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Abstract

Most of the symmetric key authentication schemes deployed today are based on principles
introduced by Needham and Schroeder [17] more than twenty years ago. However, since then,
the computing environment has evolved from a LAN-based client-server world to include new
paradigms, including wide area networks, peer-to-peer networks, mobile ad-hoc networks and
ubiquitous computing. Also, there are new threats, including viruses, worms and denial of
service attacks.

In this paper we review existing symmetric key authentication protocols in the light of these
changes, and propose a authentication infrastructure design specifically tailored to address
the latest developments in the distributed computing landscape. The key element in our
design is placing the authentication server off-line, which greatly strengthens the security
of its cryptographic material and shields it from denial of service attacks. Although the
authentication server is not accessible on-line, our scheme can handle a dynamic client
population, as well as critical issues such as re-issuing of keys and revocation.

1 Introduction

Authentication is the foundation of most security services. The LAN-based, client-server-
centric distributed computing environment of the mid 80’s and early 90’s was the golden age
of authentication protocols based on symmetric key cryptography [17, 18, 15]. However, the
distributed computing landscape has changed in the past few years: migration to wide area
networks (WAN), peer to peer (P2P), mobile ad-hoc networks (MANET), and ubiquitous
computing are just the major paradigm shifts. Authentication protocols based on public
key cryptography are deemed to be better suited for this new environment, so recently they
have been overshadowing the older symmetric key-based designs. Nevertheless, public key
cryptography has its limitations: it is slower and requires larger keys than symmetric key
cryptography, and involves CPU-intensive computations, which make it unsuitable for small,
battery powered devices. Furthermore, developments in quantum computing may bring an
end to some public key cryptosystems [20] (however, this is an unlikely scenario at least in
the near future).

Given the fact that PKIs are by no means the “silver bullet” that solves all the problems
related to authentication in distributed systems, it seems worth exploring whether protocols
based on symmetric key encryption can be re-engineered to be made more secure and reliable
and constitute a viable alternative in all the cases where authentication rather than non-
repudiation is the requirement. In this paper we examine symmetric key authentication
protocols in this new light, point out the limitations of current designs, and propose an
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authentication infrastructure which overcomes these limitations, and is better suited for the
reshaped distributed computing environment. The pivotal point in our design is placing
the trusted authentication authority off-line, which removes the vulnerabilities present in
existing protocols, in particular their exposure to hacking and denial of service (DoS) attacks.
Although clients can no longer directly access the authentication server, our infrastructure
can still handle a dynamic client population, with the condition that the maximum size of
this population is known in advance. To the best of our knowledge, this is the first symmetric
key authentication infrastructure that is based on an off-line trusted third party (TTP) and
supports a dynamic client population.

The rest of the paper is organized as follows: in Section 2 we give a brief overview of
the foundations of symmetric key authentication protocols. Having placed our efforts in
this context, in Section 3 we elaborate on the motivation for this paper, and Section 4 we
look at related work, focusing on protocols that allow the authentication server to be placed
off-line. Following this, in Section 5 we describe the proposed authentication infrastructure,
in Section 6 we look at key update and revocation issues, and in Section 7 we briefly describe
our prototype implementation and a number of performance measurements we have done
on it. We conclude in Section 8.

2 Symmetric Key Authentication Protocols

Symmetric key authentication protocols can be divided in two categories depending upon
how the freshness of key distribution messages is determined. One category uses chal-
lenge/response and nonces [17], the other one is based on timestamps [8]. Protocols using
timestamps need fewer messages than the ones based on nonces [10], the downside being
they require loosely synchronized clocks. On the other hand, protocols based on nonces
require good random number generators and state storage, in order to prevent certain types
of reflection and replay attacks. The protocols we introduce in this paper make use of both
nonces and timestamps since we consider loosely synchronized clocks and good random
number generators normally present in today’s distributed systems.

Most symmetric key authentication protocols derive from the seminal work of Needham
and Schroeder [17, 18]. As shown in Figure 1, the Needham-Schroeder protocol consists of
the following messages 1:
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Figure 1: The Needham-Schroeder protocol

The goal of the protocol is to allow two principals, A and B, to authenticate each other
and establish a secure communication channel. A trusted authentication server AS shares

1This is the version of the protocol that fixes the flaw described in [8]
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a long term symmetric key with each principal and is capable of generating and sending
“good” session keys on the request of these principals.

