A Security Architecturefor Object-Based Distributed Systems

Bogdan C. Popescu
Vrije Universiteit
Amsterdam, The Netherlands
bpopescu@cs.vu.nl

Abstract

Large-scale distributed systems present numerous secu-
rity problems not present in local systems. In this paper
we present a general security architecture for a large-scale
object-based distributed system. Its main features include
ways for servers to authenticate clients, clients to authenti-
cate servers, new secure servers to be instantiated without
manual intervention, and ways to restrict which client can
perform which operation on which object. All of these fea-
tures are done in a platform- and application-independent
way, so the results are quite general. The basic idea behind
the scheme is to have each object owner issue cryptograph-
ically sealed certificates to users to prove which operations
they may request and to servers to prove which operations
they are authorized to execute. These certificates are used
to ensure secure binding and secure method invocation. The
paper discusses the required certificates and security proto-
cols for using them.

1 Introduction

Security in large-scale distributed systems differs from
operating system security by the fact that there is no central,
trusted authority that mediates interaction between users
and processes. Instead, a distributed system usually runs on
top of a large number of loosely coupled autonomous hosts.
Those hosts may run different operating systems, and may
have different security policies, which can be enforced in
different ways by careless, or even malicious administra-
tors.

A popular trend in distributed systems is to encapsulate
functionality as objects and provide mechanisms for their
location, migration and, persistence, as well as for remote
method invocation. CORBA [2] [3], DCOM [9], and Le-
gion [13] are examples of distributed systems using this
paradigm. Each of them handles security in its own way,
and the main objectives are authenticating the communicat-
ing parties, protecting network traffic, enforcing access con-

Maarten van Steen
Vrije Universiteit
Amsterdam, The Netherlands
steen@cs.vu.nl

Andrew S. Tanenbaum
Vrije Universiteit
Amsterdam, The Netherlands
ast@cs.vu.nl

trol policies on the object’s member functions, delegating
rights and respecting site-specific security concerns. There
is one feature these systems have in common: all of them
support only non-replicated objects. This makes it easier to
implement a security infrastructure, since security policies
for individual objects have to be enforced at only one point;
the host where the object resides.

Globe [26], is a wide-area distributed system based on
distributed shared objects (DSO). The notion of a DSO
stresses the property that objects in Globe are not only
shared by multiple users, but also physically replicated
at possibly thousands of hosts over a wide-area network.
Thus, a single object may be active and accessible on many
hosts at the same time. Obviously this leads to a consistency
problem, but that has been addressed elsewhere [6].

This paper describes the Globe security architecture. Our
main contribution is a design that (1) makes a clear separa-
tion between the security issues to be dealt with at the mid-
dleware level as opposed to the application-specific ones,
(2) provides concrete solutions to some unique security
challenges, which derive from the fact that Globe objects
can be (massively) replicated with some of the replicas run-
ning on untrusted, possibly malicious hosts, and (3) is truly
decentralized - it does not require any global authority or
trusted third party that would severely limit the scalability
of the system.

The rest of the paper is organized as follows: Section 2
gives an overview of Globe, the internal structure of a DSO,
and the services provided by the Globe middleware that fa-
cilitate the creation and deployment of DSOs. In Section 3
we identify the security problems we are trying to solve and
in Section 4 we present our trust model. The problems iden-
tified in Section 3, which can be grouped as secure binding
problems, platform security problems, and secure method
invocation problems, are then discussed in Sections 5, 6
and 7 respectively. Finally, in Section 8 we discuss related
work and in Section 9 conclude.

2 TheGlobe System

A central concept in the Globe architecture is the dis-
tributed shared object (DSO). As seen in Figure 1, a DSO is
built from a number of local objectsthat reside in a single
address space and communicate with local objects in other
address spaces. Each Globe DSO is identified by a unique
object ID (OID).

Al A2
O Q k— Address space
k— Distributed object
Network
1 |
Local |
Object %Q Q
A3 A4
A5

Figure 1. A Globe DSO replicated across four
address spaces

Some of the local objects (possibly all of them, depend-
ing on the replication strategy) can store all or part of the
DSO’s state. A local object that stores some part of the
DSO’s state is called a replica. When a user wants to in-
voke methods on a DSO, it will have to create a local ob-
ject for that DSO in his own address space. Often, such a
local object acts as a user proxy, and does not store the ob-
ject’s state, but simply forwards the user requests to replicas
that can execute them (but except for possibly increased re-
sponse latency, this is transparent to the user). For this to
happen, the user proxy needs to be initialized with an ob-
ject handle, which consists of the OID of that DSO plus
the information needed to find other replicas of that object
(e.g. the network address of a replica running a directory
service). To facilitate finding DSO replicas, we have imple-
mented the Globe Location Service (LS) [25]. DSOs can
(optionally) register with this service, in which case they
do not have to keep track of their replicas, but only register
them with the LS.

All the replicas part of a DSO work together to imple-
ment the functionality of that DSO. Replicas consist of the
code for the application, the state they store, and the dis-
tribution mechanism. The internal structure of a replica is
shown in Figure 2 (a user proxy has a similar structure), and
is as follows:

Control

W)
8
py)
8
g
2
g
!

Replication Semantics
subobject subobject

Security
Subobject

|

Communicatiol
subobject

Security
Policy

N\ //

4__>.

Communication Infrastructure

Figure 2. The internal structure of a Globe
DSO. The arrows indicate the possible inter-
actions between the subobjects

The semantics subobject contains the code that imple-
ments the functionality of the DSO. This is the only subob-
ject that needs to be written by the application developer.

The communication subobject is responsible for the
communication between local objects residing in different
address spaces. It hides the network communication aspects
from all the other subobjects.

The replication subobject is responsible for keeping the
replica’s state consistent with the other replicas. All replicas
part of a DSO participate in an object-specific replication
protocol: each replication subobject implements its part of
the protocol by mediating the exchange of state-update mes-
sages with other replicas. In the case of a user proxy, the
replication subobject is responsible for providing the user
with the view of a logical, non-replicated object. This view
is accomplished by transforming local method invocations
into requests that are sent to replicas for further processing.

