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Abstract. Instance-based ontology mapping is a promising family of
solutions to a class of ontology alignment problems. It crucially depends
on measuring the similarity between sets of annotated instances. In this
paper we study how the choice of co-occurrence measures affects the
performance of instance-based mapping.
To this end, we have implemented a number of different statistical co-
occurrence measures. We have prepared an extensive test case using vo-
cabularies of thousands of terms, millions of instances, and hundreds
of thousands of co-annotated items. We have obtained a human Gold
Standard judgement for part of the mapping-space. We then study how
the different co-occurrence measures and a number of algorithmic varia-
tions perform on our benchmark dataset as compared against the Gold
Standard.
Our systematic study shows excellent results of instance-based match-
ing in general, where the more simple measures often outperform more
sophisticated statistical co-occurrence measures.

1 Introduction

Dating as far back as the problems of record and database schema integration,
studied for well over 40 years now, the semantic heterogeneity problem is proba-
bly the single-most urgent problem to be solved to realize a web-scale Semantic
Web. A huge number of ontologies is now available.3 This makes automatic ontol-
ogy mapping,4 as the anticipated solution to semantic heterogeneity, is therefore
a research issue of paramount importance. To address it the Semantic Web com-
munity has invested significant efforts over the past few years. This has led to
the development of a plethora of high-quality matching software, whose potential
has been proven in specific applications in a variety of domains.

Ontology mapping techniques are commonly divided into 4 broad categories
[1]: lexical (detecting similarities between labels of concepts), structural (using

3 Swoogle has indexed over 10,000 of them, cf http://swoogle.umbc.edu/.
4 Ontology mapping is the task of determining relations such as equivalence or sub-

sumption between concepts of two separate ontologies.



the structure of the ontologies), based on background knowledge, and instance-
based mapping (using classified instance data). Among these, there are sur-
prisingly few systematic studies of instance-based ontology mapping, i.e. the
construction of links between concepts based on the co-occurrence of instances.
In Chapter 6.2 of [1] a number of systems are discussed which make use of ex-
tensional information. However, to the best of our knowledge there has been
no systematic evaluation yet over the use of different similarity measures for
instance-based mapping, and this paper attempts to close this gap.

The basic idea of instance-based mapping is that the more significant the
overlap of common instances of two concepts is, the more related these concepts
are. The difficult question is how to define the notion of significance for such
extension overlap. Previous investigations on instance-based mapping [2, 3] have
shown that there are some crucial decisions to be made with this respect. We
propose a systematic approach considering the following dimensions:

– Measures: the most simple idea is to calculate the common factor of two
concepts C and D as the proportion of jointly annotated books over the sum
of books annotated by C and D, as done by the Jaccard measure. In statistics
and Information Theory a number of other measures have been developed,
such as Pointwise Mutual Information, Information Gain or Log-likelihood
ratio.

– Thresholds: often the above mentioned measures are vulnerable for data-
sparseness: if there are too few instances, the common factor measure ranks
mappings high when the two concepts involved can only be found in one
single book’s annotation. The solution to dealing with this issue is to consider
thresholds in the measures.

– Hierarchy: following the semantics of ontologies we can use the hierarchy,
i.e. including the instances of descendants in the extension of a concept.

In this paper we will study the effect of these choices on a critical application
in which it is considered to combine two thesauri. We implemented a system
that calculates ranked lists of mappings according to 5 measures and different
thresholds. It also allows us to include instances from a concept’s descendants
into its extension. We evaluated the resulting mappings against a Gold Standard
built manually.

Based on this case-study we will answer the following research questions

1. Is instance-based mapping a reliable technology to be applied in practical,
possibly critical applications?

2. Which combination of measures, thresholds and information inclusion works
best, possibly depending on circumstances such as whether precision or recall
is considered more important?

The first question can be answered easily: our results show an excellent level
of quality. The second, more technical question will be answered in the course
of the paper.

