Available online at www.sciencedirect.com

[Ompu’rer
Networks

www.elsevier.com/locate/comnet

ScienceDirect

E;,

S

ELSEVIER

Computer Networks xxx (2007) Xxxx—XXX

Design and implementation of a secure wide-area
object middleware

Bogdan C. Popescu **, Bruno Crispo “°, Andrew S. Tanenbaum ®, Arno Bakker *

& Dept. of Computer Science, Vrije Universiteit, De Boelelaan 1081A4, 1081 HV Amsterdam, The Netherlands
® DIT, University of Trento, Italy

Received 2 January 2006; received in revised form 18 October 2006; accepted 3 November 2006

Responsible Editor: L. Salgarelli

Abstract

Wide-area service replication is becoming increasingly common, with the emergence of new operational models such as
content delivery networks and computational grids. This paper describes the security architecture for Globe, an object-
based middleware specifically designed to support dynamic replication of services over wide-area networks. Replication
introduces a series of new security issues, including the need to restrict replica privileges with respect to method execution,
and protection of distributed objects against malicious hosts running instances of their code. Our modular security design
addresses these new threats, as well as a broad range of traditional ones, and is validated through a series of performance
measurements. Additional contributions include a novel authentication mechanism specifically designed for wide-area
deployment, which combines some of the best features of public key authentication protocols (reliance on an offline trusted

third party in particular) with the computational efficiency characteristic to symmetric key schemes.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Distributed systems; Security; Middleware; Wide area replication

1. Introduction

During the 1980s and 1990s distributed systems
were designed according to the traditional client—
server model. However, in the recent few years alter-
native operational models have emerged, including
peer-to-peer [59], content delivery networks [67],

* Corresponding author. Tel.: +31 61 767 6123.
E-mail addresses: bpopescu@cs.vu.nl (B.C. Popescu), crispo
@cs.vu.nl (B. Crispo), ast@cs.vu.nl (A.S. Tanenbaum), arno
@cs.vu.nl (A. Bakker).

and computational grids [35]. With these new oper-
ational models special emphasis is put on data and
application replication. Nevertheless, distributed
middleware [8,32] has been slow to adapt to these
changes.

Globe [72] is a middleware architecture based on
distributed shared objects (DSO) which has been spe-
cifically designed to cope with data and application
replication. The notion of a DSO stresses that
objects in Globe are not only shared by multiple
users, but also physically replicated on many hosts
over a wide-area network. Thus, a single object

1389-1286/$ - see front matter © 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2006.11.008

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

mailto:bpopescu@cs.vu.nl
mailto:crispo @cs.vu.nl
mailto:crispo @cs.vu.nl
mailto:ast@cs.vu.nl
mailto:arno @cs.vu.nl
mailto:arno @cs.vu.nl

2 B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx

may be active and accessible on many hosts at the
same time.

This paper describes the design and implementa-
tion of a security architecture for Globe. Our contri-
bution is threefold: first, we describe a
comprehensive security design which is truly decen-
tralized and deals with a large variety of security
issues in a modular way. Second, we identify a num-
ber of unique security challenges which derive from
the fact Globe objects can be dynamically repli-
cated, with some of the replicas running on
untrusted, possibly malicious hosts. Finally, we
present a number of security mechanisms specifi-
cally designed to support replicated services, includ-
ing a novel symmetric key authentication protocol
based on an offline trusted third party (TTP), suit-
able for many wide-area application scenarios.

A prototype of secure middleware architecture
we describe has been implemented (in Java) and is
available under a BSD-style license. This paper also
provides performance measurements for evaluating
the overhead introduced by our security mecha-
nisms. These measurements validate our design
and show that although security introduces substan-
tial overhead, careful choice of mechanisms and
implementation can mitigate this negative impact
on performance. Finally, we want to stress that this
paper consolidates and expands on some of our ear-
lier contributions, presented in [62,23,64,63], and
combines these with the performance numbers we
obtained by profiling the secure Globe prototype.

The rest of the paper is organized as follows: Sec-
tion 2 gives an overview of Globe, the internal struc-
ture of a DSO, and the services provided by the
Globe middleware that facilitate the creation and
deployment of DSOs. Section 3 introduces the
threat model considered when designing the Globe
security architecture, which is described in detail
in Section 4, both at design level, but also in terms
of the actual security mechanisms that have been
implemented. Section 5 presents our performance
measurements. Finally, in Section 6 we discuss
related work, and in Section 7 we conclude.

2. An overview of the Globe middleware

The Globe project is aimed at designing and
building a flexible and comprehensive middleware
platform for developing large-scale distributed
applications [72]. Flexibility is achieved by basing
the middleware platform on a new model of distrib-
uted objects, called the distributed shared object

(DSO) model. A distributed shared object controls
all aspects of its implementation. In particular, it
controls its extra-functional aspects such as replica-
tion and security, rather than delegating them to a
common underlying layer. This autonomy enables
a developer to naturally apply application-specific
replication and security solutions.

A DSO, which is identified by a 160 bit unique
object ID (OID), consists of a number of local rep-
resentatives located throughout the Internet. A local
representative can act as user proxy, or object rep-
lica, or both, allowing client-side replication. As
shown in Fig. 1, it is composed of a number of
subobjects, modules that take care of a particular
aspect of the object’s implementation: the semantics
subobject implements the actual application func-
tionality; the control subobject provides a program-
ming interface to services above the middleware
layer, such as user interfaces; the replication subob-
ject takes care of keeping the DSO state consistent
across replicas, as well replica placement, while the
security subobject takes care of all security-related
aspects; finally, the communication subobject hides
all network communication aspects from the other
subobjects. This modular structure enables the
application developer to change the subobjects that
handle extra-functional aspects on a per-object
basis, providing a great deal of flexibility; further-
more, interfaces of these subobjects are standard-
ized, allowing developers to build extensive
libraries of subobjects that can be reused across
many different applications. If need be, the devel-
oper can also create subobjects entirely tuned to
the application.