The control subobject’s job is to take care of invocations
from client processes on the host where the local object re-
sides and to mediate the interaction between the semantics
subobject and the replication subobject. It is comparable to
a skeleton stub in object adaptors [24]

The security subobject [17] is responsible for enforcing
the DSQO’s security policy at the level of local objects by
mediating the communication flow between the other local
subobjects.

Replicas in Globe are generally hosted on Globe Obj ect
Servers (GOS). A Globe user wishing to run a replica or
a proxy, needs a GOS on his computer, either stand-alone,
or integrated in some other application, a Globe-aware Web
browser [27] for example. One can think about the GOS as
something similar to the ORB (Object Request Broker) in

CORBA. The GOS is responsible for managing the lifecy-
cle of local objects - downloading the class code needed to
create them (in most of the cases the DSOs will be responsi-
ble with providing this code), instantiating their subobjects,
and mediating the use of computing resources (e.g. mem-
ory, CPU, disk, network interface). A detailed description
of resource management by a GOS is outside the scope of
this paper, it is enough to say that our Java prototype GOS
implementation deals with all these issues using traditional
operating systems techniques. In this paper we will cover
only the security-related issues in the GOS design.

3 Security Issuesin Globe

When designing the Globe security architecture, we
chose to follow a modular approach, similar to the one de-
scribed in [15]: the first step is to analyze the Globe security
requirements and identify all the possible mechanisms that
can be used to satisfy these requirements. The second step
is to select a subset of these functions to be actually imple-
mented as part of the middleware (not all, since some of
the functions can be better handled at the application level).
Finally, in the third step, selected measures are to be im-
plemented and evaluated. The first stage has been already
completed, and the resulting document [17] can be seen as a
specification of all security functions that could be incorpo-
rated in Globe applications. This paper deals with the sec-
ond stage, and we are using it as a specification document
for our prototype implementation.

As seen in the scientific literature, security issues in dis-
tributed systems are not trivial to identify and structure. In
our case, the situation is even more complex due to the fact
that Globe objects can be replicated across multiple ma-
chines, which introduces a series of new problems. For ex-
ample there is the threat of malicious insiders (replicas run-
ning on malicious Globe object servers) which introduces
the need to restrict the functionality of replicas depending
on the trustworthiness of the system they are running on.
Looking at the wide range of security problems identified
in [17], we decided to group the security issues relevant to
our design into three categories: secure binding, platform
security and secure method invocation.

Secure binding effectively establishes that a client, given
an OID, installs a local object that is indeed part of the DSO
identified by that OID. In addition, it ensures that a replica
can be verified to be part of a DSO of which the OID is
known. Finally, secure binding allows us to securely asso-
ciate an OID with real-world entities such as an individual,
organization, or company.

Platform security issues derive from the fact that Globe
relies heavily on mobile code. The security design should
address the problem of protecting hosts from Trojan horses
and viruses embedded in the object code that is downloaded

on the fly to start replicas and user proxies. However, plat-
form security does not deal only with threats posed by mo-
bile object code on the host. The reverse problem is also an
issue: we need to protect a DSO against possibly malicious
hosts. In Globe, a DSO will optimize its performance by
placing replicas close to its clients. This placement requires
the cooperation of servers over which the (owner of a) DSO
has no control, and which may act maliciously. What we
need is a mechanism to assure host administrators that run-
ning other people’s DSOs replicas will not corrupt their sys-
tem, and also assure DSO owners that replicas of their ob-
jects running on hosts outside their control are still follow-
ing the security policy they have set for their DSO.

Finally, there are a number of issues related to secure
method invocation. Any distributed system where security
plays even a minor role has to deal with issues like authen-
ticating clients and servers, enforcing an access control pol-
icy on user requests, and protecting network traffic. How-
ever, with replication involved, as in Globe, we are faced
with a new problem. What we also need is rever se access
control, that is, a means for deciding which replicas should
be allowed to execute certain user requests. We need to
ensure clients that their requests are sent only to replicas
trustworthy enough to execute them.

In the following section we will describe the architec-
tural elements used in Globe security. After having de-
scribed the basic building blocks, we will see how these
blocks are combined in an infrastructure that addresses the
issues just outlined.

4 The Globe Trust Model

The cornerstone of the Globe trust model is that individ-
ual DSOs are fully in charge with their security policies.
This means a Globe object does not need any external trust
broker in order to run securely (but there are mechanisms
that allow DSOs to interoperate with external trust authori-
ties, if they choose to do this, we will describe these mech-
anisms later in this section.)

4.1 TheDSO Trust Hierarchy

Because DSOs can be massively replicated across wide-
area networks, we have chosen public key cryptography as
the basic cryptographic building block for implementing the
DSO trust hierarchy. The alternative, namely to use only
shared secret keys, has the disadvantage that we need to
take special measures to reduce the number of keys, for ex-
ample, by using a Key Distribution Center. Although pub-
lic keys introduce their own scalability problems, such as
those related to certificate revocation, we have nevertheless
decided to associate public/private key pairs with all distinct

Globe entities (DSOs, replicas, users), believing that these
are more easy to deploy in a large-scale system.

We require that each DSO has a public/private key pair,
which we term as the object key. The object key acts as
the ultimate source of trust for the object, and any principal
that has knowledge of the object’s private key can set the
security policy for that object (we term such a principal the
object owner).

We also associate a public/private key pair with every
DSO replica (we call this the replica key). The replica key
is generated by the GOS hosting the replica at the moment
when the replica is instantiated. If multiple replicas of dif-
ferent DSOs run on the same GOS, they cannot tamper with
each other’s keys, thus replicas of different DSOs do not
have to trust each other, even when they run on the same
server (however, they would have to trust the server to some
extent; we will talk more about this when discussing plat-
form security). Having the GOS protecting the replicas it
runs from each other is an architectural requirement. The
way this is enforced in practice it is dependent on the way
the GOS is implemented.

