
End-to-end Integrity for File-System Data

Jorrit N. Herder, David C. van Moolenbroek, Raja Appuswamy, and Andrew S. Tanenbaum

Dept. Computer Science, Vrije Universiteit Amsterdam, The Netherlands

{jnherder,dcvmoole,raja,ast}@cs.vu.nl

Abstract

The MINIX 3 operating system is designed to restart
misbehaving or crashed drivers, but currently cannot
protect the user’s file-system data. Because the block-
device stack lacks end-to-end integrity, it is impossi-
ble to tell whether data corruption occurred—and, even
if we could, there is no means to recover the data
lost. Therefore, we have extended MINIX 3’s failure-
resilience mechanisms with guarantees for (1) detecting
data corruption and (2) recovering lost data in the event
of single block-device driver failures. Our approach is
based on a flexible filter driver that transparently inter-
poses upon all file system requests. Different protec-
tion strategies based on checksumming and mirroring
of data are supported.

1 Introduction

MINIX 3 is a multiserver operating system designed
to survive misbehaving and crashing drivers [4, 5].
Drivers are monitored at run-time and restarted if a fail-
ure is detected. Because many failures tend to be tran-
sient, such as hardware timing issues or aging bugs, a
restart takes away the root cause of the failure and the
system can continue working normally. The effective-
ness of such recovery depends on whether the I/O op-
erations are idempotent and end-to-end integrity [10] is
provided. For example, transparent recovery is possi-
ble for network drivers because the TCP protocol can
detect garbled and lost packets and retransmit the data.
In contrast, partial recovery is supported for character-
device drivers because the I/O is not idempotent and I/O
stream interruption is likely to cause data loss.

MINIX 3 can also restart failed block device drivers
transparent to the file server, but currently cannot give
any guarantees about how the file system is affected af-
ter a driver crash. Even though block I/O is idempotent
and can be retried, the lack of end-to-end integrity for
file system data means that the user’s data may be cor-

rupted silently. In addition, a buggy driver that does not
crash but returns bogus data also may go unnoticed for a
long time. Finally, even if we could detect data corrup-
tion, it is currently not possible to recover data once it
has been lost. Any data corrupted after making the last
back-up image thus is lost forever. Because of these
problems, the user is not likely to trust the file system
after a driver crash, even though the disk driver can be
successfully recovered.

Therefore, this work aims to extend MINIX 3’s
failure-resilience mechanisms and improve dependabil-
ity in the face of buggy (as opposed to malicious) block-
device drivers. In particular, we want to protect the
user’s file-system data by providing hard guarantees for
(1) detecting data corruption and (2) recovering lost
data in the event of single-driver failures.

1.1 Filter-based Design

For flexibility reasons, our approach is based on a
generic framework that allows installing afilter driver
between the file server and block-device driver. The
filter driver implements the same interface as the block-
device driver so that it can transparently interpose upon
traffic between the file server and device driver and im-
plement different kinds of functionality, such as safe-

U
se

r
S

pa
ce

File

Filter

DiskDisk

File

Disk

File

Filter

Disk

API
Shared

Filter
Checksum Mirroring

Filter

Server

Driver

DriverDriver

Server

Driver

Disk

(a)

Server

Driver

Driver

Disk Primary Backup

(c)(b)

Figure 1: High-level design: (a) original setup with only the
disk driver; (b) filter driver with checksumming functionality;
(c) filter driver with mirroring functionality.

1

guarding the user’s data. Although not the focus of this
project, examples of other kinds of filters that are made
possible by our changes include encryption of data on
disk, data compression, and increased performance us-
ing RAID techniques.

In order to protect the user’s file-system data, the fil-
ter changes the way in which the block-device stack
works in two ways, as shown in Fig. 1. First, in or-
der to provide end-to-end integrity and enable detec-
tion of data corruption, it modifies the low-level file
system layout to use per-sector checksumming. Given
that more than 50% of the files accessed are smaller
than 2 KB [16], we believe that the overhead of com-
puting checksums would not significantly degrade per-
formance. Second, in order to support recovery of cor-
rupted data, it uses a variant of software RAID that mir-
rors data written to disk. If a read request cannot be
fulfilled from the primary copy, the backup copy can
still be used. In order to facilitate experimenting with
different configurations, our prototype implementation
allows to enable or disable independently checksum-
ming and mirroring, change the checksumming algo-
rithm, and so on.