DSO Local Representative

Control Semantics
Subobject Subobject

Authentication
Module

Revocation
Module

Administrative
Module

Trust Management

Communication Module

Subobject L

Access Control
Module

— [Security
Repllc‘fmon Subobject
Subobject

Network

Fig. 1. Internal structure of a Globe DSO local representa-
tive. Arrows show possible interactions between the various
subobjects.

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx 3

Distributed Shared Object

Replica User proxy

Fig. 2. The architecture of the Globe middleware.

The local representatives of a DSO are generally
located on special, user-level Globe object servers
(GOS), which provide a crash-and-reboot proof
hosting platform. The DSOs, the object servers
and the client accessing them are supported by a
number of middleware services. The Globe Name
Service [17] maps symbolic object names to binary,
location independent OIDs. The Globe Location
Service [71] efficiently maps an OID to the address
of a suitable local representative of the object. Both
services have been designed and tested to scale up to
10'? objects. To support dynamic replication of
objects, Globe provides a Globe Infrastructure
Directory Service [48], which allows objects to locate
additional object servers to host replicas on, given a
set of selection criteria regarding network location
and security. The architecture of Globe is summa-
rized in Fig. 2.

3. Threat model

Coming up with a comprehensive threat model
for a system like Globe is a difficult task for two rea-
sons: (1) there is no central trust authority — no such
authority could ever scale to a system envisioned to
accommodate millions of users and objects; (2)
Globe objects are replicated and replicas may run
on platforms controlled by third-parties — it is pos-
sible for DSO and GOS administrators to be in dif-
ferent administrative domains.

To simplify defining the threat model, we have
divided the security issues Globe needs to address
into five groups: trust management, authentication,
access control, Byzantine fault tolerance, and plat-
form security. The first three groups are common
when dealing with security in distributed systems:
trust management addresses the fact that human
users do not implicitly trust software services, but
real world entities such as banks, government insti-

tutions or other humans; thus it is necessary to map
physical world trust relationships into the digital
realm. The fact that interactions between DSO local
representatives take place across unsecure wide-area
networks introduce the threat of masquerading and
man-in-the-middle attacks. To counter these, Globe
needs to provide strong authentication mechanisms
allowing for the establishment of secure communi-
cation channels between DSO local representatives.
Finally, access control mechanisms are required to
counter the threat of un-authorized invocation and
execution of object methods.

Besides these “traditional” security goals, the
specifics of the Globe system introduce additional
issues. The fact that it is possible to have object rep-
licas running on GOSes controlled by marginally
trusted third parties introduces the possibility that
some replicas may be corrupted by malicious GOS
administrators. In order to counter this threat, our
security architecture needs to provide Byzantine
fault tolerance mechanisms allowing DSO adminis-
trators to deal with corrupted object replicas.

Finally, we also need to consider possible threats
from the GOS administrators point of view. In
Globe, mobile code is used to instantiate new repli-
cas, and this raises the threat of malware (viruses,
Trojans, etc.) incorporated into replica executable
in order to attack the hosting platform, or perform
various types of network denial of service. To coun-
ter this, Globe needs to provide platform security
mechanisms allowing GOS administrators to pro-
tect their computing infrastructure.

4. The Globe security architecture

We now proceed with describing the Globe secu-
rity architecture, by showing how it deals with each
group of security issues identified in the previous
section. For each of these groups, we discuss two
aspects: the general design guidelines, and the mech-
anisms actually implemented. It is important to
stress that for each of these groups, there are multi-
ple mechanisms for handling them. In most of the
cases, we have implemented only one of the possible
points in the design space, the one we believe is best
suited for the widest class of potential Globe appli-
cations. However, as explained in Section 2, Globe
objects are composed of a number of subobjects
and modules separated through standard interfaces.
It is therefore straightforward to replace any of our
mechanisms with alternative implementations better
suited for specific Globe applications.

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

4 B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx

4.1. Trust management

Trust management is the process of mapping
trust relationships between real world entities (for
example, between a customer and her bank) to the
software instantiation of these entities in the digital
world.

Fig. 3a shows the typical trust management sce-
nario in e-commerce applications. The five parties
interacting are the user, a service provider (identi-
fied by a unique symbolic name), their two software
representatives, as well as a trusted third party
(TTP) whose purpose is to mediate trust establish-
ment between the software entities. The latter party
is typically represented by certification authorities,
such as Verisign. There are direct (implicit) trust
relationships between the user and the service pro-
vider (e.g. bank), the user and its software represen-
tative (her web browser in this case) and the browser
and the TTP. The TTP is then used to certify the
association between the service and its software rep-
resentative — typically this involves certifying a pub-
lic key associated with that representative. That
public key is then used by the user’s browser to
authenticate the service’s software instantiation,
thus accomplishing the mapping of trust from the
real to the digital world.

When translating this trust management model
to Globe, things become more complicated, given
the fact that services can be replicated, and the
user’s local software representative is normally
instantiated using mobile code which cannot be
implicitly trusted. The new trust management model
is shown in Fig. 3b: here the TTP is used to certify
the association between the symbolic object name
(which identifies the service provider to the user)
and the object ID, which represents the object in
the digital world. Associated with each Globe
DSO, there is a public/private key pair — the object
key. The object key is cryptographically bound to
the OID - this is accomplished by setting the OID

to be the secure hash (SHA-1 [4]) of the object’s
public key. The net result is self-certifying OIDs,
similar to the self-certifying file names introduced
in [51].