For DSO users, public-key cryptography is used for au-
thentication and access control. For a given DSO, permis-
sions are simply associated with user public keys, and users
are granted those permissions if they can prove knowledge
of the associated private keys.

Finally, Globe objects use digital certificates to grant per-
missions. There are three types of such certificates: user
certificates, replica certificates, and administrative certifi-
cates. Each of these certificates binds a public key to a
set of rights the entity possessing the corresponding private
key has with respect to the object. When using digital cer-
tificates, one should also consider the problem of revoking
them. A detailed description of the revocation mechanisms
in Globe is outside the scope of this paper, details are given
in [21].

A user certificate specifies which of the DSO’s methods
the user is allowed to invoke. This information is encoded
as a bitmap U of size equal to the number of methods for
that object (for now, we assume the object’s public methods
do not change during the object’s lifetime). A 1 means the
user is allowed to invoke that method; 0 means he is not.
An example is shown in Figure 3(a).

We can see that user certificates describe the access con-
trol policy for the DSO. Replica certificates are used for re-
ver se access control, that is, ensuring that user requests are
sent only to replicas allowed to execute them. Whenever a
user wants to invoke a given DSO method, his user proxy
has to find a replica that is allowed to execute the method
under the DSO’s security policy. Replica certificates are
useful when the object owner wants to restrict the execu-
tion of security-sensitive methods (e.g. those that change
the object’s state) to a set of core replicas, while less sensi-

tive operations (e.g. reads) can be executed by less trusted
caches. We use replica certificates to specify which meth-
ods a replica is allowed to execute. This information is en-
coded as a bitmap R of size equal to the number of methods
for the DSO. A 1 in the bitmap means the replica is allowed
to execute the corresponding method, while a 0 means it is
not. An example is shown in Figure 3(b).

Finally, administrative certificates govern the way cer-
tificates are issued. They specify the types of certificates an
administrative entity (i.e. user or replica) is allowed to issue
under the DSQO’s security policy. For a DSO, any certificate
either has to be signed with the object’s private key, or has to
be part of a certificate chain that starts with an administra-
tive certificate signed with the object’s private key. All the
certificates in this chain, except possibly the last one, need
to be administrative certificates, such that certificate Cy1
is signed with the private key corresponding to the public
key in certificate Cy, and Cy has been delegated the right
to issue certificates of the type of C41. Figure 4 shows an
example of such a chain.

An administrative certificate will contain two bitmaps, R
and U, and a bit D. The R bitmap specifies what types of
replica certificates the administrative entity is allowed to is-
sue. The U bitmap specifies what types of user certificates
the administrative entity is allowed to issue. The D bit is
called the delegation bit, and controls whether the admin-
istrative entity is allowed to issue administrative certificates.
This organization is shown in Figure 3(c) and works as fol-
lows:

e |f the R bitmap in an administrative certificate is not
all Os, the corresponding administrative entity is al-
lowed to issue certain types of replica certificates. The
R bitmap in these replica certificates has to be a subset
of the R bitmap in the administrative certificate.

o |fthe U bitmap in an administrative certificate is not all
0s, the corresponding administrative entity is allowed
to issue certain types of user certificates. The U bitmap
in these user certificates has to be a subset of the U
bitmap in the administrative certificate.

e Delegation Rule: if the delegation bit D in an adminis-
trative certificate is 1, the corresponding administrative
entity is allowed to issue certain types of administra-
tive certificates. The U and R bitmaps in these newly
produced certificates should be subsets of the bitmaps
in the issuer’s administrative certificate. The delegate
can itself be delegated.

At first it may seem strange to have both users and repli-
cas as administrators for an object, since one would usually
associate a human with such a role. Administrative repli-
cas come in handy when we deal with massively replicated
DSOs. For such DSOs, a highly dynamic pattern in client

User Certificate

User's Public Key
Issuer's Signature
U: 0010011100

Replica Certificate Administrative Certificate
Replica's Public Key i ive Public Key
Issuer’s Signature Issuer’s Signature

R: 1100011100

U: 0110111111
R: 1101111100
D: 0

@ (b) (c)

Figure 3. (a) User certificate that allows the
invocation of methods Ms, My, Mg, and M, of
a DSO. (b) Replica certificate that allows the
execution of methods My, M, My, Mg, and M,
of a DSO. (c) Administrative certificate that
allows issuing both (a) and (b) but does not
allow issuing any administrative certificates

requests can be better handled by creating new replicas on
the fly, in places where most of the user requests come from.
In such a scenario, one user administrator can manually
create (through his user proxy) a number of administrative
replicas, and issue administrative certificates granting them
the right to issue replica certificates. These administrative
replicas could in turn monitor user requests and create reg-
ular replicas in places where they can better handle these
requests.

Since digital certificates are extensively used to grant
permissions, we should also consider the problem of cer-
tificate revocation. In Globe, administrative entities are re-
sponsible for generating certificate revocation lists (CRLsS),
and posting them to on-line directories, where they can be
consulted by interested parties. Replicas are responsible
for checking CRLs before servicing user requests, and also
with proving to the users that their replica certificates have
not been revoked.

The last concept we need to introduce in this section is
replica location. Since some methods can be executed only
by certain replicas, a user proxy needs a way to query for
replicas allowed to execute certain methods. If the DSO
implements its own replica directory service, such a ser-
vice should register the bitmaps associated with replicas and
support queries on individual bits in these bitmaps. Alterna-
tively, a DSO can simply register its replicas with the Globe
Location Service, which has been implemented to fully sup-
port such queries [5]. It is important to understand that the
location service need not be trusted (except for not mount-
ing DoS attacks); the results of a location query are just
hints to where replicas with bitmaps allowing the execution
of certain methods can be found. Before dispatching a re-
quest to a given replica, a client has to verify that replica
has indeed been allowed to execute that request. We will
see how this is done in Section 7.