Our techniques are meant to protect individual block
operations and cannot help to recover from file server
failures if relations between disk operations are vio-
lated. For example, since modern disks use caching of
writes for increased performance—seek times are min-
imized by writing adjacent blocks first—a hard power-
off due to a power failure, may cause data not to be writ-
ten or to be written out-of-order. While such failures
may be recovered at the individual block level, higher-
level file system inconsistencies can only be detected
by the file server. For example, journaling file systems
could be used to mitigate such problems.

We also do not examine integrity issues posed by de-
fective hardware, that is, we assume that disks are fail-
stop. Nevertheless, many problems we solve with re-
spect to device drivers are equally applicable to buggy
firmware and hardware. For example, the detection
mechanisms of our filter driver are effective for data
corruption both by device driver and hard disk.

The proposed design affects performance in both
space and time. However, we do not consider disk space
a scarce resource and are willing to sacrifice some space
in order to introduce checksums for error detecting. In
our view, it is far more important to protect the user
against data corruption. In a similar vein, a user can add
a spare disk for redundant data storage and augment the
system with recovery support. With hard disks costing

at most a few-hundred dollars and sizes on the order of
1 TB these assumptions seem realistic.

We are concerned about performance, however. Al-
though our modular design introduces additional con-
text switching, the overhead of microsecond context
switches is negligible compared to millisecond disk
seeks. In order to minimize disk seeks, however, we
have experimented with different on-disk checksum
layouts. Furthermore, if mirroring is used, we have tried
to do a lot of work of the in parallel. Sec. 5 presents ac-
tual performance measurements that show that the costs
for improved data integrity are reasonable.

1.2 Contribution and Paper Outline

The contribution of this work is a new, generic frame-
work to run filter drivers on MINIX 3, which we used to
enhance MINIX 3’s support for recovering from block-
device driver failures. We have built on MINIX 3’s
unique ability to restart misbehaving or crashed drivers
on the fly. We have augmented these facilities with
checksumming and data redundancy, so that a wide
range of bugs in block-device drivers not only can be
detected, but also can be repaired on the fly with guar-
anteed data integrity.

The remainder of this paper is organized as follows.
First, we put the work into context by surveying related
work (Sec. 2). Next, we describe the threat model and
general countermeasures (Sec. 3) and discuss the ac-
tual design and implementation of our filter framework
(Sec. 4). Then, we present the results of the experiments
we have run on a prototype implementation (Sec. 5). Fi-
nally, we outline directions for future work (Sec. 6) and
conclude (Sec. 7).

2 Related Work

Data integrity is generally achieved by applying some
form of redundancy in order to detect and correct cor-
ruption. Detailed background on the techniques to
achieve data integrity is provided elsewhere [13, 6],
but in this work, we are primarily interested in how
these techniques can be applied. There are four lev-
els at which data integrity can be applied, namely, (1)
hardware level, (2) device-driver level, (3) file-system
level and (4) application level. Since this work focuses
on corruption and failures at the device-driver level, we
cannot rely on protection implemented at the driver or

lower-level hardware. Furthermore, we believe that ap-
plications should be not be made responsible for main-
taining data integrity. Therefore, we focus on the levels
around the file system below.

Several file-system level applications of data integrity
are found in the literature. Protected File System
(PFS) [15] uses hash-logging based on WAFS [11] to
protect the integrity of its meta data. One of PFS’s
goals is to avoid modifications to the on-disk format
for backward compatibility with existing installations.
In our case, we had no restrictions on the on-disk for-
mat. We envision an environment where the user makes
use of the filter driver for data on one partition and
simply avoids using it for accessing data on another
partition in the raw filesystem format. More recently,
ZFS [2, 9] also included checksumming as an integral
part of the file system. ZFS stores the checksums in
the parent block pointers in order provide fault isola-
tion between data and checksum and uses a hierarchical
scheme for validation. In contrast, we wanted the fil-
ter to be file-system agnostic and hence we had to em-
ploy per-sector checksumming. In our current design,
the checksum sectors and data sector are close to each
other, but the flexibility of our design easily allows ex-
perimenting with different on-disk layouts if need be.

