrimination is more than 1Hz. That is, a
human subject cannot tell 1,999Hz from 2,000Hz.
Observe that the frequency discrimination deteriorates
dramatically as the frequencies are increased to higher

COMMUNICATIONS OF THE ACM July 2007/Vol. 50, No. 7 69

Table 1. Human frequency
discrimination as a function

of the center frequency [8].
Our ability to distinguish

nearby frequencies
deteriorates considerably for

higher frequencies, a fact
exploited by our approach

to improve performance.

Raghuvanshi table 1 (7/07)

Center Frequency (Hz)

250

500

1,000

2,000

4,000

8,000

Frequency Discrimination (Hz)

1

1.25

2.5

4

20

88

Raghuvanshi equation (7/07)

values. While synthesizing any
sound consisting of many fre-
quencies, we can easily “cheat”
the listener’s perception by
replacing multiple frequencies
close to each other with a single
one representing all of them.
This approach, which saves
computation because mixing
one frequency is much cheaper
than mixing many, is the main

idea behind mode compression and leads to large gains
in performance in practice.

Quality scaling. Mode compression aims to increase
the efficiency of sound synthesis for a single object.
However, when the number of sounding objects in a
scene grows beyond a few dozen, increasing the effi-
ciency of individual objects is not sufficient [1]. More-
over, it is critical for a player’s gameplay experience
that the sound system employ a graceful way of vary-
ing quality in response to variable time constraints. We
achieve this flexibility by scaling the sound quality for
the objects. This quality is changed by controlling the
number of modes being mixed for synthesizing its
sound. The main idea is that in most scenes with
many sounding objects, the listener’s attention is on

the objects in the “foreground,” or those contributing
the most to the total sound in terms of amplitude.
Therefore, mixing the foreground sounds at high qual-
ity while mixing the background sounds at a relatively
lower quality should reduce the resulting degradation
in perceived aural quality. Quality scaling achieves
variable mixing by assigning time quotas to all objects,
prioritized on the loudness of the sound they’re pro-
ducing, then scaling their quality to force them to
complete within the assigned time quota—a tech-
nique we’ve developed that performs quite well in
practice.

We’ve integrated this sound system with two game
engines: Pulsk, developed in-house, and the widely
used open source Crystal Space (www.
crystalspace3d.org/). Crystal Space uses many open-
source physics engines; we used the Open Dynamics
Engine (www.ode.org/) for our implementation. All
results were obtained on a 3.4GHz Pentium 4 laptop
with 1GB RAM and a GeForce Go 6800 graphics
card. To illustrate the realistic sounds achievable with
our approach, we’ll describe an application that uses
Pulsk as its game engine. We modeled a three-octave
xylophone (see Figure 2a), with each of its wooden keys
consisting of about 1,000 vertices. The figure shows
many dice falling onto the keys to produce the corre-

70 July 2007/Vol. 50, No. 7 COMMUNICATIONS OF THE ACM

Figure 2a. Falling dice on
xylophone. Dice fall on a
three-octave xylophone in
close succession to
play the song “The
Entertainer”; see and
listen at gamma.cs.
unc.edu/symphony. The
system produces the
corresponding musical
tones at more than
500FPS for this complex
scene, with audio
generation taking 10%
of total CPU time.

sponding musical notes. The audio simulation for this
scene runs in the range of 500FPS–700FPS, depending
on the frequency of the collisions, where we define an
“audio frame” as enough audio samples to last one
video frame. The overall system runs at a steady frame
rate of 100FPS.

We created a scene with 100 rings falling onto a table
in an interval of one second. This scenario can be
regarded as the “worst-case” test case for our system, as
it is rare in a game for so many collisions to happen in
such a short amount of time. Table 2 shows the result-
ing performance of the system as a function of time. In
light of the optimization we’ve discussed here, the
sound system is able to stay around 200 audio FPS (top
curve), while a naive implementation would yield only
about 30FPS (bottom curve).

We integrated our sound system with Crystal Space
to demonstrate the practicability of our approach. See
Figure 2b for a screenshot from a game application with
the modified game engine. The scene is a typical game
environment, with complex shading involving substan-
tial graphics overhead. The objects making sounds in
the scene are the red ammunition shells on the floor.
They make realistic impact and rolling sounds from
falling on the floor; the user can toss in more shells and
interact with them in real time. This demo runs steadily

at more than 100FPS, with the
sound system taking approxi-
mately 10% of CPU time.

