
Distributed Shared Objects as a Communication Paradigm

Philip Homburg, Maarten van Steen, Andrew S. Tanenbaum
Vrije Universiteit, Amsterdam

Abstract. Current paradigms for interprocess communication are not sufficient to describe the exchange
of information at an adequate level of abstraction. They are either too low-level, or their implementa-
tions cannot meet performance requirements. As an alternative, we propose distributed shared objects
as a unifying concept. These objects offer user-defined operations on shared state, but allow for efficient
implementations through replication and distribution of state. In contrast to other object-based models,
these implementation aspects are completely hidden from applications.

1 Introduction

Communication can be viewed at different levels of abstraction. At a high level, it appears as an exchange
of information between processes. These processes are either contained in a single parallel or distributed
application, or may otherwise belong to different applications that need to communicate. At a low level,
communication appears as the mere transfer of bits from one address space to another.

Parallel and distributed applications require support for expressing communication at a high level of ab-
straction. Different kinds of support are currently provided.

There are numerous communication libraries such as PVM [16], that offer straightforward message-
passing facilities across networks. Although such communication facilites are generally efficient, they
provide a relatively low level of abstraction making application development unnecessarily hard.

At a more abstract level, several systems have been developed that support shared memory communi-
cation in multicomputer environments (see e.g. [8, 14]) hiding the intricacies related to network com-
puting. The problem with these systems is that they only provide read and write operations for trans-
ferring bytes.

More recently, much effort is being put into the development of object-based systems by which com-
munication is expressed in terms of method invocations at (possibly) remote objects [3]. The price
for raising the level of abstraction in this case, is a loss of communication performance. For many
applications, this is not acceptable.

To alleviate these problems, we propose the use of distributed shared objects for structuring distributed
systems and expressing communication. Our model uses the concept of a shared object as the means for
encapsulating communication by providing user-defined operations on shared state. In contrast to most ex-
isting object-based models, we combine the concept of shared objects with the means for realizing efficient
implementations through distribution and replication of state, but without violating the principles of encap-
sulation. Our approach offers (1) a single, high-level communication paradigm that can be used by many
applications, (2) simplifies interactions between these applications, and (3) at the same time allows for effi-
cient, and possibly application-oriented implementations of that communication.

2 Some basic requirements

Dealing with the wide spectrum of communication demands in complex, wide area systems requires high-
level primitives with emphasis on optimizing the ease of use of communication facilities, along with efficient
use of those facilities. Realizing efficient communication requires that we look at three aspects: maximizing
the bandwidth offered to an application, minimizing latencies observed by the application, and balancing the



processing (CPU time) at various machines. Of these three, latency and processing are more important than
bandwidth for two reasons:

Even though bandwidth can be increased effectively (as illustrated by gigabit networks), decreasing
latency is more difficult, either because of software overhead, or due to the speed of light.

In cases where the demands of individual requests can be met easily, we often still have to deal with
a large number of such requests, as is seen in object-based systems.

The importance of focusing on latency and processing is exemplified by proposals such as those for late-
binding RPC [13], or those for shipping server code to clients as is the case with Java [15].

To effectively deal with latency, processing, and bandwidth requirements, we need a high-level descrip-
tion of the application’s intrinsic communication requirements independent of network protocols, topology,
etc. For example, for mailing systems we have the requirement that when a message is sent, the receiver is
notified when it is delivered so that it can subsequently be read. These requirements state only that when the
message is to be read, it should actually be available at the receiver’s side. This means that message trans-
fer can take place before notification, but possibly also later. It is not an intrinsic requirement that message
transfer has taken place before notification.

In general, we can state that an application developer should be allowed to formulate just these require-
ments, and that he should be shielded from issues dealing with:

The underlying communication technology and topology.

Placement of data.

Replication of data.

Management of the consistency of the data.

Management of the persistence of the data.

There are two main reasons for trying to isolate application programmers from having to deal with data
placement, replication, and consistency. The first reason is a software engineering one: replicating data and
maintaining the consistency of data is complex and the algorithms used are not application-specific. This
suggests that support for replication should be provided by system software.

The second reason is that good choices for data placement, replication strategies, and consistency guar-
antees depend on the environment in which the application is deployed. For example, if an application is
used to share information on a single LAN, it is possible to provide very strict consistency guarantees and
data placement is often not an issue. However, if the application is also used on a wide area network, the
situation is quite different. In that case, data placement is an issue, replication has to be used to increase
availability and fault-tolerance, and due to the higher latency, it might not be practical to provide strict con-
sistency. Consequently, the application programmer is confronted with a much harder implementation effort
compared to the local area case. It may even be so that the application’s semantics have to be weakened in
order to be able to come to a satisfactory implementation.