Once trust has been established between the
user’s Globe runtime and the object’s key, this can
be used to bootstrap the remaining trust relation-
ships. First, the object key is used for certifying
(signing) the mobile code for instantiating the user
proxy. The same key is also used for issuing creden-
tials for the replica and the proxy, which use them
to authenticate each other, and thus establish trust
in the digital realm.

It is important to stress that the presence of a
TTP is only required for bootstrapping the trust
between the user’s Globe runtime and the object’s
instantiation identified through its OID; all the
other trust relationships can be derived from that.
As a result, it is also possible to replace the TTP-
mediated trust bootstrapping with alternative mod-
els, such as the “resurrecting duckling” [69], where
the user obtains the OID directly from the service
provider, for example by going to the local bank
office, or a PGP-like [78] recommender model. The
Globe architecture makes the trust bootstrapping
engine a pluggable module, so that DSO developers
can make use of the trust model that best fits their
application needs.

4.2. Authentication

After establishing trust, authentication is the next
layer required when building secure systems; other
security services, such as access control, non-repudi-
ation, audit, and so on, can then be built on this
foundation.

Before two DSO local representatives can
authenticate each other, they need to obtain the cre-
dentials proving they are part of the same object.
This is done by registering with a special administra-
tive replica of the object controlled by the object

_ [Service

User Service User
Provider

Certify

Authentication

\
Serv. software User’s
representative Globe runtime

| Provider
—

Certify

Self

Object
e Key ~
Certify Certify
DSO local Authentication DSO ObJ_ul instance
representative replica (object ID)

Fig. 3. Trust management (a) typical e-commerce application, (b) Globe DSO; the bold arrows represent implicit trust relationships.

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx 5

administrator (for authentication purposes, the
administrative replica is issued a set of credentials
certified directly from the object key). Each admin-
istrator is free to set any policy for issuing creden-
tials to users and replicas; for users, these policies
may include the receipt of a payment (in the case
of e-commerce applications for instance), or posses-
sion of a credential issued by an external authority
(this can be the case for e-government applications).
In the case of replicas, the decision to issue creden-
tials can be based on the properties of the GOS
hosting the replica (and whether the DSO adminis-
trator deems that GOS as trustworthy).

Whenever a DSO entity is registered, it is
assigned a per-DSO unique entity ID (replica ID
or user ID) which is incorporated into the authenti-
cation credentials together with some additional
information needed for access control (see Section
4.3). The entity ID is primarily used when revoking
credentials, which is done by the same administra-
tive replica. Our implementation assumes only one
administrative replica per DSO, which simplifies
the management of administrative information.
However, this can be changed (by rewriting the
administrative module of the security subobject) to
support replication of administrative privileges.

4.2.1. Public key authentication mechanisms

Because DSOs can be massively replicated across
wide-area networks, public key authentication
mechanisms seem to be the natural choice. The
great advantage of such mechanisms (as opposed
to classic symmetric key based approaches such as
Kerberos [45]) is that they do not require the pres-
ence of an online trusted third party to mediate
authentication.

When public key cryptographic algorithms are
used for authentication, there is a public/private
key pair associated with every user and replica of
the object. All these keys are certified through digi-
tal certificates signed by the administrative replica
(whose public key is certified by the object key).
Once two DSO entities (users, replicas) have these
certified public/private key pairs, they can use them
for mutual authentication. Our implementation sup-
ports the TLS/SSL protocol [30]; however, in Globe
the authentication module is pluggable, so it should
be straightforward to add other public key authen-
tication protocol implementations.

When dealing with a public key infrastructure,
the authentication protocol is only half of the story.
Another essential (and often neglected) aspect is key

revocation. Globe handles this issue, by allowing
the DSO’s administrative replica to revoke previ-
ously issued credentials. Our implementation pro-
vides a simple, yet effective revocation mechanism
based on certificate revocation lists (CRLs) [42].
For each Globe DSO there are two such CRLs:
one listing revoked user certificates (user CRL),
and one listing revoked replica certificates (replica
CRL). The reason we provide separate CRL distri-
bution mechanisms for revoking replica and user
certificates, is because of their rather different
properties.

In the case of user certificates, it is only replicas
that are concerned with checking their revocation
status, since direct user to user interactions are not
part of the Globe model. Therefore, the user CRL
is only distributed to the DSO’s replicas; the DSO
administrative replica periodically updates the
CRL and distributes it to the other replicas. Repli-
cas that are temporary down are responsible for
retrieving the latest user CRL when they come back
online.

In the case of replica certificates, the replica CRL
needs to be distributed to both users and replicas,
since both user-replica (for method invocation)
and replica-replica (for state update) interactions
are possible. Replica certificates are quite different
from the user certificates: they are short lived (in
some cases replicas may last only few hours in order
to handle flash-crowd events) and, in numbers, they
are expected to be a few orders of magnitude fewer
than user certificates (one replica should be capable
of handling hundreds, even thousands of users,
otherwise there would be no point in replication).
Hence, replica CRLs are much smaller than user
CRLs. For this reason, replica CRLs are distributed
using a “pull” mechanism: each replica is responsi-
ble with storing the latest copy of the replica CRL
(which it periodically fetches from the administra-
tive replica), which it provides to users proxies if
requested during the authentication protocol.

We believe the revocation mechanisms we have
implemented should cover the vast majority of
application scenarios for Globe DSOs. Neverthe-
less, there are many other possible revocation
schemes [54,52,53], which can be plugged in Globe
DSOs by rewriting the revocation module in the
security subobject.

4.2.2. Symmetric key authentication mechanisms
One drawback of public key authentication
protocols is the fact they are computationally

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

6 B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx

expensive. After integrating the TLS protocol suite
with Globe, our measurements showed a significant
performance penalty. The performance penalty was
particularly visible for “light” transactions, where
the security overhead was several times higher than
the actual “useful” CPU work (we will discuss more
about performance in Section 5).