The first two messages are needed so that B can generate a nonce that will be included
in the subsequent messages generated by the AS for that particular session. This avoids
certain replay attacks using old, compromised session keys [8]. Once it has B’s nonce, A
requests a session key from the AS in message 3, also including her own nonce. The AS
answers with two tickets - one for A and one for B - containing the session key (KAB) and
the nonces supplied by both parties (this guarantees freshness). B’s ticket is then forwarded
by A to B. Finally, messages 6 and 7 are used by B to ensure that A is online and thwart
replay attacks. In Message 7, f is a previously agreed-upon secure hash function.

A large number of authentication schemes [15, 4, 12] have been designed based on the
original Needham-Schroeder protocol. All of them require the AS to be on-line, since the
two principals need to contact it at least for the first secure session they want to establish.
This approach leads to a security infrastructure highly dependent on the AS. We will show
that by separating the task of authentication from the one of generating and distributing
session keys, it is possible to design authentication infrastructures that scale better, and are
more efficient and reliable.

3 Motivation for a New Design

There are two main reasons why we believe symmetric key authentication services require
an update: first, the state of the art implementations in this area [15, 4, 12] are based upon
ten year old designs, with clear limitations. Second, the past few years have brought a
number of major technological advances, but to our knowledge, no new symmetric key
authentication technique based on these advances has yet been proposed.

3.1 New Developments in Distributed Computing

The distributed computing landscape has been more or less reshaped in the past years
by a number of technological advances. Table 1 lists the major paradigm shifts, points out
their consequences, and explains why existing symmetric key authentication infrastructures
are not well suited to handle them.

New paradigm Consequences Limitations of existing symmetric
key authentication infrastructures

Migration to WAN Network latency and bandwidth They were designed assuming “almost”
display great variability. DoS synchronous LAN communication. Possible
attacks are much more frequent DoS attacks were not directly addressed
and harder to prevent. in their design.

Personal computing Users possess powerful personal They were designed for a world consisting
devices (i.e., PDA’s, computing devices. Such devices can of shared workstations, where the only
laptops, generate good random numbers and piece of information a user could securely
smart-phones, etc.) symmetric keys. They have enough carry around was a short password.

memory to store millions of keys.
Users do not share these devices.

Peer-to-peer User to user interaction becomes Needham-Schroeder schemes mostly
a lot more frequent. deal with the client-server model.

MANET User devices may be portable and They require an on-line authentication
equipped with wireless adapters. server, reachable by all parties.
Continuous connectivity cannot be
assumed in a wireless network
environment

Table 1: New developments in the distributed computing landscape

3.2 Vulnerabilities in Traditional Symmetric Key Authentication

Infrastructures

Existing symmetric key authentication infrastructures require the participation of the
TTP not only during the authentication phase, but also for generating the session key.
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Thus, the TTP is actively involved every time any two clients need to establish a secure
connection. This leads to the following shortcomings:

• The AS is a single point of failure because when the AS is out of service users cannot
independently establish a new secure session. This makes it a particularly attractive
target for DoS attacks.

• The AS is a performance bottleneck, since all the users need to contact the server
for each new session they want to establish.

• Session keys are generated and distributed by the AS upon request. This means
the AS server must be on-line. As a consequence the AS is an highly sensitive

target since compromising the AS would result in a possible compromise of all the
subsequent private communications among all users registered with that particular
AS. Furthermore key material is continuously exposed since the AS needs to be
online.

Our authentication infrastructure overcomes these limitations, and at the same time
is better suited for the re-shaped distributed computing landscape. The pivotal point in
our design is placing the AS server off-line - this reduces the risk of compromising the
AS’s cryptographic material, shields it from DoS attacks, and makes the infrastructure
more appropriate for environments such as MANET, where continuous network connectivity
cannot be assumed.