In this line of thought, we can say that to benefit from specific circumstances as offered by the underlying
communication network, it is important to support runtime selection of implementations for communication
protocols, replication strategies, and consistency guarantees.

Finally, we need support for security, interoperability, naming, and system management. We require
location-independent, worldwide, user-chosen names. This means that the control of naming information
is left to the users of the system, that it is independent of the information’s placement, and that it can be
accessed from all over the world under the same name, provided that security rules are not violated.

3 Current paradigms for communication

In order to see how distributed shared objects can considerably alleviate current communication problems,
we make the following distinction between different communication paradigms.



Synchronous data exchange. First, we distinguish paradigms centered around synchronous exchange of
data. With synchronous we mean that data can only be exchanged if both the sending and receiving processes
are executing at the same time. Examples include low-level data exchange based directly on TCP and UDP
implementations, distributed computing based on communication libraries such as PVM [16] and MPI [10],
group communication systems such as ISIS [1], and RPC-based systems like DCE [12].

Synchronous data exchange is primarily concerned with moving data from one process to one or more
other processes. Naming is provided at the granularity of hosts or processes, but not individual data items
or objects. The main limitation is that the data placement, replication, consistency, and persistency manage-
ment are left to the application. This paradigm hides the topology of the underlying network and provides
a virtual network in which every host (or process) is connected to every other host. Unfortunately, in syn-
chronous data exchange it is hard to hide latency, and the application developer has to take explicit measures
to handle it.

Predefined operations on shared state. The second class we distinguish contains paradigms centered
around a fixed set of operations on shared state (often just read and write operations). Typical examples
of systems that fall into this class are network file systems [5], and distributed shared memory (DSM) im-
plementations, originating with the work on Ivy [6].

Solutions in this class generally offer a small set of low-level primitives for reading and writing bytes.
These primitives generally do not match an application’s needs. For example, in file systems data must of-
ten be explicitly marshaled, while in heterogeneous DSM systems, special measures have to be taken by the
application developer (see e.g. [18]). In addition, attaining data consistency is often not that easy. For exam-
ple, file systems generally offer only course-grained locks or otherwise expensive transaction mechanisms.
In DSM systems, the situation can be even worse as memory consistency is often relaxed for the sake of
performance [9]. Although this does allow a reasonable transparency of replication and location of data, the
application developer is confronted with a model that is much harder to understand and to deal with.

Current distributed file systems hardly support replication transparency, although the placement of files
is generally hidden for users. However, it is mainly the limited functionality provided by file systems that
poses severe problems. For example, streams as needed to communicate continuous data such as voice and
video is hardly supported.

Operations on remote shared objects. Finally, we distinguish paradigms centered around user-defined
operations on remote state, such as offered by objects in Corba [11] and Spring [7], and in models such as
Network Objects [2].

Solutions that fall within this paradigm implement remote objects, where a distinction is made between
clients and servers. Clients issue requests (invoke methods), and servers implement methods and send back
replies. This limits communication patterns to the asymmetrical client-server model, for example prohibiting
clients to communicate directly among themselves. A disadvantage of remote objects is that every method
invocation on a remote object results in the exchange of a request and a reply message between the client
and the server. This problem is typically tackled by ad-hoc caching strategies at the client side.

Of the cited systems, Network Objects offers a pure remote object system. Corba uses request brokers
to handle requests. In theory, these request brokers can hide replication and fault-tolerance from the appli-
cation, but general efficient solutions that do so have not yet been proposed. Spring offers subcontracts,
which do provide support for transparent caching and replication, but which seem to be very limited when it
comes to adaptability. For example, replication is handled by mapping an object reference to several object
instances, and maintaining the mapping at the client side. This approach will never scale.

Our goal is to combine the advantages of each paradigm:

The efficiency of implementations for synchronous data exchange.

The transparency of actual communication as it appears through read and write operations on shared
state.

The possibility for user-defined operations on shared state as allowed in object-based systems.

In the following section we introduce distributed shared objects as a way to combine these advantages.



4 Distributed shared objects as a unifying communication paradigm

4.1 The concept of a distributed shared object.

A distributed shared object [4, 17] offers one or more interfaces, each consisting of a set of methods. Ob-
jects in our model are passive; client threads use objects by executing the code for their methods. Multiple
processes may access the same object simultaneously. Changes to an object’s state made by one process are
visible to the others. An important distinction with other models is that, in our case, objects are physically
distributed, meaning that active copies of an object’s state can, and do, reside on multiple machines at the
same time. However, all implementation aspects, including communication protocols, replication strategies,
and distribution and migration of state, are part of the object and are hidden behind its interface.