It is worth emphasising that we make the non-trivial assumption that doubly
annotated instances exist. Furthermore, note that we evaluate the quality of



the similarity measures rather than compare performances of (existing or new)
mapping systems. For a discussion on the use of different measures and methods
for possible application scenarios for mappings we refer to [4].

The paper is structured as follows. In Section 2 we introduce our application.
In Section 3 we describe the methodology of our mapper, including the differ-
ent measures and parameters. In the remaining sections we will describe our
experiments and the results before Section 6 sums up our findings, and presents
perspectives on future work.

2 Use case scenario

The National Library of the Netherlands5 maintains a large number of collec-
tions. Two of them are the Deposit Collection, containing all the Dutch printed
publications (one million items), and the Scientific Collection, with about 1.4
million books mainly about the history, language and culture of the Netherlands.
Each collection is described according to its own indexing system. On the one
hand, the Scientific Collection is described using the GTT, a huge vocabulary
containing 35,000 general terms ranging from Wolkenkrabbers (Skyscrapers) to
Verzorging (Care). On the other hand, the books contained in the Deposit Col-
lection are mainly indexed against the Brinkman thesaurus, containing a large
set of headings (more than 5,000) that are expected to serve as global subjects
of books. Both thesauri have similar coverage but differ in granularity. Also, for
each concept, they provide the usual lexical and semantic information found in
thesauri: synonyms and notes, broader and related concepts, etc.

The co-existence of these different systems, even if historically and practically
justified, is not satisfactory from the point of view of interoperability. The KB
is therefore investigating ways to combine the two thesauri, trying to enhance
integration while ensuring compatibility with legacy data of both systems. For
this reason, mapping GTT concepts with Brinkman concepts is crucially needed.

Finally, it is important to mention that around 250,000 books are common
to the depot and scientific collections, and have therefore been manually anno-
tated with both GTT and Brinkman vocabularies. This makes the KB use case
especially suitable for studying instance-based mapping techniques.

3 A framework for instance-based mapping

We will now describe our formal framework for instance-based mappings, slightly
adapting the one presented in [5]. Given two ontologies S (for source) and T
(target) we see a mapping as a triple (S, T,R), where R is a relation between
concepts S ∈ S and T ∈ T . Often, the relation R is taken from the set {≡
,⊑,⊓,⊥}, resp. for equivalence, subsumption, overlap and disjointness. In an
application about thesauri [6], relations similar to broader than, narrower than,
and even the related to relation might also be considered.

5 Koninklijke Bibliotheek (KB), http://www.kb.nl



In instance-based mapping semantic relations between concepts of two on-
tologies are determined based on the overlap of their instance sets. This is a very
natural approach, as in most ontology formalisms the semantics of the relations
between concepts is defined via the set of their instances. The idea for mapping is
then simply that the higher the ratio of co-occurring instances for two concepts,
the more related they are.

As instance-based mapping is closely depending on the meaning of a concept
in an ontology formalism, different ways of interpreting concepts have to
be taken into account. The most prominent question is whether a concept is
interpreted as the collection of instances annotated by itself alone, or whether
the instances of its descendants in the hierarchy also belong to its extension.

Unfortunately, in the real world we also have to deal with incorrectly anno-
tated instances, data spareness and ambiguous concepts, so that basic statistical
measures of co-occurrence, such as the Jaccard measure, might be inappropriate
if applied in a naive way.

We deal with this problem in two ways: first we use other measures for

calculating relatedness of sets based on their elements, such as Pointwise
Mutual Information, Information Gain or Log-Likelihood ratio, which have been
developed in information theory and statistics. Finally, we consider statistical

thresholds which explicitly exclude statistically unreliable information.
This analysis immediately suggests a systematic study of different instance-

based mapping paradigms according to three dimensions:

Measures — Hierarchy — Thresholds

We will use these in the following sections to answer the research questions we
outlined in the Introduction, based on a set of systematic experiments. First
however, let us briefly fix some technical terms we use later in the paper.