On the other hand, symmetric key authentication
protocols are computationally efficient. However,
the problem with existing symmetric key protocols
[57,58,45] is that they rely on an online trusted third
party. While this is acceptable for a LAN environ-
ment, it is not acceptable on a wide-area network,
where an on-line TTP becomes a performance bot-
tleneck, a single point of failure, and a target for
DoS attacks.

To address this problem, we have designed a new
symmetric key authentication protocol based on an
off-line TTP. The price paid for the increased secu-
rity offered by an off-line TTP is increased storage
requirements for clients. Basically, each participant
in the protocol needs to store a number of authenti-
cation credentials equal to the size of the authentica-
tion realm; this makes the new protocol less scalable
than public key schemes. Essentially, the symmetric
key authentication mechanism we propose targets
small to medium-size Globe applications (hundreds
of replicas, tens of thousand clients). It is worth
noticing that there are numerous IT environments
(small to medium-size companies, university cam-
puses, etc.) which would solicit exactly this type of
distributed applications. Furthermore, a possible
extension of our protocol, based on geographical
clustering of clients and replicas, could further
increase its scalability to massively distributed
applications.

We have developed a new symmetric key authen-
tication protocol to address this issue. The protocol
consists of three phases: administrative replica ini-
tialization, user/replica registration, and finally the
actual authentication, which work as follows.

For initialization, the administrative replica gen-
erates two sets of 128-bit AES [1] keys: the replica
master key list (RKL) and the user master key list
(UKL). The size of the RKL is the maximum num-
ber of replicas expected to be instantiated for the
DSO, while the size of the UKL is the maximum
number of users expected to register.

In the registration phase, users and replicas regis-
ter with the administrative replica. A user who reg-
isters is assigned an unused key from the UKL, and
receives an authentication credentials set which con-

sists of a number of (authentication key, authentica-
tion ticket) pairs. Authentication keys are shared
between users and replicas part of the DSO, with
a user having authentication keys for each of the
running replicas as well as for all potential replicas
that may be instantiated in the future (thus, the
number of authentication keys is equal to the size
of the RKL). In this way, when new replicas are
instantiated, the users already registered need not
be updated when switching replicas.

A similar process occurs when replicas register,
except that a replica receives a credentials set includ-
ing symmetric keys for every potential user (includ-
ing those expected to register in the future). Thus
the number of keys a replica receives is equal to
the size of the UKL.

There is an authentication ticket associated with
each authentication key. The (authentication key,
authentication ticket) pair allowing DSO entity A4
(user or replica) to authenticate to entity B has the
form

(KAB; {KABa OID7 IDA> IDBv Tissue; Texpire}KB)

where K 5 is a 128 bit AES key shared between A
and B, OID is the object ID, ID, is the entity ID
for 4, IDp is another entity ID (possibly not yet as-
signed, but expected to be assigned in the future),
Kp is another master key (which is assigned or will
be assigned to B), while Tisue and Teypire are time-
stamps that determine the validity interval for the
authentication credentials . The ticket can be used
by A to prove to B that it is indeed part of the
DSO - since it is encrypted with a key shared only
between B and the administrative replica.

Once a DSO entity has registered, it can use its
credentials to authenticate other DSO entities fol-
lowing the protocol shown in Table 1. The protocol
is based on a number of techniques introduced in
[22] in order to overcome some of the limitations
of the Kerberos authentication protocol [45]. In
contrast to Kerberos, our protocol relies on the
security property of keyed hash functions used as a
basic primitive to generate fresh session keys (we
have proven the correctness of our protocol using

Table 1

New symmetric key authentication protocol

1 A— B ID,, N4

2 B— A: 1D, N, authenticationTicket g4
3 A — B: { N}k, authenticationTicket 45
4 B— A: {NA }](

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx 7

the BAN [24] authentication logic, but due to space
limitations the proof is not included in this paper).

In the above protocol, N4, Np are random non-
ces, and K=SHA — (K 3,Kp4, N4, Np). At the
end of the protocol K is the shared secret between
A and B and can be used for securing the data traffic
between the two.

What makes this protocol different from classical
symmetric key authentication schemes is that cre-
dentials are long-lived, much in the same way as
for public key protocols. Because of this, we have
to make provisions for two additional mechanisms:
credentials update and credentials revocation.

An update is needed because, in order to prevent
possible cryptanalytic attacks, credentials cannot be
used forever; after certain time they need to be dis-
carded and replaced with fresh material. One prop-
erty we want to have in this case is locality: an
update should only affect the DSO entity that per-
forms it, and none of the others. This is essential
for ensuring the scalability of the protocol. Assum-
ing the maximum credential lifetime is 7, and M,
N are the maximum number of replicas and clients
that register during 7, the locality property can be
achieved by ensuring the administrative replica
always has at least M unused keys in the RKL and
at least N unused keys in the UKL. Whenever a user
registers, it then receives additional credentials for at
least M unassigned replica keys, which should cover
all possible replicas that may register until the cre-
dentials will expire; similarly, when a replica regis-
ters it receives additional credentials for at least N
unassigned user keys, which should cover all possible
users that may register until the replica will update
the credentials. In this case, each user receives a cre-
dential set of size 2 * M and each replica two creden-
tial sets of size 2 * M (for authenticating to other
replicas) and 2 * N (for authenticating to users).