4 Related Work

As we already mentioned, most of the existing symmetric key authentication infrastruc-
tures [15, 4, 12] suffer from the limitations pointed out in Section 3, which stem from the
need for the AS to be always on-line. However, the idea of redefining the role of the AS by
decoupling the initial authentication of principals from the subsequent use of their session
keys is not completely new, and a number of protocols aiming at this have already been pro-
posed. The Neuman-Stubblebine [19] and KSL [14] protocols are two examples. Both these
protocols allow session keys generated in an initial exchange involving the AS to be re-used
in subsequent sessions, which do not involve the AS. As a result, the load on the AS can
be greatly reduced, which overcomes some of the limitations mentioned earlier. However, in
both these protocols the emphasis is on the use of nonces versus timestamps for freshness
purposes, rather than re-designing the role of the AS. Furthermore, both these protocols are
vulnerable to the attack described in [11], due to the way they re-use old session keys in the
repeated authentication part of the protocol. Another drawback of both these protocols is
that they are asymmetric: although the keys generated for the first session can be reused,
only the initiator of the first exchange can start subsequent sessions.

In [13] Kao and Chow propose a protocol allowing re-using of session keys that is resistant
to the attack described in [11]. This protocol is also symmetric, and provides a better solution
compared to the previous ones. However, it still requires the two clients to contact the AS
server for the first secure session they want to establish; although the traffic towards the
AS is greatly reduced, the server still needs to be on-line, and thus subject to the security
threats mentioned earlier.

A similar solution has been proposed by Boyd [6, 7]. His protocol introduces a novel
way to provide freshness by random input generated by users and a long term shared key
distributed initially by the server. The protocol relies on the security property of keyed hash
functions used as a basic primitive to generate fresh session keys. In detail, this protocol is
as follows:
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(1) A −→ AS: A, B

(2) AS −→ A: {A, B, KS}KAAS
, {A, B, KS}KBAS

(3) A −→ B: A, B, {A, B, KS}KBAS
, NA

(4) B −→ A: [NA]KAB
, NB

(5) A −→ B: [NB ]KAB

where KAB = f(KS , NA, NB) and f is an agreed-upon keyed hash function. [M ]K is a
transformation that only provides integrity (e.g. MAC). Once two clients run the above
protocol, they can subsequently re-authenticate without contacting the server, by producing
a new authenticated and fresh session key by completing the following protocol:

(1) A −→ B: A, B, N ′
A

(2) B −→ A: [N ′
A]K′

AB
, N ′

B

(3) A −→ B: [N ′
B ]K′

AB

where K ′
AB = f(KS, N ′

A, N ′
B). The fact that K ′

AB depends on both N ′
A and N ′

B provides an
association between message 2 and 3, thus preventing oracle session attacks [5]. The protocol
is symmetric, since either A or B can initiate it. What it is still unsatisfactory here is that
no specific expiration date is set for the long term secret KS, leading to the possibility of
cryptanalytic attacks. Despite this, [6] is the first to acknowledge that re-usable session keys
do not come for free, since they require revocation mechanisms (to guard against possible
key compromise), but does not propose any specific mechanism to address the revocation
problem.

5 A Symmetric Key Authentication Framework based on Off-Line

TTPs

We propose a symmetric key authentication framework based on an off-line TTP. Most
importantly, our framework can accommodate a dynamic client population and specifically
addresses the problems of key update and revocation. Our system model consists of the
following entities:

• A trusted Authentication Server (AS). The authentication server is responsible
with registering clients - associating a number of attributes (names for example) to a
cryptographic identity (in this case a set of symmetric keys). The AS is a key element
in our security infrastructure, and its compromise is a catastrophic event. In order
to strengthen its security and to shield it from DoS attacks, the AS is not accessible
on-line.

• The clients - a number of computing devices interacting with each other. These
include both human users and a variety of electronic services. Based on the peer-
to-peer paradigm, we assume that any random pair of clients may want to interact
(and authenticate each other). Clients may use a great variety of computing platforms
- ranging from personal digital assistants and smart phones to high end application
servers. We assume each client has a reasonably powerful CPU capable of perform-
ing symmetric cryptographic operations, a reasonably large amount of memory (both
volatile and non volatile) and a network connection. However, our system does not
require continuous network connectivity.

• A number of infrastructure directories. These are semi-trusted entities, in the sense
that their compromise will not lead to a security breach, but may result in denial of
service. Their purpose is to guarantee availability and they work more or less like
caches.