3.1 Measures

We use similarity measures to order pairs of proposed mappings according to the
strength of their relatedness, and in our experiments we assess the ranking rather
than the objective values. Therefore, we do not need any special normalisation
of measures, nor require them to be within the 0-1 interval.

In the following we will call the set of instances annotated by a concept C its
extension, and abbreviate by Ci. As usual the cardinality of a set S is denoted
by |S|.

Jaccard measures The first candidates are functions that measure the fraction
of instances annotated by both concepts relative to the set of instances annotated
by either one of the concepts.

Jaccard The first measure

JC(S, T ) =
|Si ∩ T i|

|Si ∪ T i|
(1)



is known as the Jaccard measure. If there is a perfect correlation between two
concepts, the measure will have a value of 1; if there is no co-occurrence, the
measure will be 0. An evident problem with this measure is that it does not
distinguish between two matches (S, T ), (S′, T ′) where the first tuple co-occurs
in 100 instances while the second is based on a single book containing (T ′

1, T
′
2) in

both cases with no other occurrences of both concepts. Yet, a mapping based on
one instance gives intuitively less evidence for equivalence than the case based
on 100 different books.

Corrected Jaccard To correct this, we define corrected Jaccard with the goal of
assigning a smaller score to less frequently co-occurring annotations. We (rela-
tively arbitrary) choose a factor of 0.8 so that evidence based on one co-occurring
instance is weighed as much as mapping two concepts would get when a large
number of concepts have 20% in their intersection.

JCcorr(S, T ) =

√

|Si ∩ T i| × (|Si ∩ T i| − 0.8)

|Si ∪ T i|
(2)

Standard information-theory measures Similarity measures for concepts
based on annotations is not new, and often standard statistical measures have
been applied to extract semantics from natural language texts based on co-
occurrence of terms. As the problem is closely related to mapping concepts, we
consider three of those measures: Pointwise Mutual Information, Log-Likelihood
ratio and Information Gain.

Pointwise Mutual Information Pointwise Mutual Information measures the re-
duction of uncertainty that the annotation of one concept yields for the anno-
tation with the other. For mapping we use co-occurrence counts to estimate
probabilities:

PMI(S, T ) = log2

|Si ∩ T i| × N

|Si| × |T i|
(3)

where N is the number of annotated instances.

Log Likelihood ratio In the context of word co-occurrence in corpora it was
noticed that PMI is inadequate to deal with sparse data [7]. Data sparseness is
also a problem in our case, because the set of annotated objects is often small
as compared to the size of the ontologies.

For the likelihood ratio, we compare the hypothesis that p1 is the maximum
likelihood estimate of the probability P (i2|i1) = k1

n1

and that p2 is the maximum

likelihood estimate of the probability P (i2|¬i1) = k2

n2

, with the hypothesis that

p1 = p2 = P (i2) = k1+k2

n1+n2

, which is just the maximum likelihood estimate of the
probability of i2.

In order to scale this ratio to make comparison possible, we use the log-
likelihood form −2 log λ. Thus, for our particular situation, we compute:

−2[log L(p0, k1, n1) + log L(p0, k2, n2) − log L(p1, k1, n1) − log L(p2, k2, n2)]



where log L(p, k, n) = k log p + (n − k) log(1 − p)

and k1 = |Si ∩ T i| k2 = |Si| − |Si ∩ T i| n1 = |T i|

and n2 = N − |T i| p1 = k1/n1 p2 = k2/n2 p0 = |Si|/N .

Information Gain Information gain is the difference in entropy, i.e. the amount of
information we can gain about a hypothesis by observing, and is used in decision
trees learning to determine the attribute that distinguishes best between positive
an negative examples.