When exceptional circumstances occur, the
administrative replica may need to revoke creden-
tials before their natural expiration. We use the
same mechanisms outlined in Section 4.2.1, namely
a separate CRL for replicas and users, which
include the ID’s of the revoked entities. Validating
these CRLs requires a public key signature verifica-
tion, but this is not a problem from a performance
point of view, since CRL verification does not occur
that often (a 1 h freshness interval is sufficient for
most applications). Furthermore, our implementa-
tion uses the RSA algorithm for public key opera-
tions, and here signature verification is relatively
inexpensive.

Maintaining the locality property with respect to
credentials revocation requires further increasing the
size of the RKL and UKL. Assuming that an entity
that has its credentials revoked is assigned new cre-
dentials (not always the case, but this keeps us on
the safe side), means that the total number of creden-
tials to be issued becomes larger than the maximum
number of entities expected to register. If the proba-
bility for credentials revocation is P, the new formu-
las for the maximum size of the RKL and UKL
become 2 * (M + P) and 2 * (N + P), respectively.

The great advantage of the symmetric key
authentication protocol introduced above is the fact
that it operates very much in the same way as public
key protocols, in the sense that authentication does
not require interacting with an online trusted third
party. A DSO entity only needs to contact the
administrative replica for registration, key update,
possibly for obtaining fresh revocation information
(in the case of replicas). As a result, interactions
with the administrative replica are much less fre-
quent, thus the administrative replica becomes less
of a performance bottleneck. Furthermore, it is
now possible to enhance the administrative replica
with mechanisms for preventing denial of service
attacks (for example crypto puzzles [12,76]); this
would be killer overhead should this replica have
to act as an online TTP, as in traditional symmetric
key protocols. However, these advantages come at a
certain price.

First, there are increased storage requirements:
essentially, each user proxy needs to store a number
of credentials proportional to the maximum number
of replicas, while each replica needs to store a num-
ber of credentials proportional to the maximum
number of users and replicas. However, with stor-
age price dramatically decreasing every year, we
believe this is an acceptable tradeoff.

Based on our implementation, the size of one
(authentication key, authentication ticket) pair is
about 100 bytes. Considering the formulas we
derived for the RKL and UKL size, we can compute
that even for reasonably large DSOs (thousands
replicas, hundreds of thousand users), the storage
requirements would be in the order of hundreds of
kilobytes for user proxies and tens of megabytes
for replicas (which is not that much of a problem
when considering the average disk size exceeds
50 GB these days). For extremely large DSOs, scala-
bility can be achieved by partitioning authentication
credential sets based on replica and user geographi-
cal clustering. For example, a user could be given

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

8 B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx

authentication credentials only for replicas and
potential replicas) in her network vicinity (the whole
point of replication is to match clients with nearby
replicas, so there is no point in giving users in Eur-
ope credentials for replicas in Australia). It is also
important to stress that the application target for
Globe is not massive replication, but instead
dynamic replication in order to achieve better per-
formance and fault tolerance. In this context, we
expect most Globe applications to require a moder-
ate number of replicas (in the order of hundreds)
which could be easily handled with our authentica-
tion mechanism.

Another drawback of this scheme is the fact that
the maximum size of the (user, replica) population
needs to be known in advance. However, for many
classes of applications, predicting an upper bound
of the number of users is not that difficult. This is
the case for applications serving closed communi-
ties, such as the employees of a company or the stu-
dents at a university campus. Furthermore, for this
upper bound one only needs a rough estimate (the
order of magnitude as opposed to the exact num-
ber); “guessing up”’, and allocating slightly more
master keys that necessary, at worst leads to some
small fraction of the users/replicas’ storage being
wasted. In the case of applications serving world-
wide “open” communities, where predicting and
upper bound for the number of users may be diffi-
cult, it is always possible to make use of geograph-
ical clustering of users and replicas in order keep the
size of credential sets in check.

Finally, the new authentication protocol does not
support non-repudiability and delegation, but this is
an intrinsic limitation of symmetric key algorithms.
For Globe applications where non-repudiation and
delegation of privileges are required, DSO adminis-
trators should select the public key authentication
module.

4.3. Access control

Replication makes the access control model for
Globe more complicated, since the concern is not
only what permissions users are given, but also
what kind of operations a given DSO replica is
allowed to execute, since DSO replicas can run on
third-party controlled platforms, which may not
be equally trustworthy. Thus, the Globe access con-
trol model needs to handle two issues: traditional
(forward) access control which deals with restricting
what operations a user is allowed to invoke, and

reverse access control — which deals with restricting
which operations an object replica is allowed to
execute.

Globe supports a discretionary access control
model: users and replicas are supposed to enforce
the correct invocation/execution of the operations
they are allowed to perform. Forward access control
is therefore enforced by replicas: a replica is sup-
posed to check the correct invocation (by users) of
the methods it is allowed to execute. Reverse access
control is enforced by users: a user is supposed to
ensure that the execution of the methods she is
allowed to invoke only goes to replicas allowed to
execute these methods under the object’s security
policy.

There are three types of rights that can be associ-
ated with Globe DSOs:

e Method invocation rights — they grant the per-
mission to invoke the DSO’s methods.

e Method execution rights — they grant the permis-
sion to execute the DSO’s methods.

o Administrative rights — they grant the permission
to further delegate rights.

Access control lists (ACLs) are stored by admin-
istrative replicas, and associate entity IDs with the
rights granted to those entities. The way rights are
actually expressed and encoded is dependent on
the type of access control mechanism implemented
by a given DSO. At this point we support two types
of access control mechanisms: coarse-grain and fine-
grain. The Globe software distribution provides
separate (library) security subobjects for each of
these mechanisms; Globe developers can thus
choose which mechanism is more appropriate for
their objects and incorporate it in the DSO, by
selecting the appropriate subobject. We briefly dis-
cuss each of these mechanisms in Sections 4.3.1
and 4.3.2.