Before a client can start using the authentication infrastructure, it has to go through a
registration phase, which requires a secure physical channel between the client and the AS.
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By no means is this registration step specific only to our framework; in any authentication
protocol based on TTPs there is an implicit registration phase, when a new client establishes
a shared master secret with the AS by out-of-band means.

During the registration phase, the AS presumably checks the client’s identity much in the
same way as a Certification Authority would do it in a PKI. After verifying its credentials,
the AS issues the client an endorsement, in the form of the client authentication database,
which the client can use to authenticate itself to other clients. This endorsement is only valid
for a limited period of time (in the order of months, even years). After this endorsement
expires, the client needs to contact the AS again in order to obtain new authentication
material - we call this step key update. The AS can also render a client’s endorsement
unusable before its natural expiration - we call is step key revocation.

Our design relies on two basic building blocks - the client introduction certificate - which
is similar to the renewable token suggested in [6, 7], and the client authentication database
- which enables a client to collect all necessary authentication material at registration time,
thus making subsequent communication with the AS un-necessary. In the next subsection
we sketch a naive authentication protocol that illustrates the use of these building blocks.

5.1 A Naive Solution

Let us consider a security realm consisting of an authentication authority AS and a
number of clients. As discussed in the previous section, clients first have to go through a
registration phase, requiring a secure physical channel to the AS, after which they never
have to contact the AS again, except for credentials re-issuing. For the sake of simplicity, let
us first consider scenario where a client A only needs to communicate with one other client
B. A′s registration phase works as follows:

(1) A −→ AS: A, B

(2) AS −→ A: KAAS, KS , {A, B, KS}KBAS

Since the registration phase is done over a secure physical channel, the key KS shared
by A and B can be sent in clear, and only A′s ticket for B needs to be encrypted with B′s

master key. A also gets KAAS - the master client key - which is used by the AS to encrypt
the tickets other clients will use to contact A.

Once it completes the registration phase, A does not need to contact the AS ever again,
since we assumed it only wants to talk to B. However, we still have a problem here,
since both A′s and B′s registration credentials may expire after a certain time, but the
AS has no control over how long the {A, B, KS}KBAS

renewable ticket can be used. To
address this problem, we add A′s credentials issue and expiration date in the ticket, which
now becomes: {A, B, TissueA

, TexpireA
, KS}KBAS

; B′s credentials issue and expiration date
- (TissueB

, TexpireB
) - are also sent in clear to A as part of the second message. We define

the enhanced ticket as A’s introduction certificate to B - ICAB. We also define the key KS

in the certificate as A’s secure introduction key to B - SIKAB.
The purpose of introduction certificates is equivalent to the purpose of public-key certifi-

cates. Both of them are used to authenticate strangers. The difference is that the SIK in
the IC serves only two clients, while a client’s public key in a public-key certificate can be
used by all the clients in the realm.

A can now use the IC it has received from the AS to initiate secure sessions with B as
follows:

(1) A −→ B: A, B, ICAB , NA

(2) B −→ A: [NA]KAB
, NB

(3) A −→ B: [NB ]KAB

where KAB = f(KS , NA, NB) is the new session key. Both A and B are supposed to
terminate the protocol if their local time does not fall in the (Tissue, Texpire) interval specified
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by the AS for the other party.
The procedure outlined above can easily be extended to accommodate the entire client

population: assuming N to be the set of all N clients, the AS can give A (N−1) introduction
certificates, one for every other client; all this information can then be organized into a set
of (IdentityJ , TissueJ

, TexpireJ
, SIKAJ , ICAJ) tuples, with J ∈ N and J 6= A, which form

A’s authentication database. Each client’s authentication database contains N − 1 tuples,
and in order to provide full connectivity, the AS needs to generate N such databases, one
for each client.

By providing each client with an authentication database, we can now place the AS
off-line: after registration, a client has an introduction certificate and a SIK for every
other client, so it does not need to contact the AS again (at least not until its registration
credentials expire). Two registered clients can then authenticate and establish a secure
channel using the above described protocol.

The system architecture described so far succeeds in providing symmetric key authentica-
tion services to a population of N clients, without requiring the AS to be on-line. However,
this is a naive solution; its main drawback is that it assumes a static client population, since
each client needs to be given a SIK and an IC for every other client at registration time.
Furthermore, key renewal and revocation is likely cause serious trouble, since changing one
client’s database also require updating all the other clients. In the next section we will
describe a more realistic solution, which assumes a dynamic environment where clients may
leave and join at any time, and where keys can be revoked before their natural expiration.