In ontology mapping the analogy is the following: Information Gain describes
the in- or decrease of the difficulty of assigning a concept to an instance if it has
already been annotated with a concept from the other ontology. Formally, the
entropy of assigning a concept T to an instance i can be estimated by e1 =

− |T i|
N

× log2( |T
i|

N
), where N is again the number of instances. After assigning

a concept S from the source ontology the entropy e2 = − |Si∩T i|
|Si| × log2 |Si∩T i|

|Si| .

The information gain is then IG = e1 − e2.

For Information Gain the order of source and target are of crucial importance.
For mapping targeting equivalence and relatedness, however, we do not have to
take symmetry information into account. The version used in our experiments
is a combination of two IG measures: IGB(S, T ) = max{IG(S, T ), IG(T, S)}

3.2 Enforcing thresholds to guarantee statistical relevance

Both Log-likelihood and Information Gain take the number of instances of a
concept into account to ensure statistical viability of its results. An alternative
approach is to set a threshold for discarding computation of measures if the ex-
tension of one of the concepts is too small. The aim of this study is not to find the
ideal threshold for statistical relevance, because this will probably too strongly
depend on the collection of instances. However, we want to empirically show
that there is a difference between using a threshold, and not using a threshold.
Therefore, we only consider values 1 and 10 for cut-off, and denote a measure
M with cut-off as M10.

3.3 Hierarchical information

For all the measures we previously defined, we used as the extension of a concept
C the set Ci of its direct instances, i.e. the set of books explicitly annotated with
it. However, semantically, this is not the only option, as one could also take more
information from the ontology into account. Especially, a broader than relation
could imply that the instances of the more specific concept are also instances
of the more general one. The alternative definition of the extension Ci

alt of a
concept C is then defined as

⋃

D⊑C Di. We will refer to a measure M based
alternative extension as Mhier.



3.4 Calculating mappings from rankings

Once decided on a suitable measurement we order mappings according to their
degree of relatedness. From such an ordering we can derive all sorts of mappings,
such as 1-1 or 1-n mappings.6 In practise one also has to choose a cut-off point,
i.e. a value of the measure, below which a mapping of two instances will be
considered too unreliable.

As both the choice of cut-off and 1-n mappings is strongly application-
specific, in our experiments we evaluate more generally. Instead of evaluating
a particular mapping based on a particular setting we assess the quality of the
ranking, i.e. we calculate whether a mapping suggested in a particular position
in the ordering induced by the measure is correct or not.7

4 Experimental Setup

In our experiments we used the 5 measures described in the previous section:
Jaccard, corrected Jaccard, PMI, LLR, and IGB, as well as hierarchical and
non-hierarchical extensions, and two alternative thresholds (1 and 10) to deal
with statistically insignificant information. Having calculated the similarity be-
tween all pairs of concepts from GTT and Brinkman we then rank these pairs
of concepts based on their similarity measure in a descent order. In Section 5,
we will give comparison of precision and recall of our experiments with respect
to these different options.

4.1 Dataset and types of mappings

In our dataset, there are 243,886 books which were doubly annotated with
concepts from GTT and Brinkman. In total 24,061 GTT concepts and 4,990
Brinkman concepts have been used for annotation. For each GTT and Brinkman
concept, we treated the books annotated by this concept as its instances. As both
ontologies are thesauri, we expect our target mapping relations, beyond the ex-
pected “equivalent to”, to be the usual thesaurus semantic relations “broader
than”, “narrower than” and/or “related to”.

4.2 Evaluation methods

To be able to estimate the quality of a mapping, we need an evaluation procedure.
For each measure we calculate four ordered lists, two taking the hierarchy into

6 A 1-n mapping can be obtained as follows: for a source concept S let (S, T ) be the
first pair in the ordering. Then all pairs (S′, T ) for S 6= S′ are deleted from the
list. 1-1 mappings can be created by deleting all (S, T ′) for T 6= T ′ as well. Other
cardinality choices are possible, including m-1 and m-n (“many-to-many”) mappings.