Let us now summarize the concepts introduced so far:
the Globe security architecture is based on public key cryp-
tography. DSOs, replicas, and users are assigned pub-

lic/private key pairs, so that an entity can be identified
through its public key. Finally, Globe entities are granted
permissions through the use of digital certificates, as we saw
in Figure 3.

Adminigtrative Certificate Adminigtrative Certificate User Certificate
Administrative Public Key -1 Administrative Public Key -1 User's Public Key
Signed with DSO'skey --sigos. . Hssuer's Signature -sgos.. Hssuer's Signature
U: 0110111111 Superset U: 0000111100 Superset U: 0000001100
R: 1101111100 Superset 1101000000

D1 delegation allowed __{15 "o

Figure 4. A certificate chain in Globe

4.2 Integrating External Trust Authorities

In the previous subsection, we have shown how Globe
DSOs create their own trust hierarchies. However, Globe
was designed to support billions of objects, and having to
deal with billions of trust roots is clearly not scalable. In
practice, human users have a small number of external orga-
nizations they trust (the DNS root, the university’s system
administrator, maybe the local Internet provider). In this
section we will show how our DSO-centric trust model can
accommodate external trust authorities.

First, a DSO trust hierarchy can be linked to a larger ex-
ternal hierarchy. This can be easily accomplished by hav-
ing the external trust root signing a digital certificate that
associates the DSO’s public key to whatever role that DSO
plays as part of the external trust hierarchy. Alternatively,
a Certification Authority (CA) can certify an organization,
so that the organization can then use its certified public key
to certify the public keys of all the DSO’s that belong to
it. To facilitate the inspection of such external certificates,
each Globe DSO provides a show_pedigree() method that
returns all digital certificates that link that DSO to external
trust roots.

Another possibility is to generate a DSO trust hierar-
chy based on a larger external hierarchy (for example a
company-wide role based access control scheme). This
can be accomplished by providing a mapping that speci-
fies which of the DSOs methods each entity in the exter-
nal trust hierarchy is allowed to invoke (such an entity can
be a principal, group of principals or role). Such a map-
ping will have to be distributed only to the administrative
replicas of the DSO that are in charge with issuing user cer-
tificates. These administrative replicas will also have to be
fitted with the mechanisms necessary to authenticate prin-
cipals in the external hierarchy (mechanisms which may or
may not be public-key based.) Because these authentica-
tion mechanisms are application-specific they will have to
be implemented as part of the semantics subobject of the ad-
ministrative replicas. It is important to understand that the
vast majority of non-administrative replicas of the DSO do

not need to know anything about external trust hierarchies.
They only deal with the compact security policy described
in user certificates.

5 SecureBinding

Secure binding boils down to establishing a trust rela-
tion between a DSO and its users. Namely, we want to
securely associate a DSO to its public key, securely asso-
ciate a replica to a DSO and securely associate a DSO to a
real-world entity.

The first problem - securely associating a DSO to its pub-
lic key - can be solved by simply making the object’s public
key a part of the object ID (however, this has the disadvan-
tage of having to change the OID whenever the object key
needs to be changed). This is not a new approach. Sys-
tems like SFS [18] have pioneered the idea of making the
resource key a part of the resource name. For Globe, we
decided to apply the same idea to object IDs. As a result,
we define a DSQO’s OID to be the 160 bit SHA-1 hash [1]
of the object’s public key. The self-certifying OID is also
an elegant solution to another problem, namely how to gen-
erate unique OIDs without relying on a central authority.
In this case, by simply generating the OID, a user is sta-
tistically guaranteed that OID is unique (given it has used
a good public key generator algorithm so the key is statis-
tically unique, the probability of a collision for SHA-1 is
extremely low).

Now that we can securely associate a public key with
an object, we can also solve the problem of securely as-
sociating replicas to DSOs. In Section 4.1 we explained
that replica certificates are used to specify which methods
a replica is allowed to execute. The replica certificate it-
self, together with the associated administrative certificate
chain, can be used as a proof that the replica is indeed part
of the object. Remember that the replica certificate plus the
administrative certificate chain securely bind the object’s
public key to the replica’s public key (the key of the user
who runs that replica) because the administrative certificate
chain must start with a certificate signed with the object’s
key. We just showed how a self-certifying OID securely
binds that OID to the object’s public key. Therefore, by
simply looking at the OID, at the replica certificate, and its
associated administrative certificate chain, one can deter-
mine whether a replica is indeed part of the object.

We have shown how secure bindings can be established
between objects and their public keys, and between objects
and their individual replicas. However, trusting these as-
sociations will not convince a user that an object actually
does what it is supposed to do. For example, a user may
not be willing to use a DSO modeling a home banking ap-
plication unless she is convinced that a real-world bank is
in charge of that DSO. Simply associating a replica with an

object ID and a public key is clearly not enough to estab-
lish such a trust relationship. What we need here is a secure
name binding, in the example we gave - a binding between
an OID (implicitly bound to a public key) and a bank name.
We claim that such a name binding needs human interac-
tion in order to be secure. This idea is close to the rationale
presented in the SDSI document [23] that accepting another
individual’s public key and associating it with a local name
should always be human mediated.

There are multiple ways one can achieve secure name
binding. For example, one could go to the local bank office,
sign for the home banking service, and then receive the ob-
ject handle (OID plus information on how to find replicas)
for the home banking application together with the user cer-
tificate on a floppy disk. Another possibility is for the user
to get the object handle from the bank’s Web site through a
secure HTTP connection, or through secure e-mail, bind to
the object and use one of the object’s methods to register for
an account and receive a user certificate. Yet another pos-
sibility is to get the object handle from an on-line untrusted
directory, and invoke the DSO’s show _pedigree() method to
get the object’s “pedigree” certificate signed with the bank’s
private key (which in turn can be certified by a trusted CA).
Globe does not rely on any automatic way of discovering
trusted applications, it is the user’s responsibility to decide
which objects she wants to use. The Globe object server
provides only a front end for associating human readable
application names to object handles in such a way that when
the human user selects an application name, a user proxy is
then created on the server, so that the user can invoke the
object’s methods.