Our approach makes distributed shared objects quite different from remote objects in another important
way: there is no a priori distinction between clients and servers. We take the approach that processes that
communicate through method invocation on the same object, are treated as equals. In particular, they are
said to jointly participate in the implementation of that object.

The main advantages of distributed shared objects are:

A distributed object provides well-defined interfaces to its users (applications). The user is isolated
from the way that communication, replication, and consistency, are implemented.

Persistence and communication are completely encapsulated in a distributed object. This means that
an implementation of a distributed is not limited to a small set of communication protocols or consis-
tency algorithms built into a runtime system.

We allow object implementations to be loaded at runtime.

Invocations on distributed objects are just ordinary object invocations: a process has a local imple-
mentation of the object’s interface in its own address space. In other words, to a process, a distributed
shared object appears the same as a local object.

In a sense, distributed objects are a collection of local objects that communicate and provide the user of
the object with the illusion of shared state. This is an improvement over the remote object model because it
is not restricted to a small set of predefined communication patterns.

Figure 1: A distributed shared object

Figure 1 shows a distributed object and its im-
plementation. In this example, the distributed ob-
ject is used in three address spaces. Each of those
address spaces has a local object that participates
in the distributed object. These local objects use
the communication facilities of a network to exe-
cute operations of the distributed object, and to keep
the object consistent.

The implementation of local objects is sepa-
rated from an application through an explicit inter-
face table consisting of method pointers that is in-
stantiated when the process binds to the object, but
whose content may change over time. This is an im-
portant aspect of our model, as it allows us to dy-
namically adapt the local implementation of a dis-
tributed object, without affecting its interface to the
applications that invoke its methods.

Using this approach, the implementation of a
distributed object, in terms of communicating local
objects, can use arbitrary communication patterns, but can also encapsulate data placement, replication, etc.
In other words, the approach allows for efficient implementations of different communication paradigms.
Also, because interfaces are entirely user-defined, we are not confined to a limited set of predefined opera-
tions. Our framework will thus allow us to combine the advantages of the three communication paradigms
discussed in Section 3, and at the same time avoids their disadvantages.



4.2 Making communication transparent

The model described so far does not isolate the application developer from communication technology, data
placement, replication, etc. The reason is that the local objects which actually implement a distributed object
still have to be developed. To solve this problem we propose a standard organization for the implementation
of a distributed object. This organization is shown in Figure 2.

Figure 2: The organization of a local object.

In this architecture, the developer of a dis-
tributed object is isolated from communication,
replication and consistency management by what
we have called a communication object and a
replication object. The developer is responsible
for the implementation of the semantics object
which captures the actual functionality of the dis-
tributed object. The replication and communication
objects are simply selected from a library. The con-
trol object is responsible for handling the interac-
tion between the semantics object and the replica-
tion object as the result of method invocation by an
application. It is expected that the control object
can be generated automatically, similar to the gen-
eration of RPC stubs.

This organization results in a local object that
exports methods that operate on internal state.
Based on the interface to the semantics object a con-
trol object is generated. The control object syn-
chronizes access to the distributed object by seri-
alizing accesses to the semantics object to prevent
race conditions and by invoking the replication ob-
ject to keep the state of the distributed object consistent. The control object exports the same interface as the
semantics object.

The control object implements a method invocation as three successive steps. The first step consists of
invoking a start method at the replication object, effectively giving it control over the execution of the second
step, which deals with global state operations. There are three alternatives for the second step.

The first alternative handles remote execution. The control object passes the marshaled arguments of
the method invocation to the replication object. The replication object proceeds execution according
to its specific replication protocol (such as, for example, simple RPC, master/slave replication, two-
phase commit, voting, etc.), effectively doing a remote method invocation. It returns the marshaled
results to the control object.

The second alternative is local execution. The control object simply invokes the corresponding method
on the semantics object.

The third alternative is active replication with a local copy. The control object provides the replication
object with the marshaled arguments of the method invocation. The replication object executes the
protocol to send the arguments to all replicas and to achieve synchronization with the other replicas.
Next, the control object invokes the appropriate method on the semantics object.

Finally, as a third step, the control object invokes the finish method on the replication object. This method
invocation gives the replication object the opportunity to update remote replicas.

To be practically useful, the algorithm described above has to be extended in two ways: firstly, the control
object and replication object have to recognize different kinds of operations, for example, whether operations
modify the state of the object or not. Furthermore, it is necessary to distinguish operations that modify only
part of the global state, which may happen in the case of partitioned or nested objects.