7 As an indication, we will sometimes use specific cut-offs of 100, 1,000, and 10,000
mappings, which makes the comparison of different measures easier. These numbers
are relatively arbitrary, though.



JC
JCcorr 80%
LLR 39% 46%
IGB 15% 15% 9%
MI 37% 28% 10% 10%

JC JCcorr LLR IGB
Table 1. Comparison between top 10,000 mappings generated by our original measures

account, two not, of which one is based on a threshold of 1, and one on a threshold
of 10. To get a better understanding on the difference between the measures, we
calculate the overlap of the different lists. Table 1 shows the percentage of shared
mappings between the ranked lists generated by all similarity measures up to
the first 10,000 mappings.

Table 1 shows a surprisingly big difference in the lists of mappings found using
the different measures. This shows that there are indeed significantly different,
and a systematic evaluation will be of crucial importance.

Due to the size and complexity of the task a complete evaluation of the cor-
rectness of the calculated mappings by domain experts is out of the question. As
an alternative, we have developed an evaluation procedure consisting of three
steps: producing a Gold Standard, calculating average precision and re-

call approximation. Part of this procedure is based on the simple, admittedly
simplistic assumption that concepts with identical labels are equivalent.

Producing a gold standard In order to evaluate the precision of the mappings
generated by different measures, we first sampled the generated mappings to a
reasonable size for human evaluation to produce a Gold Standard manually. For
each list of mappings, we selected the top 100 mappings, every tenth mapping
from the 101st to 1,000th mapping, and every 100th from 1,001st to 10,000th
mappings. We filtered out all lexically equivalent mappings, since we already
consider them to be valid. This produces 1,600 mappings for human evaluation.

The selected mappings were presented in random order to 3 Dutch na-
tive speakers who assigned relations “equivalent to,” “broader than,” “narrower
than,” “related to,” “no link” and “do not know” to all pairs. The (online)
evaluation we set out allowed evaluators to access, for the concepts involved in
a mapping, both thesaurus information (e.g. broader concepts) and the books
annotated with them.

Ordering mappings by similarity measure does not necessarily suggest an
interpretation in terms of the target mapping relations “equivalent to,” “broader
than,” “narrower than” and/or “related to.” Our evaluation allows us to consider
that three different types of mapping are correct: we can consider the highly
ranked mappings to be

1. equivalences only (ONLYEQ),
2. equivalent, broader or narrower relations, but not related-to (NOTREL)
3. all relations except explicit non-relatedness. (ALL)



Each way of interpreting the nature of a found mapping will have its use in
practical applications,8 and conceptually we do not prefer any one over any
other. However, we will have to study the effect of choosing a particular semantic
assumption in our experiments.

Average precision Since the mapping set for human judgement is only a sam-
ple of the whole generated mappings, we use the following equation to calculate
the average precision up to the ith mapping:

Pi =
Ngood,i

Ni

(4)

where Ni is the number of mappings which are evaluated up to ith mapping,
while Ngood,i is the that of mappings which are evaluated as good ones.

Recall approximation A preliminary experiment using string comparison over
concept labels shows 2,895 exact lexical matches (2,895) between GTT and
Brinkman concepts, meaning that 8.2% of GTT concepts and 55.4% of Brinkman
ones have a direct equivalent form in the other thesaurus

This is quite a significant number, especially regarding the Brinkman the-
saurus. As in our case lexically equivalent concepts are considered a perfect
match, we argue that the recall value on lexically equivalent concepts can be
used to approximate the absolute recall. Our approximation for recall, at the ith
mapping, is thus Ri =

Nlex,i

Nlex

where Nlex,i is the number of lexically equivalent
mappings among these top i mappings, and Nlex is the number of all lexical
equivalence between these two thesauri (i.e. 2,895 in our case).