5.2 The Proposed Architecture

The protocol described in the previous section can only accommodate a static client
population; this is a clear drawback. The authentication infrastructure we describe in this
section overcomes these limitations; it can accommodate a dynamic client population, with
the condition that the maximum size of this population is a-priori known.

The idea is to give every client in the realm a secure certified introduction key for every
other potential client at registration time. Since identity information and issue/expiration
times cannot be known in advance for future clients, this information needs to be explicitly
exchanged during the authentication phase by the two clients involved, which results in
a slightly modified authentication protocol. As we will show, this also requires certain
modifications in the format of the introduction certificate and of the client authentication
database.

In detail, the registration phase works as follows: assuming the maximum client popula-
tion size N is known in advance, the AS starts with a potential client key list of N symmetric
keys. When a new client A wants to register, the AS takes the next unused key KI in the
list and passes it to the client over the secure registration channel (KI now becomes the
master client key for A). The AS then updates its client records (shown in Figure 2) by
associating A′s identity to the corresponding index I in the key list, the client’s registration
time - TissueI

, and the time after which the client’s registration expires - TexpireI
. The AS

then generates for A an introduction certificates database consisting of N−1 (SIKIJ , ICIJ)
tuples, for J ∈ {0, .., N − 1} and J 6= I , with SIKIJ being a random symmetric key, and
ICIJ = {SIKIJ , I, J, SHA-1(NameA), TissueI

, TexpireI
}KJ

. The introduction certificates
database can then be passed to the client by means of the same secure channel. Thus, the
registration phase for client A is as follows:

(1) A −→ AS: NameA

(2) AS −→ A: I, KI , TissueI
, TexpireI

, (SIKIJ , ICIJ)J∈{0,..,N},J 6=I

Alternatively, A′s authentication database can be encrypted under KI and placed on
the untrusted directories, so that A can download it when needed. As an optimization,
the AS can even encrypt individual rows in the database (that is individual (SIKIJ , ICIJ)
pairs); in this way, A can only download the introduction certificates it needs during the
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authentication phase (however, if the size of the authentication database is too large, this
may expose the master client key to cryptanalytic attacks).

1
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Figure 2: AS client records

For the authentication phase, consider a client A that wants to establish a secure session
with a client B. We assume both A and B have registered with the AS, and they have been
assigned the client indices I and J respectively. The protocol is as follows:

(1) A −→ B: I, NA

(2) B −→ A: J, NB, ICJI

(3) A −→ B: {NameA, NB}KAB
, ICIJ

(4) B −→ A: {NameB, NA}KAB

In the above protocol, KAB = f(SIKIJ , SIKJI , NA, NB). We assume that initially A

and B are complete strangers (they do not know each other’s client indices). In steps (3)
and (4) of the protocol, A and B exchange their names, protected under the shared secret
(so no attacker can infer the identities of the authenticating parties). Before producing
any cipher-text, both A and B decrypt ICJI and ICIJ respectively, and check that the
expiration time in these certificates has not already passed; this prevents the usage of old
(potentially compromised) ICs. Also, both parties must compute the SHA-1 digest of the
other party’s name and make sure it matches the digest in the IC.

6 Key Update and Revocation

Our authentication scheme makes clients’ transactions independent from the AS, which
can now be placed off-line. The price we have to pay for this is lack of freshness: in
our protocol SIKs are not freshly generated for each session but instead pre-distributed by
means of an authentication database. However, because of possible cryptanalytic attacks,
symmetric keys can only be used for a limited time, after which they should be discarded
and replaced with fresh cryptographic material; furthermore, when exceptional events occur,
keys may also need to be revoked. In this section we show how the scheme we propose can
be modified in order to allow efficient key update and revocation.

6.1 Key Update

When a client registers, it receives from the AS a symmetric master client key and an
authentication database. To prevent key compromise due to cryptanalytic attacks, the AS
also sets a limit on how long the client is allowed to use this key material. This time limit
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is expressed through the Texpire value present in each IC. All the clients in the realm are
required to reject an IC for which the Texpire has passed (this has the additional benefit of
giving the AS certain control over the client). A client whose Texpire has passed needs to
contact the AS to get new keys (key update).