The work on IRON File Systems [8] stressed that re-
liability should be a first-class citizen in designing file
systems and propose a taxonomy of techniques that can
be used to quantify file-system reliability policies. Our
approach is similar in the sense that we also focus on
grouping reliability policies together, thereby avoiding
the diffusion of policies through code, but we differ in
the level at which we implement these policies. By im-
plementing them in a filter driver, all existing integrity-
challenged file systems can be made more robust to the
failures of device drivers and we also provide added
flexibility.

A first step in this direction are integrity and intrusion
detection using stackable file systems [12, 7]. Stackable
file systems operate at the file (vnode) level and require
significant changes to the working of the virtual file sys-
tem (VFS). The work that is most relevant to ours is
IOShepherd [3], a layer below the file system for en-
forcing data integrity and implementing reliability poli-
cies. Using IOShepherd to enforce reliability requires
making the file system “Shepherd-Aware”, which in-
volves changes to the system consistency management
routines, layout engine,disk scheduler and buffer cache.
In contrast, our approach is file-system agnostic and
makes it possible to harden file systems without requir-

ing any modification.
We agree that the presence of semantic information

at this layer helps designing more fine-grained policies,
but our current focus is to provide a generic framework
for filter drivers. Once the framework is in place it
definitely becomes easier to implement and experiment
with different recovery strategies. For instance, the API
can be extended to transform the filter into a Shepherd
or we could even have multiple filter drivers cooperat-
ing in order to form a reconfigurable, modular block
transformation framework like GEOM [1], but much
more powerful and semantically knowledgeable. With
such a framework, implementing D-GRAID [14] style
graceful degradation at the software RAID layer also
becomes feasible.

Finally, by using MINIX 3 we can recover from a
much broader class of problems than most of the above
systems. Because these approaches are employed in
systems with a monolithic design, even a single-driver
failure may be fatal. For example, a driver that derefer-
ences an invalid pointer can immediately take down the
entire system. In contrast, MINIX 3 compartmentalizes
the operating system in user space and allows replacing
misbehaving or crashing drivers on the fly. Our filter
builds on these features to provide improved recovery
support for faulty block-device drivers.

3 Threats and Countermeasures

The exact threat model and countermeasures are pre-
sented below. This project solely focuses on buggy (as
opposed to malicious) drivers.

3.1 Dependability Threats

As described in Sec. 1, MINIX 3 currently can detect
failures and restart block device drivers, but lacks the
means to detect file-system data corruption. We iden-
tified the following cases in which (silent) data corrup-
tion can occur. Combinations are possible.

3.1.1 Threats when Reading Data from Disk

- Data on disk is OK.
R.1. Driver does not read the data from disk or copy it

to the file system, but responds OK.
R.2. Driver reads and returns a (different) block from

the wrong position on disk.

R.3. Driver somehow garbles the block requested and
returns corrupted data.

- Data on disk is stale due to a previous driver fail-
ure.

R.4. Driver returns old data after previously missing up-
date. Also see threat W.1 below.

R.5. Driver faithfully returns corrupted data found on
disk. Also see threats W.2–W.4 below.

3.1.2 Threats when Writing Data to Disk

W.1. Driver does not write the data from the file system
to disk, but responds OK.

W.2. Driver writes the block to the wrong position on
disk.

W.3. Driver corrupts on disk the block requested to be
written.

W.4. An arbitrary part of the disk gets corrupted. In
fact, this threat is a generalized form of the above
threats for writing data to disk.

3.2 Detection of Data Corruption

Below we outline the principle countermeasures to give
hard guarantees for detection of data corruption with
a single disk configuration. In general, read failures
should be detected by writing both the data and its
checksum to disk and comparing the checksum upon
reading the data. An important observation is that write
failures cannot be detected by the layer above without
reading back the data written.

3.2.1 Approach for Reading Data from Disk

- Data on disk is OK.
R.1. If no data is returned the checksumming protocol

should detect the problem. Primarily, we need to
be careful about accidentally correct checksums.
We decided to base our checksums on the 128-bit
MD5 hash function that is publicly available.