All our security subobject implementations only
supports one administrative replica (which has all
possible administrative rights) per DSO. This
greatly simplifies ACL management. If administra-
tive tasks need to be replicated, it is important that
the replication protocol ensures ACLs are kept con-
sistent. It is up to the DSO administrator to decide
on the policies to follow when granting rights to
users and replicas. Similar to what we described in
Section 4.2, these policies can be based on external
certification of entities, payments, or web of trust-
based schemes, like PGP [78]. Once the privileges

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx 9

associated with a DSO entity have been set, they are
encoded into a entity rights descriptor — an opaque,
platform-independent, data structure — which is
then stored in the (global) DSO ACL and also
incorporated in the entity’s authentication creden-
tials; in this way, once two entities authenticate,
they know exactly what methods they are allowed
to invoke/execute.

The access control module in the security subob-
ject provides a very simple interface, consisting of
three methods:

o register Rights(channellD, privilegeDescriptor) 1is
called by the authentication module once a secure
channel has been established with another DSO
entity. The result of this method is that the rights
descriptor part of the other entity’s authentica-
tion credentials is associated with the secure
channel.

e isAllowed(channellD, methodID, parameters) 1is
called by the replication subobject once it
receives a method invocation request from
another DSO entity (with which a secure channel
has been previously established). The replication
subobject provides the channel ID corresponding
to this secure channel to the caller, as well as
information about the method being invoked
(e.g. which method, which invocation parame-
ters). The access control module returns True or
False, depending on whether the rights associated
with the corresponding channel (rights previously
set by register Rights()) allow or deny the given
method invocation request.

o channellD findReplica(methodID, parameters) is
called by the replication subobject when a (local)
method invocation request cannot be executed
locally, and thus needs to be sent to another
DSO replica. The module first evaluates the
request against the DSO’s (reverse) access control
policy, and determines the rights needed for exe-
cuting the request. The module then queries the
Globe Location Service (see Section 2) to find a
replica that has the required rights. To assist this
query process, replicas register their rights
descriptor with the GLS. The GLS treats this
descriptor as an opaque bitmap, supporting exact
match queries as well as queries on individual
bits. The actual GLS query format depends on
how rights are encoded in the rights descriptor.
We provide concrete examples in Sections 4.3.1
and 4.3.2. It is important to understand that
the GLS needs not to be trusted, essentially the

replica contact points returned by a findReplica()
call being treated as mere hints. The local repre-
sentative always authenticates a replica before
sending the method invocation request, in order
to ensure the rights registered with the GLS
match those in the replica’s authentication
credentials.

4.3.1. Coarse-grained access control

For our coarse-grain access control mechanism,
the access control granularity is set to the object
method level. In this case, the rights descriptor asso-
ciated with a DSO entity (user/replica) consists of
two bitmaps — the forward access control bitmap
(FACB), and the reverse access control bitmap
(RACB) - encoding the method invocation rights
(FACB), and the method execution rights (RACB)
granted to that entity. Each bit in these bitmaps cor-
responds to one of the object’s methods; a 1 in the
bitmap allows the invocation/execution of the corre-
sponding method, while a 0 denies it.

In this case the implementation of three interface
methods described in the previous section is quite
straightforward: register Rights() simply associates
the FACB and RACB in the authentication creden-
tials with the corresponding channellD; isA/lowed()
returns True if the bit corresponding to the method
being invoked is set in the FACB associated with
the channel (and False otherwise); findReplica()
does a bit-query on the GLS, essentially searching
for a replica that has registered a RACB bitmap
with the bit corresponding to the requested method
set.

Finally, an additional delegation bit is used to
express administrative rights. An entity that has
the delegation bit set is allowed to further delegate
all the rights it has been granted, including the del-
egation right. Operationally, administrative rights
are implemented as special administrative methods,
provided by each DSO as a standard administrative
interface. This interface includes methods for regis-
tering users and replicas, issuing and retrieving rev-
ocation lists and so on. An entity that has the
delegation bit set in its rights descriptor (implicitly)
has execution rights for all these administrative
methods.

The coarse-grain access control model described
in this section is quite simple, but very intuitive,
and should cover a wide variety of application
scenarios (in most cases, security policies tend to
be simple, consider for example the UNIX rwx
protection model). Although it cannot support com-

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

10 B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx

plex access control policies (based on method
parameter values for example), it still gives DSO
administrators a considerable degree of flexibility
by allowing them to define finer-grain privileges by
choosing a more fine-grain object interface (for
example a DSO modeling an e-newspaper could
provide separate read() methods to differentiate
between subscribers and the general public). For
applications that require more complex policies,
we provide a fine-grain access control model, which
is described next.

4.3.2. Fine-grained access control

Although there are many application scenarios
where simple access control policies are sufficient,
there are cases where a more refined access control
granularity may be necessary; for example, an e-
banking application may require different security
properties when requesting the same action — a
money transfer — depending on the amount being
transferred.

To address these issues, we have designed a new
access control policy language capable of describing
fine-grain method invocation and execution rights,
based on parameter values, as well as other external
conditions. Furthermore, using this policy language
it is also possible to express exceptional method
invocation and execution behavior:

o Composite invocation subjects — used to describe
access control policies where a number of users
must collaborate for invoking a particular
method instance.

e Composite execution targets — used to describe
access control policies where a number of DSO
replicas must collaborate for executing a particu-
lar method instance.

o Audited execution — used to describe access con-
trol policies where results computed by margin-
ally trusted replicas must be audited by other
(more trustworthy) replicas.