 I

{SIK       , I, J+1, SHA-1(Name  ), Issue_Time  , Expiration_Time } 

{SIK        , I, I+N, SHA-1(Name  ), Issue_Time  , Expiration_Time  }  

 I(I+1)

I(I-1)

 I(J+1)

   IJ

I(I+N)
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Future Key
Clients and
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and not Expired)
(Registered
Clients
Existing

I

I

  JKI

 I

I

I

I

I

I
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{SIK       , I, I-1, SHA-1(Name  ), Issue_Time  , Expiration_Time  } 

{SIK  , I, J, SHA-1(Name  ), Issue_Time , Expiration_Time } I
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I

I

Client Index

K I+N

K I+1

I-1K

+1JK

Introduction Certificate

I+N

I+1

J+1
 

J

Figure 3: The client IC database after a key update. It is assumed the client performing
the update is assigned the new client index I , and the index of the earliest registered client
not yet expired is J . N is the maximum number of clients in the realm.

One property that needs to be enforced here is locality: a key update should only affect
the client that performs it, and none of the other clients. This is essential if we want to
achieve our goal of keeping the AS off-line.

For the sake of simplicity, let us assume the client master key lifetime is the same for
all clients (however, the key update mechanism is more or less the same, even if client key
lifetime is not the same for all clients, only the formula for calculating the total memory
requirements will change). If N is the maximum number of clients in the realm, the locality
property can be achieved by requiring clients to store an authentication database consisting
of at most 2∗N ICs. Key update works as depicted in Figure 3: when contacted by client A

for a key update, the AS creates a new database consisting of ICs for all the other clients not
expired at that moment (at most N) and N extra ICs, for the next N consecutive keys in
the potential clients key list. The AS needs to ensure it always has at least N unused entries
in this list, by generating new keys when it drops below this threshold. In this way, client A

is guaranteed to have an IC for every other non-expired client in the realm. Furthermore,
should new clients register, or existing clients perform the key update, they will be assigned
one of the next N unused client master keys, for which A is also given an IC. Since there
can be at most N clients, and the master client key lifetime is the same for all of them,
there can be at most N new client master keys issued until A′s key will expire again, so A

is guaranteed to have ICs for every new client master key to be issued. In this way, clients
only need to contact the AS for key updates, and the locality property is achieved.

6.2 Key Revocation

A consequence of using long-term keys is the possibility that some of these keys may be
compromised before their normal expiry time, so they need to be revoked. We distinguish
two cases:

• a client’s device is lost, stolen or damaged; the entire client database is compromised;
the client needs to contact the AS to acquire new credentials (key update). Further-
more, the client’s old credentials need to be rendered unusable, so that no other party
can impersonate the client (revocation).
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• a client quits or misuses the service; again, the AS needs to render the client’s keys
unusable (revocation).

The revocation mechanism we propose is based on certificate revocation lists (CRL): the
AS keeps a list consisting of the indices of all clients whose authentication databases have
been revoked, and periodically pushes this list to the infrastructure directories. Because the
directories are not trusted not to tamper with this list, clients need a mechanisms to verify
its integrity. To facilitate this, the AS computes one CRL authentication code for each client
(and potential client) in the realm. For a client index I , the CRL authentication code is the
HMAC-SHA-1 [16] of the CRL using the client master key KI . All the CRL authentication
codes are then pushed to the infrastructure directories, together with the actual CRL.

When a client wants to verify the freshness of a given introduction certificate, it first
needs to download the revocation list from the closest directory. The client then requests
the CRL authenticator code corresponding to its client index, and verifies it using its master
key. Once the CRL verification has succeeded, the client can proceed with validating the
IC, by verifying that the client index in the IC is not present in the revocation list.

We can see that in this case revocation is more expensive than in a traditional PKI:
for each CRL, the AS needs to generate a number of CRL authenticator codes linear to the
number of clients; for traditional PKIs the CRL only needs to be signed once. This workload
can be reduced if the infrastructure directories are trusted to correctly disseminate revocation
information, in which case, the AS does not need to generate any CRL authenticator codes,
(but clients need to establish secure channels with the directories when downloading the
revocation list).