R.2. The problem with misdirected reads [15] is
avoided by including the block identity in check-
sum computation. In particular, we decided to cal-
culate the MD5 hash of the data appended with the
block number. The checksum protocol used thus
is: AUTHblockN = md5sum(data||N). The
block number, N, should be the 64-bit disk address
of the start of the block.

R.3. The checksum will be wrong and detect the
problem if just the data part is garbled, because
accidental collisions are virtually impossible using
the MD5 hash function. If both the data and
checksum are garbled, the problem also will be
detected because of the same reason.

- Data on disk is stale due to a previous driver fail-
ure.

R.4. Caused by a missing write. See the solution for
threat W.1 below.

R.5. Caused by an invalid write (or a disk prob-
lem). The checksumming protocol can detect these
cases, as discussed at the solutions for threats W.2
and W.3 below.

3.2.2 Approach for Writing Data to Disk

W.1. A key observation is that future reads may re-
turn old, but otherwise valid data and checksums.
Therefore, we must verify that the data was writ-
ten. This can be done by reading back either all
data (based on a paranoid flag) or just the check-
sum written. Reading back all data is more costly,
but gives immediate detection of data corruption
and potentially leads to better, albeit not perfect,
recovery with a single disk. Just verifying the
checksum is enough to be able to detect data cor-
ruption at a later time.

W.2. In fact, this is a problem only for nonconsistent
use of the wrong position. If the driver would con-
sistently permutate (but not duplicately assign) all
blocks, performance degradation may be notice-
able (since the reordering may interfere with the
file system’s optimal layout), but the data integrity
is guaranteed. If block N is accidentally written
to position X, the error would be detected eventu-
ally because we include the block number,N, in
the checksumming protocol.

W.3. Data corruption can only happen if the write par-
tially fails. The checksum on disk is always cor-
rect, however, because this was verified for threat
W.1. A future read returns the corrupted data,
which will be detected when its checksum is com-
pared with the checksum on disk.

W.4. Arbitrary corruption can happen due to writing a
block to the wrong position, writing the wrong
(corrupted) data, or any other illegal write actions.
Detection will be based on a combination of the
previous cases.

3.3 Recovery Strategies

With a single-driver and single-disk configuration, the
best we can do is hard guarantees for detection of data
corruption—because if a driver is allowed writing to the
controller, it can simply wipe the entire disk and de-
stroy all data with no backup to recover from. Although
recovery may be possible in case of certain transient
driver failures, only with two drivers and two disks, run
in complete isolation, we can give hard guarantees for
both detection of data corruption and recovery.

3.3.1 Single-driver Configuration

With a single-driver configuration, there are two pos-
sible best-effort recovery strategies if a problem is de-
tected. First, the filter driver can retry issuing the failed
operation to the block-device driver up to N times. Sec-
ond, the filter driver can send to the driver manager a
complaint about the block-device driver’s faulty behav-
ior in order to have it replaced with a fresh copy. When
the newly restarted disk driver is available, the filter
driver can reissue the file system request. The restart
procedure can be retried up to M times, leading to a
total of M restarts× N retries before giving up and re-
turning an error to the client file system.

3.3.2 Mirroring Configuration

If a mirroring configuration with two drivers and two
disks is used, we can provide hard guarantees for the
recovery of data in the event of either a single-disk fail-
ure or a single-driver failure. In the mirroring setup, the
filter relays all write request from the file system to both
partitions, as shown in Fig. 1, whereas read requests are
serviced from the primary partition. If a nonrecoverable
failure occurs we switch to the backup partition.

Different recovery strategies need to be distinguished
for read and write failures. Recovery in case of
read failurescan be attempted by retrieving data from
backup partition and bring primary in consistent state.
The filter driver could either attempt the above best-
effort recovery strategy for the primary partition or di-
rectly switch to the backup partition. Recovery ofwrite
failuresposes another issue, because mirroring requires
that all data is written to both disks. If a block-device
driver fails, the filter driver can attempt the above best-
effort recovery strategy or gracefully degrade its ser-
vice. If recovery is not successful, the filter driver shuts
down the bad partition and continues operating with a
single-driver configuration.