The main reason for supporting such exceptional
method invocation/execution behavior is Byzantine
fault tolerance. Composite invocation subjects are
useful for protecting sensitive DSO operations by
means of separation of privileges [21], which may
be mandated by organizational policies (for exam-
ple, many banks require high-value transactions to
be approved by more than one bank official). Com-
posite execution targets and audited execution are
useful for protecting DSO operations against possi-

ble compromise or malicious behavior from some of
their less trusted replicas.

4.3.2.1. Basic idea. The basic idea for designing a
more fine-grain access control framework for Globe
comes from the observation that, for a given DSO,
there are only a limited number of logical “roles”
that can be associated with entities part of that
object. Such “roles” may be dictated by the DSO’s
replication strategy (for example “master” and
“slave” replicas in the case of master-slave replica-
tion), or by the administrative and security policies
required by the application (for example “gold”
and “platinum” users for a DSO modeling a sub-
scription-based e-newspaper).

RBAC [66] is a relatively new access control
framework where privileges are associated with log-
ical roles, and entities are granted membership into
roles based on their competencies and responsibili-
ties in a given application scenario. Our idea is to
design a fine-grain access control framework for
Globe DSOs based on RBAC. As such, we define
a DSO role as a subset of the set of all rights that
can be associated with a Globe DSO. An observa-
tion here is that when rights granularity is set to
method parameter values level, the total number
of rights that can be associated with a DSO can
be very large, possibly infinite; in this case, the num-
ber of possible roles is even larger (since it grows
exponentially to the number of the possible rights).
However, as previous research on RBAC has shown
[65], only a small fraction of all possible roles are
actually useful for describing meaningful security
policies; as such, we believe that for most DSO role
hierarchies will be quite small.

There are three types of DSO roles: administra-
tive roles, user roles and replica roles. Administrative
roles include administrative rights, while user and
replica roles only contain method invocation and
method execution rights. A DSO entity may be
assigned to more than one role.

Based on this definition of a DSO role, the secu-
rity policy for a given Globe object can be (logically)
split into two parts: (1) the DSO role specification —
a data structure defining the DSO role hierarchy
(the set of all roles and the relationships among
them), as well as the detailed permissions (rights)
associated with each role; (2) the DSO role assign-
ment list details what roles are assigned to each
DSO entity (user replica). The role specification is
essentially a text file written in a special declarative
policy language; this file consists of policy state-

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx 11

ments describing the object’s role hierarchy and the
specific rights associated with each role. Ref. [64]
provides a detailed description of our policy lan-
guage; in this section we only give a brief overview
of this language.

The DSO role specification file is generated by
the DSO administrator when the object is created,
signed with the object key, and distributed to all
DSO entities at initialization time (i.e. when a user
registers with the object, or when a new replica is
instantiated). The role assignment list consists of
entity ID, entity Role pairs, and is stored by admin-
istrative replicas. In addition to this, an entity’s
authentication credentials also include the role(s)
assigned to that entity. DSO replicas also register
their role(s) with the GLS.

4.3.2.2. Administrative rights. An administrative
right represents the ability of an administrative role
to delegate another role. Such a right is expressed
through a policy statement of the form:

Role, canAssign Rolep

where Role, is an administrative role and Roleg is
another role (possibly an administrative one as
well). A DSO’s role specification file contains a
number of such statements, describing the role hier-
archy for that DSO.

Then, an intuitive way to see a DSO’s role hierar-
chy is as a directed graph, with each node corre-
sponding to a role; in such a graph, an edge from
a node Roley to a node Rolep, implies that role
Role 4 is an administrative role, and has the right
to delegate role Rolep under the DSO’s security
policy.

The way in which this role graph is organized
may restrict the types of authentication mecha-
nisms that can be used. For instance, it is difficult
to support delegation by means of symmetric key
authentication; in this case a flat administrative
hierarchy (corresponding to a two-level tree), with
one administrative entity doing both the key distri-
bution and the role assignment is recommended.
Applications requiring delegation of administrative
privileges (essentially a multilevel role graph)
should use public key authentication. In this case,
there is a credentials chain associated with each
DSO entity: this chain consist of the entity’s public
key certificate and all the certificates associated
with intermediate certification authorities that have
(recursively) delegated rights to that entity. In this
case, the registerRights method takes this entire

credentials chain as one of its inputs. This method
checks this credentials chain to ensure the following
properties:

e Certificates in this chain are correctly “chained” —
this means each certificate is signed with the
public key in the previous certificate in the chain.

o The first certificate in the chain (corresponding to
the top-level role in the DSO’s role hierarchy) is
signed with the DSO’s public key (which is
implicitly granted all possible rights that can be
associated with the DSO).

e The sequence of roles in the certificates in the
chain correspond to a valid path in the DSO role
graph (this means that for each certificate, the
role in the certificate canAssign the role in the
next certificate in the chain).

4.3.2.3. Method invocation rights. A method invoca-
tion right represents the ability of an (non-adminis-
trative) role to invoke a given method instance.
Such a right is expressed through a policy statement
of the form:

RoleSubject canlnvoke Method underConditions

Conditions

Here RoleSubject is a role name, or a combina-
tion of role names, previously declared in a canAs-
sign statement; role combinations are useful for
allowing granting of method invocation rights to
composite role subjects. Method is the name of one
of the DSO’s methods; Conditions is a boolean
expression that puts constraints on the way the
Method can be invoked by the role, or composite
role subject.

A composite role subject consists of a number
of entities assigned certain roles, which must cooper-
ate in order to perform a specific action (a method
invocation in this case). The generic role subject
format is

<RoleSubject>:: <Role> | <CompositeRoleSubject>;

<CompositeRoleSubject>:: <RoleGroup> |
<RoleGroup> ¢ ‘&&’’
<CompositeRoleSubject>;

<RoleGroup>:: <PositiveInteger> ¢ ‘x>’ <Role>;

For example a role expression of the form
3 * Role &&2 * Roleg implies that a given DSO
method, under certain condition, can be invoked
only by a composite role subject consisting of three

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

12 B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx

users assigned into Role 4 and two users assigned into
Roleg. These five users must collaborate and agree
on this method invocation. Composite subjects are
useful for protecting sensitive operations by means
of separation of privileges [21]; in many cases, such
separation of privileges is mandated by organiza-
tional policies (for example, banks requiring high-
value transactions to be approved by two bank
officials).