Key revocation also has implications on size of the client introduction certificates database.
In the previous section, we showed that in order to ensure that a client only needs to contact
the AS for registration or key update, it needs an IC database with at most 2 ∗ N entries.
When calculating this, we assumed N to be the maximum number of clients in the realm,
so during a key lifetime, at most N key updates could occur. However, if clients can revoke
their keys before expiration time, the total number of key issued can be larger than the
number of clients (some clients may be issued more than one key during a key lifetime inter-
val). Assuming that P is the probability that a client master key is revoked before expire,
the new maximum size for the client IC database becomes (2 + P ) ∗ N .

It is worth noticing that although revocation significantly increases the AS workload, it
does not require it to be on-line (it only needs an unidirectional network connection to the
directories in order to periodically push the revocation information); furthermore, the tasks
of credential issuing and revocation can be separated, as suggested in [2]. By introducing
a separate revocation authority, we can even have the AS disconnected from the network
(since it does not even need to push the revocation information to directories), which would
greatly increase its security.

7 Performance Evaluation

We are in the advanced stages of building a prototype implementation for our authentica-
tion infrastructure, and we plan to experimentally deploy it at the Vrije Universiteit campus
in Amsterdam. Our prototype consists of an Authentication Server and a client credential
management library.

The Authentication Server is a stand-alone application that manages the master client
key list, generates the IC database for client registration and credentials update, and man-
ages credentials revocation. Its C source code consists of about two thousand lines of code.
At initialization, the AS administrator needs to specify the maximum expected client pop-
ulation size, as well as the maximum expected revocation rate. Based on these values, the
server generates a master client key list. During normal server operation, this list is stored in
memory; the server also writes it on disk (as a binary file), protected under a password, so it
can survive potential server crashes. The command line interface allows the AS administra-
tor to register new clients, update existing clients’ credentials and revoke issued credentials.
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In the case of client registration and credentials update, the output of the operation is a
file storing the newly generated client authentication database; in the case of credentials
revocation, the output is a binary file consisting of the (updated) CRL, together with CRL
authentication codes for all the master client keys. The output file then needs to be trans-
ferred to the target system (the client’s computer/PDA in the case of the authentication
database, the revocation directory for the CRL) by some secure out-of-band mechanism
(for example stored on a ZIP-drive, CD-ROM, memory stick). Consistent with our goal of
keeping the AS server strictly off-line, we do not provide any support for transferring results
via regular network connections.

We are currently developing the credentials management library, which will provide ap-
plication programmers with an interface similar to the BSD Socket Interface. The library is
initialized with the name of the authentication database file (possibly password-protected)
obtained by the user from the AS server. After this, connecting our secure sockets involves
executing the authentication protocol described in Section 5.2, with the shared key obtained
at the end of the protocol being used to protect the future data traffic between the two end-
points. In addition to the regular connection information (the other party’s network address,
transport protocol, etc.), our secure sockets also store the authenticated name of the client
at the other end. Two potential applications we have in mind are de-centralized ICQ-like
chat services (users can authenticate each other without the need for a trusted-online server
as it is in existing such applications), and one-to-one authentication for PDAs.

Finally, we have performed a number of experiments to measure the performance of our
implementation; these were performed on a AMD Duron 750MHz 64K cache system, with
196MB RAM, running Linux Mandrake 9.1. Our code was compiled using the GNU C
compiler, version 3.2.2. For the remaining of this section, we assume that all credentials are
issued with the same lifetime, and the revocation probability (for that lifetime) is 0.1 (this
later number is based on the results published in [3]). According to the formula derived in
the previous section, this leads to an authentication database size of 2.1∗N entries per client,
where N is the maximum expected client population size. We used the AES algorithm [1]
for encrypting the ICs and for the authentication protocol. In both cases the key size was
128 bits.

The first experiment evaluates the performance of the AS server implementation. We
measured the amount of time required to initialize the server (generating the master client
key list) and to generate one client authentication database, for various maximum expected
client population sizes. Figure 2 summarizes the results.