Let us summarize what we have presented in this section.
In Globe we make use of self-certifying OIDs to establish
secure bindings between DSOs and their public keys. The
replica certificates create secure bindings between replicas
and the DSOs they are part of. Finally, it is the individual
clients’ responsibility to establish secure name bindings for
the DSOs they are using (but external CAs could mediate
this).

6 Platform Security

Globe relies heavily on mobile executable code - code
that is downloaded on the fly from possibly untrusted
sources to instantiate replicas and user proxies. Globe also
relies heavily on remote code execution - object code is up-
loaded and executed on possibly untrusted hosts in order to
bring computation close to the clients (this is the dynamic
replica creation we briefly discussed in Section 4.1). This is
where platform security issues come from. We distinguish
two categories: protection against malicious code, and pro-
tection against malicious hosts. Since Globe object code is
executed on Globe object servers, it is here where platform

security issues are handled.

One of the aims of our research is to create a highly se-
cure object server that prevents malicious replicas from cor-
rupting the host on which they run. Knowing they can host
other people’s code without danger for their own machine,
would convince more people to share their computing re-
sources and run DSO replicas even if they have no prior
knowledge of the owners of these DSOs. Our ultimate goal
is to create a large peer-to-peer community running Globe
object servers. In such a community, object server owners
could negotiate to host each other’s DSO replicas (we are
investigating mechanisms that could automate such negoti-
ation, but this is outside the scope of this paper).

As for a motivating example, consider creating a Globe
object modeling a popular Web site and placing replicas of
this DSO on hosts on the Internet according to where most
of the download requests come from [20]. A community
of Globe users running Globe servers that facilitate such
Web-site mirroring would, in fact, create a peer-to-peer ver-
sion of a Content Delivery Network. Mirroring Web docu-
ments is only one possible application for a Globe commu-
nity and other types of applications that could also benefit
from adaptive replication algorithms easily come to mind.

Looking at such possible applications, we realize that
while the host protection from malicious replica code is es-
sential for the acceptance of such an architecture, it is the
reverse problem - protecting replicas from malicious hosts -
that would ensure the usability of the system. For example,
for Web page mirroring, we need to ensure that an object
server that has agreed to host a mirror replica will not mali-
ciously alter the pages it is hosting.

6.1 Protection against Malicious Code

With respect to the problem of protecting of hosts against
malicious mobile code, our approach is a combination of
sandboxing and code signing. We want to emphasize that
the focus of this work is not designing new sandboxing
tools, but rather using existing ones. We have decided to
implement the Globe object server in Java 2.0, which pro-
vides extensive support for per-class and per-package con-
figurable security policies, but using other secure sandbox-
ing environments, such as Janus [11], should produce sim-
ilar results. We require mobile Globe object code to be
signed with the object’s private key, and we make use of the
Java protection domains [12] to associate permissions with
code packages signed with different keys. We differentiate
between object code actively installed by the user running
the object server, and replicas that are installed on the server
as a result of remote requests (when a DSO wants to place
one of its replicas on that particular server). The user run-
ning the object server installs new local objects whenever
he wants to use a new DSO. Recall that before using a DSO

a user has to create a name binding between that object’s
OID and the human-readable name of the application mod-
eled by that DSO. It is during this name-binding process that
the user also sets the local permissions for the DSO, namely
what set of actions the DSO’s local object is allowed to per-
form on the user’s machine. This local security policy is
then associated with the object key derived from the OID,
5o when the object code signed with that key is downloaded,
that security policy is automatically associated with it. By
default, the security policy for DSO’s local objects is quite
restrictive, it does not allow any access to the file system or
to other system resources such as the printer. It is up to the
object server owner to grant more rights to a local object.
For example, the local object for a DSO modeling a video-
on-demand application might be allowed to write data in the
/tmp directory for buffering purposes.

The other case when mobile object code is installed is
when a DSO replica with administrative privileges decides
to start another replica on some object server. Before the
object code for the new replica is installed, there is a negoti-
ation phase between the object server and the administrative
replica. The administrative replica has to prove that (1) it is
part of the identified DSO, and (2) it is authorized to cre-
ate a new replica for that DSO. The administrative replica
will generally need to negotiate with the object server about
resource usage, such as required memory, storage, CPU ca-
pacity, and network bandwidth. Note that our scheme easily
permits differentiating between objects by associating per-
missions with OIDs. For example, certain DSOs may be
given permission to access part of the server’s file system,
while others may be prohibited to be hosted at all.

Once this negotiation is completed, the administrative
replica needs to produce a replica certificate for the replica
to be created. This new replica certificate will contain the
object server’s public key together with the bitmap corre-
sponding to the object methods the new replica is allowed
to execute.

6.2 Protection against Malicious Hosts

The second problem we are trying to solve is how to per-
form trusted computations on an untrusted host. We believe
the general problem is extremely hard, possibly intractable.
Despite new protection techniques, such as code cloaking,
and a variety of hardware solutions, illegitimate modifica-
tion of software is still a major issue. Since it seems unfea-
sible to solve the general problem, in Globe we will focus
on techniques that reduce the threat of catastrophic DSO
state corruption due to replicas running on malicious hosts.
In other words, we assume we can always have malicious
replicas, but we concentrate on minimizing the negative ef-
fect such replicas can have on the DSO’s functionality.