4 Design and Implementation

The work can roughly be divided in three orthogonal
subprojects, which are discussed in turn.

4.1 Working of the Filter Driver

We started out by implementing a very basic filter that
simply forwards all requests from the file system as well
as the driver replies. The filter implements the exact
same interface as the disk driver, so that it can transpar-
ently interpose upon and forward IPC communications
between the file server and block-device driver. As far
as the virtual file system (VFS) and file server (FS) are
concerned, the filteris the block-device driver. Only the
filter knows about the actual block-device driver, which
is running when the filter driver starts. The block-device
driver(s) to be used can be passed as an argument to the
filter upon starting.

Since we assume the block-device driver to be buggy,
an important requirement is that filter never blocks on
it. Therefore, the filter is programmed as a state ma-
chine that accepts a message, handles it, forwards it us-
ing asynchronous IPC, saves the state, and returns to its
main loop to receive a message fromANY. As described
in Sec. 4.3, this design is also helpful to control simul-
taneously two block-device drivers in case of mirroring.
If a new IPC message arrives, the filter can distinguish
new requests and driver replies and determine what to
do based on the caller’s IPC endpoint.

In order to add or verify the checksums the filter
driver should have access to the data that is written to or
read from the file system. The filter can safely copy the
data to and from the file server and block-device driver
using MINIX 3’s memory grants[5]. We decided not
to investigate page-mapping optimizations because we
expected disk seeks to be the dominating factor. The
experiments presented in Sec. 5 indeed confirm that the
copying overhead is negligible.

Finally, in order to attempt recovery if a problem is
detected, the filter should be able to start and stop block-
device drivers. Since the MINIX 3 driver manager is the
only party that has the privileges to start and stop device
drivers, a new call was added to file a complaint about
malfunctioning components. In addition, MINIX 3’s iso-
lation policies were extended so that the driver manager
is informed upon starting a component whether it is al-
lowed to file complaints. If a complaint is received from
a trusted party, such as the filter driver, the driver man-
ager replaces the bad component with a fresh copy.

4.2 Checksumming Algorithm

The filter presents avirtual hard disk imagesmaller
than the physical disk to the file server and uses the ex-
tra space to enforce the countermeasures discussed in
Sec. 3.2. If the file server requests a write operation,
the filter copies the data to its address space, calculates
the checksum, and writes both the data and checksum to
disk. The checksum is read back for verification. If the
file server requests a read operation, the filter retrieves
both the data and checksum from disk, calculates the
checksum of the retrieved block, and compares it to the
checksum stored on disk. If the two checksums match,
the data part is returned to the file server. Otherwise, the
filter concludes that the data is corrupted and attempts
to retry to failed operation.

Since the filter is not aware of important file-system
data structures nor the file-system layout on disk, we
decided to use per-sector checksums. A sector is
the smallest I/O unit that the disk controller operates
on: 512 B. File-system block sizes are typically much
larger, for example 4 KB in MINIX 3, so that typical
I/O operations comprise multiple consecutive sectors.
Each of these data sectors thus are independently check-
summed by the filter.

Different on-disk layouts are still possible and the op-
timal layout depends on the disk access pattern. For
random access, the checksum should be stored close to
the data sectors, so that performance overhead caused
by extra disk seeks is eliminated. Therefore, we inter-
spersed data sectors and checksums sectors, as shown in
Fig. 2. After every N data sectors there is 1 checksum
sector with N checksums. For sequential access, how-
ever it is important not waste any disk space and ensure
that all data returned is actually meaningful. Therefore,
we made the number of consecutive data sectors before
each checksum sector a parameter that can be passed to
the filter upon starting.

Filter Driver

data data data

data datadata

On−disk layout

after N data sectors
1 checksum sector

File−system view

Figure 2: The filter driver intersperses 1 checksum sector for
every N data sectors. This figure shows the on-disk layout for
N=4.