Once precision and recall are calculated, the F-measure up to ith mapping
is calculated as

Fi =
2(Pi × Ri)

Pi + Ri

. (5)

4.3 Goals of the experiments

The overall goal of our study is to improve the understanding on the role of
different measures and tunings on the process of instance-based mapping. This
means first and foremost answering the question whether there is a best combi-
nation of measure, threshold and hierarchy, which outperforms all other combi-
nations. Furthermore, we want to better understand the influence of the choice
of measure and other parameters on the mapping. All this might depend on the
interpretation of the found mappings, and we will have to study the effect of the
assumptions made on the nature of the relations considered to be correct.

1. How does interpreting the nature of a found mapping influence results?
2. What is the influence of the choice of threshold?
3. What is the influence of using hierarchy information?
4. What is the best measure and setting for instance-based mapping?

8 Equivalence might be used, for instance, in a data translation application, while
broader and narrower links can be exploited for hierarchical browsing, as in [8].



5 Experimental results

To answer the research questions mentioned in the previous section we performed
a number of experiments in which we calculated precision, recall and f-measure.

5.1 The influence of the nature of a mapping on the results

Figure 1 shows the precision results when we use different criteria for “correct-
ness” of mappings, i.e., apart from the explicit “equivalent to” relation, whether
we also count “broader than,” “narrower than” or “related to” as correct map-
pings. As mentioned above, ONLYEQ means only those mappings which were
judged “equivalent to” are counted; NOTREL counts three kinds of relation but
not “related to” relation; ALL counts every relation except “no link” nor “do
not know” as correct.
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Fig. 1. Comparing “ALL” “NOTREL” and “ONLYEQ” for LLR10 and JCcorr

We give the results for two measures LLR10, which is the version of LLR
with threshold 10, and JCcorr, defining precision on the Y-axis in relation to the
position in the ranking in logarithmic scale (X-axis), starting from 10 to filter
the initial noise. The results for the other measures are comparable to these
results. As there is a set inclusion between the sets of correct mappings, it is
natural that the lines do not cross and that the top line describes the ALL-, the
middle one the NOTREL- and the lower one the ONLYEQ relation.

What is more interesting is the differences between the figures. First, although
LLR10 performs slightly better than JCcorr on the ALL counts, the precision of
LLR10 is worse than that of JCcorr for ONLYEQ. What does this mean? It
indicates that the LLR10 measure is more suitable to recognise related terms,
whereas the stricter measure JCcorr is better at recognising proper equivalences.

This indicates that the choice of measure has to depend on the application,
and should be based on the interpretation of the nature of a found mapping.
Despite the slight differences in the outcome mentioned above, we will in the
following only present the results based on ONLYEQ for lack of space.



5.2 What is the influence of the choice of threshold?

An important problem in instance-based mapping is how to deal with sparse
data. We have been discussing two approaches: using a threshold to exclude
unreliable mappings, and statistical measures that can deal with uncertainty.

To study the effect of such a threshold, we ranked mappings according to our
measures with and without a threshold. In Figure 5.2 we show the results for 2
measures JC and LLR, where the two dashed lines with dots are the versions
with threshold, and the continuous line the Jaccard measure.

The following figures all have the same structure: the three graphs depict
precision, recall and f-measure on the Y-axis versus the index of the mapping on
the X-axis (which is given in a logarithmic scale).
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Fig. 2. Comparison with respect to the threshold

The results are in line with our expectation. As LLR has been developed for
dealing with spareness, we expect the difference between the version with and
without the threshold to be more similar than this is the case for Jaccard. This
shows clearly in the precision, which is almost the same for LLR and LLR10.
What is also expected is the significant drop in recall for both measures with
threshold at around 5000 mappings. Remember that choosing a threshold simply
excluded the mappings from consideration, which will also exclude many correct
mappings. Also, it is interesting to notice that when considering the ALL in-
terpretation for mappings, the gain in precision is less significant for Jaccard.
This shows that using threshold rather discards related concepts, for which co-
occurrence evidence, even in a small number of items, is very often reliable.