One way to achieve this protection is through the reverse

access control mechanism described earlier. Recall that
replicas are issued replica certificates that specify which of
the DSO’s methods they are allowed to execute. In this way,
execution of security-sensitive actions can be restricted to
replicas running only on trusted hosts. For example the ob-
ject owner can select a trusted group of core replicas, and set
a security policy where all methods that change the DSQO’s
state are executed only on these core replicas. The core
replicas can propagate state updates to a much larger set
of less-trusted cache replicas. Users can perform read op-
erations on the cache replicas. Although malicious cache
replicas can choose to ignore state updates, or even return
bogus data as answers to read requests, the harm they can
do is limited for two reasons. First, such bogus data is sent
only to the fraction of users that are connected to the mali-
cious cache, and a malicious cache cannot propagate bogus
state updates to other caches, since the reverse access con-
trol mechanism allows only core replicas to execute write
requests (of course, there are applications for which a great
deal of harm can be done sending bogus data even to a small
percentage of the users - stock quotes for example - in such
a case, different protection mechanisms need to be consid-
ered).

Another mechanism that can be used to achieve secu-
rity guarantees for methods executed by untrusted replicas
is state signing. For example, a Globe-powered Web site
(as described in [27]) can have all its individual documents
time-stamped and signed with the object’s key, so that for
each GET request, the client’s semantics subobject would
check to make sure the untrusted cache replica is returning
a properly signed fresh document, with the same title as the
link being followed. Through state signing we can achieve
highly secure distributed objects, since now all the harm
that malicious replicas can do is denial of service. No cache
will be able to produce a bogus document, because it would
have to fake the DSQO’s signature. However, state signing
is rather application specific. If the state is large, as is the
case, for example, with Web sites, we need to find a way to
partition that state so that each part can be signed separately.
Partitioning needs to be done in units that match the result
values of read operations, which is not always possible as
is easily seen by considering a result value that needs to be
computed such as an average value. Nevertheless, we be-
lieve that in many cases, state signing in combination with
the more general reverse access control mechanism is a very
useful tool in making certain classes of Globe applications
more secure.

Finally, we are investigating how a reputation or user-
rating mechanism can be used to offer security guarantees to
running replicas on untrusted servers [19]. A highly trusted
server can be granted more permissions for executing meth-
ods (expressed in the replica certificate) than a less-trusted
server. The problem is that we need to be able to securely

check whether trust in a server is still justified. This mech-
anism is subject of current research.

7 Secure Method I nvocation

Before starting our discussion about secure method invo-
cation, let us first formally define this concept in the Globe
context. A method invocation M issued by a user U and to
be executed on a replica R is said to be secure if the follow-
ing conditions are met:

e U is allowed to invoke M under the DSO’s security
policy (i.e., U has been issued a user certificate with
the bit corresponding to M set).

e R is allowed to execute M under the DSO’s security
policy (i.e., R has been issued a replica certificate with
the bit corresponding to M set).

o all the network communication between U and R takes
place through a channel that preserves data integrity,
origin and destination authenticity, and possibly also
Secrecy.

In this context, we say that a user proxy and a replica
have established a secure channel if they have exchanged
and verified each other’s certificates and have established a
communication channel that preserves data integrity. Such
secure channels are established between security subobjects
of local representatives on top of the regular communication
channels established at the communication subobject level.
They are identified through channel IDs.

For a user, invoking methods on a DSO involves only
calling those methods on his proxy. The replication, com-
munication and security subobjects of the user proxy work
together to transform the user requests into remote invoca-
tions, send them to replicas allowed to handle them, wait
for the return values and present these values to the user.
We will look at this process in more detail and explain what
mechanisms are employed to make it secure.

The user invokes a DSO method by using the interface
presented by the control subobject of his proxy. The control
subobject first makes sure the user is allowed to invoke that
method by inspecting the user certificate (this can also help
in providing personalized user interfaces - only show what
has a chance of succeeding). This check can be easily cir-
cumvented by a malicious user, and is in place only to warn
the user if he by mistake invokes forbidden methods. As we
will show below, a DSO does not need to trust the user’s
local object. If the method call is allowed, the control sub-
object then marshals the method and parameters and passes
them to the replication subobject. The replication subobject
decides whether the method invocation can be performed
locally, or whether it needs to be sent to another replica.

In many cases, user proxies will not even have a semantics
subobject, so the request will have to be executed some-
where else. The replication subobject looks at the request,
and asks the security subobject to establish a secure channel
with a replica that is allowed to execute such a request. The
security object first searches in a list of established secure
channels to determine whether such a replica is already in
that list. If it is, it simply returns the corresponding chan-
nel 1D to the replication subobject, which uses it to send the
request through the communication subobject.

The other possibility is that none of the replicas with
which the user proxy has established secure channels is al-
lowed to execute that particular method request. In this
case, the security subobject has to find such a replica, ei-
ther using the Globe Location Service or some other direc-
tory service provided by the object itself. As we mentioned
earlier, we do not have to trust any of these services, they
only provide hints that help the proxy find a replica allowed
to execute certain methods. Once such a candidate replica
is identified, it will have to prove that it indeed has these
rights. Such a proof is part of the protocol for secure chan-
nel establishment, which is outlined in Figure 7.

1. Method invocation X .
L ocation Service

(by the user) User Proxy
¥

Control 2. Check user Security Subobject
subobject permissions
Secure Channels Table

3. Marshall request l

Replication 4. Request 00111101
subobject ‘secure channel

5. Find replica allowed
o execute request

Replica
7. Send request over €p
network channel
6. Establish
, O Edablish

T R 8 Encrypt and sign secure channl
subobject network packet

!

| 9. Network datatransfer ?

Figure 5. Transforming a user request into a
remote method invocation

This protocol is derived from the ISO/IEC 9798-3 mu-
tual authentication protocol [30]. We have chosen to use a
challenge-response 4-pass protocol instead of a more com-
pact 3-pass one based on timestamps because in this way
our security does not depend on synchronized clocks, which
some clients may not have. Note that the replica commits
to expensive public key cryptographic operations only af-
ter the proxy has done the same. This provides basic pro-
tection against denial of service attacks. Also, the shared
key is generated by the replica since we assume a user may
want to install a lightweight version of the object server that
may not implement a very strong random number generator
algorithm.