4.3 Mirroring Approach

Finally, we want to be able to recover corrupted data by
creating two isolated partitions using two drivers and
two disks on separate controllers. Mirroring is enabled
by specifying two instead of one partitions upon start-
ing the filter driver. In this case the filter driver transpar-
ently duplicates write requests to both partitions. Read
requests are fulfilled from the primary copy, but the sys-
tem automatically uses the backup data if the primary
fails. By using two physically separate disks and hav-
ing a separate driver for each disk we can survive both
single-drivers failures and single-disk failures.

To minimize overhead, it is important that mirroring
requests are not handled sequentially, but are sent to
the block-device drivers simultaneously. As described
above, the filter uses asynchronous IPC and is pro-
grammed as a state machine. In this way, it can send
the I/O requests to both partitions, returns to its main
loop and receives a new message fromANY. If every-
thing succeeds, the driver replies should come in one
after the other. The drivers can be told apart based on
the IPC endpoint that is reliably patched into the mes-
sage by the kernel’s IPC subsystem.

5 Experimental Evaluation

We have evaluated our design by running experiments
on a prototype implementation. Below we present the
results of performance measurements and fault simula-
tion.

5.1 Performance Measurements

The performance measurements were run on a PC with
an AMD Athlon64 X2 Dual Core 4400+, 1-GB RAM,
and two identical 500-GiB Western Digital Caviar SE16
SATA hard-disk drives (WD5000AAKS). Since the on-
disk location influences performance, we allocated a
64-GiB test partition at the same location on both disks.

We ran a series of application-level benchmarks by
making a new file system on the test partition, mount-
ing it on /mnt, copying the MINIX 3 installation, and ex-
ecuting the actual test script in a chroot jail. Themount
command was executed on either the block-device node
(/dev/c1d0p0) or the filter-device node (/dev/filter). We
used a standard MINIX 3 file system with a 4-KiB block
size and a 32-MiB buffer cache. After each benchmark
we synchronized the cache to disk, which is included in

Benchmark No Filter Null Filter Mirror Checksum Mirror+Checksum
Copy root FS 14.89 (1.00) 15.39 (1.03) 15.44 (1.04) 17.11 (1.15) 18.34 (1.23)
Find and touch 2.75 (1.00) 2.85 (1.04) 2.83 (1.03) 2.94 (1.07) 2.91 (1.06)
Build libraries 28.84 (1.00) 28.30 (0.98) 29.10 (1.01) 28.82 (1.00) 28.72 (1.00)
Build MINIX 3 14.26 (1.00) 14.71 (1.03) 14.69 (1.03) 14.79 (1.04) 14.86 (1.04)
Copy source tree 2.54 (1.00) 2.61 (1.03) 2.73 (1.07) 3.06 (1.20) 3.26 (1.28)
File system check 3.46 (1.00) 3.54 (1.02) 3.55 (1.03) 3.91 (1.13) 3.91 (1.13)

Figure 3: Average run times in seconds and performance relative to ’No Filter’ (inparentheses) for various benchmarks.

the reported run times. The average results out of three
test runs are shown in Fig. 3.

These results show that the system’s workload dom-
inates the user-perceived overhead of the filter driver.
While the filter’s overhead is still visible for I/O-bound
jobs, it is negligible for CPU-intensive jobs, even with
the best protection strategy. For example, with both
checksumming and mirroring enabled, the overhead
compared to running without filter is 28% for copying
the source tree, 13% for running a file system check,
only 4% for building the MINIX 3 operating system, and
0% for building the system libraries. The actual over-
head for normal usage without callingsyncafter each
operation would be even lower.

5.2 Fault Simulation

We tested the effectiveness of our protection techniques
by artificially injecting faults into the storage stack. To
start with, we manually manipulated the block-device
driver’s code in order to mimic data-integrity viola-
tions. For example, for threat R.1 we reprogrammed
the driver to throw away some requests but respond the
work has been done, for threat R.2 we manipulated the
disk address to be read, and so on. We also emulated
driver-protocol failures by provoking driver crashes and
other erroneous behavior. These tests confirmed the fil-
ter driver’s correct working with respect to detection of
data corruption, repeatedly retrying failed operations,
recovery of corrupted data from a mirror, and graceful
degradation for permanent single-partition failures.