The general lesson is that including a threshold generally improves precision
but that there is a price in recall to be paid.

5.3 What is the influence of using hierarchy information?

Ontology mapping is different from co-occurrence in texts in that the concepts
are hierarchically organised. To find out what effect including this hierarchical
information has on instance-based mapping we compared the four most promis-
ing measures with and without instances of the descendants in calculating the



mappings. We also performed this experiment on different interpretations of the
nature of a found mapping, and found quite diverse results.
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Fig. 3. Comparison with respect to the hierarchical information (ONLYEQ)

Figure 3 shows the results of comparing JCcorr and LLR with their versions
JCcorrhier and LLRhier, where we consider the ONLYEQ interpretation, i.e. we
only consider those mappings to be correct that the evaluators have marked as
equivalent. The most striking result is the gigantic drop in precision for LLRhier,
as compared to JCcorr, for which the results are very competitive when consid-
ering hierarchy. Given that we only consider equivalence statements, this shows
that including instances from descendants of concepts weakens the strength of
equivalent concepts in the LLR measure.

To validate this assumption, we considered the same experiments with the
ALL interpretation, i.e. we also accept related-terms and broader/narrower-than
as correct mappings.
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Fig. 4. Precision comparison with respect to the hierarchical information (ALL)

Figure 4 shows that this assumption is correct, as the drop in precision is
much smaller given the more lenient interpretation of what a mapping is. Our
general conclusion regarding hierarchical information: there is no significant im-
provement, and in most cases even a decrease in performance. A practical reason
for this can also be found in the data itself. First, GTT and Brinkman include



only few hierarchical links: almost 20,000 GTT terms have no parents. Second,
GTT and Brinkman are thesauri, and as such their hierarchy can be interpreted
as part-whole or as domain-object links. Examples for this would be “Bible” and
“Gospel according to Luke.”

5.4 The best measure and setting for instance-based mapping

We can now finally answer the question which measure and tuning is best for
instance-based mapping on our dataset. For this we considered the five measures
with their ideal tuning, i.e. JC, JCcorr, LLR, PMI10 and IG10.
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Fig. 5. Final comparison of the 5 best measures

Figure 5 shows that the most simple measures JC and JCcorr have highest
precision and recall at almost any mapping index, which is also reflected in the
overall highest f-measures.

We would like to finish the overview over our results with a general remark
on the quality of our mappings. In general, apart from IGB, the results are sur-
prisingly good, as compared to results from other ontology matching evaluations
[9]. This indicates that instance-based matching is probably an easier task than
structure-based or label-based mapping, but also indicates that our techniques
will be suitable even in critical applications.

6 Conclusion

In this paper we presented an empirical study of instance-based matching based
on a number of experiments performed on an application in the National Library
of the Netherlands. We produced a Gold Standard for good mappings, and eval-
uated 5 different well-studied similarity measures, as well as two different ways
to fine-tune them. All representations are, or course, based on Semantic Web
standards.

We have to note that the complicated and very time consuming issue of eval-
uation was only touched marginally in the paper. Producing a gold standard is
difficult and took us a long time, but the results remain sometimes controversial
among domain experts. We will address the issue in more detail in future work.



The general results are very encouraging. For the first 1000 mappings the best
available measure has a precision of over 90%, and at an estimated recall level of
70% we still have a precision of over 70%. Interestingly enough these results were
not achieved by the complex statistical measures, but by an adapted version of
the simple Jaccard measure.

The use of thresholds and hierarchical information had little influence in
general, though the latter needs more study. The question here, and one that
will probably apply to a number of our results, is how dependent the results are
on our particular collection, and our ontologies.

For this reason we intend to conduct a similar analysis on other corpora, e.g.

web directories or music classifications. We are confident, however, that general
results are domain independent, and that instance-based mapping is a reliable
and high-performing approach to ontology mapping.
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