After the completion of the above protocol, Key becomes
the shared secret between the user proxy and the replica and
can be used to protect the integrity and secrecy of the data
further exchanged by the two parties. Once a secure chan-

nel has been established with the replica, and assuming that
the replica is allowed to execute the requested method, the
user proxy’s security subobject can return this new chan-
nel ID to the replication subobject which will use it to send
the request through the communication subobject. Figure 5
illustrates the steps described so far.

Replica
8. Return result

Control Pl LU LN Semantcs
subobject —————— T
6. Execute request

7. Application-specific
security processing

9. Marshall
result

Security Subobject
User Proxy 5. Unmarshall

request

Replication
-
subobject

10. Send result

over network 00100101
channel 01110111
3. Handle 11010011
request
11. Network data transfer

[Communication 2. Decrypt
-«
subobject and authenticate

1. User proxy sends request over the network request

Secure Channels Table

Figure 6. DSO replica handling a user request

At the other end, things happen as shown in Figure 6.
Once a replica has established a secure channel with a user
proxy, it will store the bitmap from the user certificate in
the table of secure channels in the security subobject. For
any method invocation request coming in through that chan-
nel, the replication subobject asks the security subobject to
check the user’s permissions. Once the request is approved,
the replication subobject passes the marshaled request to the
control subobject, which unmarshalls it and passes it to the
semantics subobject. After the method is executed, the re-
turn value is passed back to the caller over the same secure
channel.

Initial Data
User -U
C, - user'scertificate

Replica- R
Cg - replica's certificate

Y, /%, - user's public/private keys Yg! %; - replica's public/private keys

Protocol

User -U Replica- R

Cr , Noncel

<R, Noncel, Nonce2 >Xu

<U, Nonoez, <R, Key>Y >
u R

Figure 7. Protocol for establishing a shared
key between a user and a replica

8 Redated Work

In the past decade, distributed systems security has re-
ceived considerable attention. What makes our design dif-
ferent compared to other work in this area is the fact that
we explicitly deal with security problems that arise from
dynamically replicating objects on a possibly large set of
servers with various degrees of trustworthiness. All the se-
curity architectures we are aware of consider at most repli-
cation of objects in the same administrative domain, or in
mutually trusted domains. The distinctive feature of our ar-
chitecture is that object replicas can be placed on trusted,
but also on less trusted hosts, and replica functionality can
be restricted depending on how much trust is put on the host
that is running the replica’s server.

One of the most comprehensive security models is the
one designed for CORBA [3]. The CORBA model has pro-
visions for user authentication, authorization, access con-
trol, security of network traffic, auditing, non-repudiation,
and security administration. Security itself is implemented
in the form of application-specific policy objects, which are
invoked when a remote request is dispatched or received.
While the CORBA security design is extremely flexible, it
is also server centric and may be less scalable over wide-
area networks. Furthermore, the CORBA model does not
deal at all with mobile code, and has little support for inter-
domain security.

What makes the Java [12] security design close to our
model is the fact that it explicitly considers the issue of pro-
tecting hosts against malicious mobile code. In fact, the
platform security part of our design can be implemented
using the security features offered by Java 2.0. However,
there are a series of security issues handled by Globe which
are outside the Java model, such as user authentication, and
support for object replication.

Two other projects related to our security design are
Globus [10] and Legion [29]. Globus is a distributed sys-
tem designed for computational grids. Its security model
gives extensive support for inter-domain user authentication
and remote-process creation, but it is less concerned with
trust models for hosts, so in the end users have little con-
trol on which machines their code is running. The reverse
access control mechanisms in Globe offer a lot more flexi-
bility from this point of view. Finally, the Globus security
architecture aims “to provide a thin layer of homogeneity
to tie together disparate and, often incompatible, local secu-
rity mechanisms”, which in the end may turn out to be very
restrictive.

Legion is another effort in the scientific computation
area. There are some similarities between Globe and Le-
gion. For example, they are both object based, and both
make use of self-certified object identifiers. However Le-
gion does not deal with dynamic object replication, and in-

troduces a more high-level security design, stressing flexi-
bility and extensibility, but less architecture and protocols.

OASIS [14] is a distributed security architecture centered
on role-based access control. Principals can acquire new
roles based on roles they already have and their credentials.
OASIS also includes a Role Definition Language that can be
used for representing security policies based on these roles.
However, OASIS does not explicitly deal with replicated
applications, and has no support for reverse access control.

Finally, in the past few years we have seen an explosion
of peer-to-peer (P2P) applications that have sprung out ei-
ther as academic projects (SETI@home [4], Publius [28]),
or as freeware tools to facilitate media exchange (Napster
and Gnutella). What makes such applications interesting is
the fact they rely on storage and computation on unsecure
platforms and, despite traditional security wisdom, manage
to get reasonably accurate results. Much effort is put into
models and mechanisms by which the security of these sys-
tems can be improved. For example, in OceanStore [16],
content can be integrity-checked by clients, whereas other
systems concentrate on anonymity [22] or content traceabil-
ity [7]. Another interesting attempt to provide security and
privacy for a P2P architecture is described in [8]. How-
ever, many of these systems put emphasis on immutable
files, which may severely restrict the area of possible ap-
plications. In general, research on secure P2P systems is
still in its infancy.

9 Conclusion

In this paper we have presented the security architecture
for Globe, a distributed system based on replicated shared
objects. Our design allows defining per-object security poli-
cies, fine-grained (per method) access control and does not
rely on any centralized authority that would limit the scala-
bility of the system. Furthermore, we deal only with general
security services (since Globe is a middleware) and allow
application-specific features to be built on top of these ser-
vices. Our architecture makes use of well-proven security
techniques to address a range of security issues, some com-
mon to distributed systems, and others specific to Globe.
The fact that Globe objects can be dynamically replicated
and simultaneously run on multiple hosts introduces a series
of new security problems such as reverse access control for
object replicas and protection of distributed objects against
malicious hosts running instances of their code. These is-
sues have not been extensively addressed in previous work,
and form the major contribution of the research described
in this paper.