Secondly, some extensions are needed to deal with synchronization on conditions. Since operations on
the semantics object are serialized (through locking), they are not allowed to block for a long time. Our
approach is to support guarded operations: the semantics object can provide for blocking on a condition



by returning status information to the control object after possibly undoing any changes made so far. The
control object will suspend the execution of the operation until the next modification of the state, after which
another attempt to execute the operation can be made.

As we have already mentioned, the model of shared state with operations on that state leads to passive
objects: activity is provided by threads running in processes. To integrate communication cleanly in this
model we associate pop-up threads with incoming messages: when a message arrives, the communication
object will create a new thread to handle the incoming message. In this new thread the communication object
invokes a method on the callback interface of the replication object. The replication object calls the callback
interface of the control object with the marshaled arguments of a request.

5 Conclusions

In this paper we have shown how distributed objects can provide a high-level interface for information shar-
ing and exchange between processes. Separating the application from the implementation of a distributed
object allows efficient implementations and dynamic adaptations to different situations. A standard architec-
ture for implementing distributed objects isolates the object developer from data placement and replication.

References

[1] K.P. Birman and R. van Renesse, (eds.). Reliable Distributed Computing with the Isis Toolkit. IEEE Computer
Society Press, Los Alamitos, Calif., 1994.

[2] A. Birrell, G. Nelson, S. Owicki, and E. Wobber. “Network Objects.” In Proc. 14th Symposium on Operating
Systems Principles, pp. 217–230, Asheville, North Carolina, December 1993. ACM.

[3] R.S. Chin and S.T. Chanson. “Distributed Object-Based Programming Systems.” ACM Computing Surveys,
23(1):91–124, March 1991.

[4] P. Homburg, L. van Doorn, M. van Steen, A. Tanenbaum, and W. de Jonge. “An Object Model for Flexible Dis-
tributed Systems.” In Proc. 1st Annual ASCI Conference, pp. 69–78, Heijen, The Netherlands, May 1995.

[5] E. Levy and A. Silberschatz. “Distributed File Systems: Concepts and Examples.” ACM Computing Surveys,
22(4):321–375, December 1990.

[6] K. Li and P. Hudak. “Memory Cache Coherence in Shared Virtual Memory Systems.” ACM Transactions on
Computer Systems, 7(3):321–359, November 1989.

[7] J. Mitchell et al. “An Overview of the Spring System.” In Proc. Compcon Spring 1994. IEEE, February 1994.
[8] A. Mohindra and U. Ramachandran. “A Comparative Study of Distributed Shared Memory Systems.” Technical

Report GIT-CC-94/35, Georgia Institute of Technology, Atlanta, August 1994.
[9] D. Mosberger. “Memory Consistency Models.” Operating Systems Reviews, 27(1):18–26, January 1993.

[10] MPI Forum. “Document for a Standard Message-Passing Interface.” Draft Technical Report, University of Ten-
nessee, Knoxville, Tennessee, December 1993.

[11] Object Management Group. “The Common Object Request Broker: Architecture and Specification, version 1.2.”
Technical Report 93.12.43, OMG, December 1993.

[12] OSF. “Distributed Computing Environment.” Technical Report OSF-DCE-PD-1090-4, Open Software Founda-
tion, Cambridge, MA, January 1992.

[13] C. Partridge. Late-Binding RPC: A Paradigm for Distributed Computation in a Gigabit Environment. Ph.D. thesis,
Harvard University, 1992.

[14] M. Stumm and S. Zhou. “Algorithms Implementing Distributed Shared Memory.” Computer, 23(5):54–64, 1990.
[15] Sun Microsystems, Mountain View, Calif. The Java Language Specification, May 1995.
[16] V.S. Sunderam. “PVM: A Framework for Parallel Distributed Computing.” Concurrency: Practice and Experi-

ence, 24(4):315–339, December 1990.
[17] M. van Steen, P. Homburg, L. van Doorn, A.S. Tanenbaum, and W. de Jonge. “Towards Object-based Wide Area

Distributed Systems.” In L.-F. Cabrera and M. Theimer, (eds.), Proc. 4th International Workshop on Object Ori-
entation in Operating Systems, pp. 224–227, Lund, Sweden, August 1995. IEEE.

[18] S. Zhou, M. Stumm, K. Li, and D. Wortman. “Heterogeneous Distributed Shared Memory.” IEEE Transactions
on Parallel and Distributed Systems, 3(5):540–545, September 1992.