6 Future Work

The flexibility of having a separate filter driver facil-
itates testing with different checksumming and mir-
roring approaches. For example, we could use error-
correcting codes (ECC) in order to improve the best-
effort recovery of single-driver configurations. In this
scenario, an on-disk layout that separate the data sec-

tors and checksums is probably more effective to pro-
tect against actual failures. Other possibilities include
mirroring of data on one and the same partition.

Although this work focused on buggy drivers, a logi-
cal extension would take malicious drivers into account.
If malicious behavior is taken into account, we gener-
ally need to worry about not onlydata integrity, but
also itsauthenticityandprivacy. Using simple check-
sums no longer is sufficient, since it is not a reasonable
assumption that the checksum algorithm is secret. In-
stead, protection should be realized by means of secret
key, so that the driver cannot forge the checksum.

7 Conclusion

In this work, we have extended MINIX 3 with a generic
filter framework and used it to guarantee data integrity
in the block-device stack. In particular, we have pro-
vided end-to-end integrity for file-system data based on
checksumming and mirroring. The filter operates trans-
parently to both the file-system server and block-device
driver and does not require any changes to either com-
ponent. This flexibility is typically not found in other
approaches and proved to be very useful to implement
quickly and experiment with different data-integrity
policies. Furthermore, by building on MINIX 3’s ability
to dynamically start and stop drivers, our filter driver
can provide improved recovery support for certain fail-
ures that would be fatal in other systems. For exam-
ple, in case of data corruption, the filter can ultimately
request the driver manager to replace the faulty block-
device driver with a fresh copy. Our experimental eval-
uation demonstrates the viability of this approach.

Availability

The changes and additions to MINIX 3 that were de-
scribed in this paper are publicly available from the
source-code repository athttp://www.minix3.org/.

References
[1] GEOM: Modular Disk Transformation. Also see:

http://en.wikipedia.org/wiki/GEOM.
[2] ZFS: The Last Word in File Systems. Also see:

http://www.sun.com/2004-0914/feature/.
[3] H. S. Gunawi, V. Prabhakaran, S. Krishnan, A. C.

Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Improv-
ing file system reliability with I/O shepherding. InProc.
21st SOSP, 2007.

[4] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. Construction of a Highly Dependable Op-
erating System. InProc. 6th EDCC, 2006.

[5] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. Failure Resilience for Device Drivers. In
Proc. 37th DSN-DCCS, 2007.

[6] A. Krioukov, L. N. Bairavasundaram, G. R.Goodson,
K. Srinivasan, R. Thelen, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Parity lost and parity regained.
In Proc. 6th USENIX FAST, 2008.

[7] S. Patil, A. Kashyap, G. Sivathanu, and E. Zadok. I3FS:
An In-Kernel Integrity Checker and Intrusion Detection
File System. InProc. 18th USENIX Conf. on System
Administration, 2004.

[8] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal,
H. S. Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. IRON file systems. InProc. 20th SOSP, 2005.

[9] Roman Strobl (Sun microsystems). ZFS: Revolution in
File Systems. Sun Tech Days 2008-2009, 2008.

[10] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end ar-
guments in system design.ACM Transactions on Com-
puter Systems, 2(4), 1984.

[11] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A.
Smith, C. A. Soules, and C. A. Stein. Journaling vs.
Soft Updates: Asynchronous Meta-data Protection in
File Systems. InProc. USENIX Annual Technical Con-
ference, 2000.

[12] G. Sivathanu, C. P. Wright, and E. Zadok. Enhancing
File System Integrity Through Checksums. Technical
Report FSL-04-04, Stony Brook University.

[13] G. Sivathanu, C. P. Wright, and E. Zadok. Ensuring Data
Integrity in Storage: Techniques and Applications. In
Proc. 1st StorageSS Workshop, 2005.

[14] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau,
and R. H.Arpaci-Dusseau. Improving storage system
availability with D-GRAID. ACM Transactions on Stor-
age, 1(2), 2005.

[15] C. A. Stein, J. H. Howard, and M. I. Seltzer. Unifying
File System Protection. InProc. 2nd Conf. on Computer
and Communications Security, 2001.

[16] A. S. Tanenbaum, J. N. Herder, and H. Bos. File size
distributioin on UNIX systems: then and now.ACM
SIGOPS OSR, 40(1), 2006.