As for future work, we plan to integrate our security de-
sign in the Globe Object Server prototype we have already
built. For implementing the platform security features de-
scribed in Section 6, we plan to use the facilities offered

by Java 2.0 (per-class protection domains), but intend to
implement the same functionality using some other sand-
boxing tool such as Janus. Finally, we plan to integrate
a reputation/rating mechanism as a service offered by the
Globe middleware, and investigate whether such a mech-
anism could efficiently filter out malicious Globe Object
Servers.

References

[1]

(2]

(3]
[4]

[5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

Secure Hash Standard. FIPS 180-1, Secure Hash Stan-
dard, NIST, US Dept. of Commerce, Washington D. C. April
1995,

The Common Object Request Broker: Architecture and
Specification, revision 2.6. www.omg.org, Oct 2000. OMG
Document formal/01-12-01.

CORBA Security Service Specification, Version 1.7.
www.omg.org, March 2001. Document Formal/01-03-08.
D. Anderson. Peer-to-Peer: Harnessing the Power of Dis-
ruptive Technologies, chapter 5. O’Reilly&Associates, Se-
bastopol, CA 95472, July 2001.

A. Baggio, G. Ballintijn, M. van Steen, and A. Tanenbaum.
Efficient Tracking of Mobile Objects in Globe. The Com-
puter Journal, 44(5):340-353, 2001.

A. Bakker, M. van Steen, and A. Tanenbaum. From Re-
mote Objects to Physically Distributed Objects. In Proc. 7th
|EEE Workshop on Future Trends of Distributed Computing
Systems, pages 47-52, December 1999.

A. Bakker, M. van Steen, and A. Tanenbaum. A Law-
Abiding Peer-to-Peer Network for Free-Software Distribu-
tion. In Proc. IEEE Int'l Symp. on Network Computing and
Applications, Cambridge, MA, February 2002.

F. Cornelli, E. Damiani, S. D. C. di Vimercati, S. Paraboschi,
and P. Samarati. Choosing Reputable Servents in a P2P Net-
work. In Proc. of the Eleventh Int’| WAMAV Conference, Hon-
olulu, HI, May 2002.

G. Eddon and H. Eddon. Inside Distibuted COM. Microsoft
Press, Redmond, WA, 1998.

|. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A
Security Architecture for Computational Grids. In Proc.
ACM Conference on Computer and Communications Secu-
rity, pages 83-92, San Francisco, CA, 1998.

I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A
Secure Environment for Untrusted Helper Applications. In
Proc. 6th Usenix Security Symposium, San Jose, CA, 1996.
L. Gong. Inside Java 2 Platform Security. Addison-Wesley,
Palo Alto, CA 94303, 1999.

A. Grimsaw and W. Wulf. Legion - A View from 50000
Feet. In Proc. 5th IEEE Symp. on High Performance Distr.
Computing, Aug 1996.

J. H. Hine, W. Yao, J. Bacon, and K. Moody. An architecture
for distributed OASIS services. In Proc. Middleware 2000,
pages 104-120, Hudson River Valley, NY, April 2000.

R. Kruger and J. Eloff. A Common Criteria Framework for
the Evaluation of Information Technology Security Evalua-
tion. In IFIP TC11 13th International Conference on Infor-
mation Security, (SEC'97), pages 197-209, 1997.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An Architecture for
Global-scale Persistent Storage. In Proc. 9th ACM ASPLOS
pages 190-201, Cambridge, MA, November 2000. ACM.

J. Leiwo, C. Hanle, P. Homburg, C. Gamage, and A. Tanen-
baum. A Security Design for a Wide-Area Distributed Sys-
tem. In Proc. Second International Conference Information
Security and Cryptology (ICISC’99), volume 1787 of LNCS
pages 236-256. Springer, 1999.

D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Witchel.
Separating Key Management from File System Security. In
Proc. 17th Symp. on Operating Systems Principles, pages
124-139, Kiawah Island, SC, 1999.

G. Pierre and M. van Steen. A Trust Model for Coopera-
tive Content Distribution Networks. Technical report, Vrije
University, Amsterdam, 2001.

G. Pierre, M. van Steen, and A. Tanenbaum. Dynamically
Selecting Optimal Distribution Strategies for Web Docu-
ments. |EEE Transactions on Computers, 51(6):637-651,
2002.

B. Popescu and A. Tanenbaum. A Certificate Revocation
Scheme for a Large-Scale Highly Replicated Distributed
System. Technical report, Vrije University, Amsterdam,
2002. In preparation.

M. K. Reiter and A. D. Rubin. Anonymous Web transactions
with Crowds. Communications of the ACM, 42(2):32-48,
1999.

R. L. Rivest and B. Lampson. SDSI — A Simple Distributed
Security Infrastructure. Presented at CRYPTO’96 Rumpses-
sion, 1996.

D. Schmidt and C. Vinoski. Object Adapters: Concepts and
Terminology. C++ Report, 9(11), November 1997.

M. van Steen, F. Hauck, P. Homburg, and A. Tanenbaum.
Locating Objects in Wide-Area Systems. |EEE Commun.
Mag., pages 104-109, January 1998.

M. van Steen, P. Homburg, and A. Tanenbaum. Globe: A
Wide-Area Distributed System. IEEE Concurrency, pages
70-78, January-March 1999.

M. van Steen, A. Tanenbaum, I. Kuz, and H. Sips. A Scal-
able Middleware Solution for Advanced Wide-Area Web
Services. Distributed Systems Engineering, 6(1):34-42,
March 1999.

M. Waldman, A. D. Rubin, and L. F. Cranor. Publius: A Ro-
bust, Tamper-Evident, Censorship-Resistant, Web Publish-
ing System. In Proc. 9th Usenix Security Symposium, pages
59-72, Denver, CO, August 2000.

W. A. Wulf, C. Wang, and D. Kienzle. A New Model of
Security for Distributed Systems. Technical Report CS-95-
34, 10, 1995.

R. Zuccherato. ISO/IEC 9798-3 authentication SASL mech-
anism. RFC3163, August 2001.