Number of AS initialization Generating one
master keys time client database

1000 0.01 sec 0.04 sec.
10000 0.04 sec 0.32 sec.
100000 0.34 sec 2.97 sec.
1000000 3.36 sec 30.5 sec.
2000000 6.61 sec 59.8 sec.
5000000 16.55 sec 150.1 sec.

Table 2: AS server performance measurements

Not surprisingly, the amount of time needed for initialization and authentication database
generation grows linearly with the maximum expected number of clients. The time to
initialize the server (generating the client master key list) is by all means negligible. For
the client authentication database generation, we can see that even for very large expected
client populations (in the order of millions), the the time required is less than two minutes.
We assume this is acceptable, considering that client registration and credentials update are
rare events (once a year), and they anyway involve some sort of human to human interaction
(in order to transfer the authentication database from the off-line AS server to the client
system) which is much more time-consuming.
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The second experiment compares our authentication protocol with public-key based SSL
[9]. Our protocol is implemented in C using the OpenSSL Crypto library; we compare it
with the protocol implemented by the OpenSSL SSL library (with the AES128-SHA:RC4-
MD5:DES-CBC-SHA:RC4-SHA cipher suites enabled); the two authenticating end-points
are processes running on the same host (the 750MHZ AMD Duron described earlier), so
that network latency does not influence the experiment. For our protocol we have the two
parties store their entire authentication database in memory. For SSL we use the “server
and client authentication” option, and the public key algorithm is RSA with 1024 bit keys.
The results, shown in Table 3, were obtained after running each type of authetication session
for 10000 times and taking the average.

Authentication Protocol Duration

our protocol - 1000 entries per client database 0.37 msec.
our protocol - 10000 entries per client database 0.38 msec.
our protocol - 100000 entries per client database 0.38 msec.
our protocol - 1000000 entries per client database 0.38 msec.
SSL - 1024 bit RSA keys (client and server authentication) 11.6 msec.

Table 3: SSV vs. our protocol - performance comparison

Not surprisingly, the size of the authentication database has little influence on the perfor-
mance of the protocol, since the entire database is stored in memory. We can see that our
authentication protocol is an order of magnitude faster than SSL. We expect the relative
speedup to be even more significant on PDAs, normally equipped with less powerful CPUs.
Besides the speedup, probably the biggest advantage of our protocol is that the symmetric
key cryptographic operations it involves are much less CPU-intensive than the public key
cryptographic operations needed by SSL, which is a great advantage for battery-powered
PDAs.

Finally, another factor that should be taken into account when evaluating our architec-
ture, is size of the client authentication database, which grows linearly with the maximum
expected client population size. As shown in Table 4, the size of one (SIK, IC) database
entry is 96B. Given that the number of entries in a client database is 2.1∗N , where N is the
maximum expected client population size, we can see that this database size grows linearly
from 96KB for an authentication realm of thousand clients to 96MB for a million clients
realm.

Entry Format:
( SIK, {SIK, Indexsrc, Indexdest, SHA-1(Name), Tissue, Texpire}Keyclient

)

Field Size

SIK 16B
Indexsrc 4B
Indexdest 4B
SHA-1(Name) 20B
Tissue 4B
Texpire 4B
SHA-1 over above fields 20B

Total IC size 72B
Total after encryption in CBC mode 80B (5 blocks)
Grand total (encrypted IC + SIK) 96B

Table 4: Authentication database entry size

For efficiency and security reasons, clients should be able to store their entire authenti-
cation database in memory; considering the above numbers we can conclude that, at least
for today’s PDAs, our authentication infrastructure could scale up to authentication realms
of at most hundred thousand clients (so the database size does not exceed 10MB).
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8 Conclusion and Future Work

In this paper we have presented a symmetric key authentication infrastructure based on an
off-line TTP. Because the TTP is off-line, it is shielded from both hacking and DoS attacks;
the fact that authentication does not depend on continuous network connectivity makes
our scheme particularly suited for MANET environments. Our authentication architecture
can support a dynamic client population, with the condition that the maximum size of
this population is known in advance. We are able to achieve this by trading memory for
flexibility under the assumption that large storage devices are becoming a commodity in
today’s computing environment.

The scheme presented in this paper works for a single security domain, under the juris-
diction of a single authentication server. As future work we would like to expand our scheme
to the case of multiple domains and we are now working on the details of these extensions.
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