SOUND PROPAGATION

Our approach for sound propa-
gation is intended as an alterna-
tive to beam tracing and is
especially well-suited for interac-
tive applications (such as games)
while maintaining the advan-
tages of beam tracing. We use
bounding volume hierarchy-
based ray tracers, since they have
been shown to work well for the
dynamic and general environ-
ments we are interested in [5,
11].

The main difference between our approach and
beam tracing is the handling of intersections with the
scene. Assume that a beam representing a sound wave
hits a triangle of a virtual object. We want a reflection
of this beam off the surface, or a secondary beam to
represent the reflection, but we are also interested in the
remaining part of the beam not hit by the triangle. In
beam tracing, these computations are performed using

COMMUNICATIONS OF THE ACM July 2007/Vol. 50, No. 7 71

Figure 2b. Real-time
sound synthesis in a

game. Screenshot from a
game application (using
the Crystal Space game
engine) demonstrating

real-time sound synthesis
for numerous objects. The
sound being generated is

shown below. All red
ammunition shells, which

were dropped into the
scene in real time, are

sounding; the user
interacts freely with them

to produce realistic
impact and rolling

sounds. The application
consistently runs above

100FPS, with sound
taking 10% of CPU time;

for more images and
sounds see gamma.cs.

unc.edu/symphony.

exact “clipping” between the beams and the triangles.
The intersected part is “cut” out of the beam’s previous
shape, with the effect that the beam can have arbitrar-
ily complex, non-convex shapes. This computation can
be very slow due to the clipping algorithm and to the
difficulty of testing for intersections against these com-
plex beams.

Our frustum tracing approach [4] simplifies this
intersection computation by replacing the arbitrarily
shaped beams with just
one pyramidal frustum
that can be uniformly
subdivided into sub-
frusta. We do not per-
form exact clipping;
instead, we test each sub-
frustum against a primi-
tive to see which
sub-frusta intersect. Our
approach can be inter-
preted as a discretized
version of the clipping
algorithm. We represent
each sub-frustum by a
sampled ray for this pur-
pose and therefore have a
group of sample rays rep-
resenting the whole frus-
tum. This simplification
enables game developers
to take advantage of
recent advances in inter-
active ray tracing [5, 11],
treating a group of rays as
a ray frustum to speed
operations. Intersection
involves testing each ray
with the triangle; the test
can be inefficient when there are too many sub-frusta.
To avoid overhead as much as possible, our method
takes advantage of uniform sampling, conservatively
determining which parts in frustum space are occluded
by the triangle. This approach gives us a quick way to
limit the number of rays that need to be tested for
intersections.

Since we represent each sub-frustum with a sample
ray for this purpose, we introduce an approximation
for the intersection test, as well as for the shape of the
frustum; the extent of error depends on the number of
sub-frusta we generate. Our experiments have shown
good convergence rates when increasing the subdivi-
sion count for the frustum. Acceptable quality can be
achieved with sub-frusta of 4x4 resolution, with only
minor quality improvements past 8x8 resolution. In

general, this also has the interesting side effect of pro-
ducing a general way to trade-off speed and quality by
modifying the subdivision factor—important for
games where speed is critical.

Using this approach, our algorithm is able to perform
the sound simulation many times a second, allowing sev-
eral orders of reflection in complex game-like scenes that
are dynamic and have moving sound sources (see Figure
3). While the overall performance of our approach is still

limited by CPU compu-
tation power, it is trivially
parallelizable and easily
integrated into a multi-
threaded engine so it runs
asynchronously to the
other components. Given
the trend toward multi-
core systems, some part of
the overall computational
power can then be used
for the simulation
processes while adjusting
the sub-frustum resolu-
tion to achieve real-time
performance.

CONCLUSION

This methodology, combined with the acceleration
techniques we’ve described, make it possible to simu-
late sound for large-scale game environments contain-
ing thousands of triangles and hundreds of interacting
objects in real time with little loss in perceived audio
quality. We expect that similar approaches can be
applied to simulate sliding sounds, explosion noises,
breaking sounds, and other more complex audio effects
otherwise difficult to generate physically at interactive
rates. Our sound synthesis techniques, in combination
with interactive sound propagation, make it possible to
fully simulate a sound, from its creation to how it is
perceived by the listener, making future games aurally
rich and, as a result, much more immersive.

References
1. Fouad, H., Ballas, J., and Hahn, J. Perceptually based scheduling algo-

rithms for real-time synthesis of complex sonic environments. In Proceed-
ings of the International Conference on Auditory Display (Palo Alto, CA, Nov.
2–5). ICAD, 1997, 1–5.

2. Funkhouser, T., Carlbom, I., Elko, G., Pingali, G., Sondhi, M., and West,
J. A beam-tracing approach to acoustic modeling for interactive virtual
environments. In Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH) (Orlando, FL, July
19–24). ACM Press, New York, 1998, 21–32; doi.acm.org/10.1145/
280814.280818.

3. Krokstad, A., Strom, S., and Sorsdal, S. Calculating the acoustical room
response by the use of a ray tracing technique. Journal of Sound and Vibra-
tion 8, 1 (July 1968), 118–125.

4. Lauterbach, C., Chandak, A., and Manocha, D. Interactive sound render-
ing in complex and dynamic scenes using frustum tracing;

72 July 2007/Vol. 50, No. 7 COMMUNICATIONS OF THE ACM

Table 2. Performance. Audio
simulation FPS for a scene with

100 rings falling onto a table
within one second during which

almost all the collisions take place.
The bottom-most plot is the FPS

for an implementation using none
of our acceleration techniques. The
topmost plot is the FPS with mode

compression, mode truncation,
and quality scaling. FPS stays near

200, even when the other two
curves dip due to numerous

collisions during 1.5–2.0 seconds.

gamma.cs.unc.edu/SOUND/.
5. Lauterbach, C., Yoon, S.-E., Tuft, D., and Manocha, D. RT-DEFORM:

Interactive ray tracing of dynamic scenes using BVHs. In Proceedings of the
IEEE Symposium on Interactive Ray Tracing (Salt Lake City). IEEE Press,
2006, 39–46.

6. O’Brien, J., Shen, C., and Gatchalian, C. Synthesizing sounds from rigid-
body simulations. In the ACM SIGGRAPH 2002 Symposium on Computer
Animation (San Antonio, TX, July 21–22). ACM Press, New York, 2002,
175–181.

7. Raghuvanshi, N. and Lin, M. Interactive sound synthesis for large-scale
environments. In Proceedings of the ACM Symposium on Interactive 3D
Graphics and Games (Redwood City, CA, Mar. 14–16). ACM Press, New
York, 2006, 101–108.

8. Sek, A. and Moore, B. Frequency discrimination as a function of frequency,
measured in several ways. Journal of the Acoustical Society of America 97, 4
(Apr. 1995), 2479–2486.

9. van den Doel, K., Kry, P., and Pai, D. Foleyautomatic: Physically based
sound effects for interactive simulation and animation. In Proceedings of the
28th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH) (Los Angeles, Aug. 12–17). ACM Press, New York, 2001,
537–544.

10. van den Doel, K. and Pai, D. The sounds of physical shapes. Presence 7, 4
(Aug. 1998), 382–395.

11. Wald, I., Boulos, S., and Shirley, P. Ray tracing deformable scenes using
dynamic bounding volume hierarchies. ACM Transactions on Graphics 26,
1 (Jan. 2007).

Nikunj Raghuvanshi (nikunj@cs.unc.edu) is a Ph.D. candidate in
the Department of Computer Science at the University of North Car-
olina at Chapel Hill.
Christian Lauterbach (cl@cs.unc.edu) is a Ph.D. candidate in
the Department of Computer Science at the University of North
Carolina at Chapel Hill.
Anish Chandak (achandak@cs.unc.edu) is a Ph.D. candidate in the
Department of Computer Science at the University of North
Carolina at Chapel Hill.
Dinesh Manocha (dm@cs.unc.edu) is the Phi Delta
Theta/Matthew Mason Distinguished Professor of Computer Science at
the University of North Carolina at Chapel Hill.
Ming C. Lin (lin@cs.unc.edu) is the Beverly W. Long Distinguished
Professor of Computer Science at the University of North Carolina at
Chapel Hill.

The research described here is supported in part by the National Science Foundation,
Office of Naval Research, U.S. Army Research Office, and Intel Corporation. Any opin-
ions, findings, and conclusions or recommendations expressed here are those of the authors
and do not necessarily reflect the views of the sponsors.

© 2007 ACM 0001-0782/07/0700 $5.00

COMMUNICATIONS OF THE ACM July 2007/Vol. 50, No. 7 73

Figure 3. Real-time sound propagation. Screenshots from our system simulating sound propagation. Even though the scene has ~9,000 trian-
gles, the algorithm still computes the sound up to four reflections by shooting more than 95,000 beams more than two times per second on a
2GHz laptop computer. The image sequence, right, shows the computed beams as seen from a top-down view for the first three reflections in
a real-time animation of the blue curtains, from fully closed (top) to fully open (bottom); for more video, images, and sounds see
gamma.cs.unc.edu/SOUND.