A DSO’s forward access control policy can be
fully described through a set of canlnvoke state-
ments, specifying which roles, or composite role
subjects are allowed to invoke each of the DSO’s
methods, and under which conditions. This policy
is stored in the DSO role specification file. Upon
receiving a method invocation request, a replica
calls the caninvoke() function (implemented by the
access control module), passing the method name,
parameters, as well as the role of the entity making
the request (or the identities of entities collectively
making the request, in case of a composite invoca-
tion subject). canlnvoke() then searches the role
specification file; if an appropriate canlnvoke state-
ment is found, canlnvoke() returns True (allowing
the request to be executed), otherwise it returns
False. DSOs that support composite subjects need
to provide a special user interface allowing multiple
users to collaborate in making a composite subject
method invocation.

4.3.2.4. Method execution rights. A method execu-
tion right represents the ability of an (non-adminis-
trative replica) role to execute a given method
instance. Such a right is expressed through a policy
statement of the form:

RoleExpr canExecute Method underConditions

Conditions

Here RoleExpression is a role expression, Method
i1s the name of one of the DSO’s methods; Condi-
tions is a Boolean expression that puts constraints
on the way the Method can be executed.

RoleExpr is an expression of the form:

A role expression has the generic form:

<RoleExpr>: <CompositeRoleSubject> |
<CompositeRoleSubject>
‘‘aguditedBy’’ <Role> |

Such an expression is used to describes a group of
replicas, and the way these replicas should be con-

tacted by a user that wants to invoke Method (under
some given conditions) on the DSO. There are three
types of method execution behavior:

Regular execution: the method is executed by one
replica. For example, a policy statement of the
form:

Role, canExecute M underConditions..;

states that an execution request for method M in the
given conditions can be handled by a replica in role
Roley.

Replicated execution: the same method is exe-
cuted on a number of replicas, and the result is
accepted only when a majority of them agree on
the return value. This allows expressing Byzantine
fault-tolerance policies based on state machine repli-
cation (see Section 4.4). In this case the number of
types of replicas than need to be contacted is
expressed as a composite role subject. For example,
a policy statement of the form:

3 % Role,&&2 * Rolep canExecute M underConditions..;

states that an execution request for method M needs
to be handled by three replicas in Role, and two
replicas in Rolep, and a majority of these have to
agree on the result before the user accepts it.

Traceable execution: a replica or composite rep-
lica subject that executes a method has to sign (with
their respective replica keys) the invocation request
and the return value. The user proxy then forwards
these traceable request-result pairs to an auditor
replica. Auditing involves re-executing the request
and comparing the result with the one signed by
the replicas. In this way, less trusted replicas acting
maliciously can be traced and eventually excluded
from the DSO (we discuss this technique in more
detail in Section 4.4). For example, a policy state-
ment of the form:

Role, auditedBy Rolep canExecute M underConditions..;

states that an execution request for method M can
be handled by a replica in role Role 4. However, this
replica needs to sign the computed result, before
returning it to the user. The user proxy needs to for-
ward this signed result to a replica in role Roleg
which does the auditing.

A DSO’s reverse access control policy can be
fully described through a set of canExecute state-
ments, specifying the execution behavior for the
DSO’s methods. This policy is also stored in the
DSO role specification file. When a user invokes a

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx 13

given DSO method, the user proxy calls the findRep-
lica() function (implemented by the proxy’s access
control module), passing the method name and
invocation parameters. findReplica() then searches
the role specification file in order to find a canExe-
cute statement describing how the given method
instance should be executed. Once such a statement
is found, findReplica() queries the GLS for replicas
matching the roles in the statement’s role expres-
sion, connects to these replicas and mutually
authenticates, and finally issues the request accord-
ing to the execution behavior specified in the state-
ment (regular, replicated, or traceable execution).

4.3.3. Conditions

The underConditions clause in a canlnvoke/
canExecute policy statement allows to express fine
grain constraints on method invocation/execution
rights. Essentially, a condition is a logical expres-
sion, or a number of logical expressions connected
using the and, or and not logical operators. Such
logical expressions combine numbers, method
parameter names, external functions, and additional
entity attribute names using logical and arithmetical
operators. The exact syntax for describing such con-
ditions is described in detail in [64]. Here, we only
briefly discuss how the various syntactical elements
can be combined:

e Method parameter names can be used for express-
ing constraints on method invocation rights
based on the actual parameter values for a given
request. For example, consider a Globe e-bank-
ing application; transfer Funds is one of its public
methods, amount is one of the method parame-
ters, and Clerk is a role. A policy statement of
the form:

Clerk canlnvoke transferFunds underConditions
(amount < 10,000);

restricts a DSO user assigned a Clerk role to only
transfer amounts less that 10,000 dollars.

e External functions can be used for expressing
constraints on method invocation rights based
on functions external to the access control mod-
ule. Such functions have to be separately declared
in the policy data structure, so that the policy
engine knows how to invoke them. External
functions can impose constraints on the way a
method can be invoked based on things like the
DSO state, the resources available on the system

running the replica, time of the day, or the loca-
tion where the request originates. The only
requirement here is that such external functions
are synchronous — this ensures the policy engine
cannot be blocked on an external function.

e Additional attributes — these are expressed as
name-value pairs and are incorporated in the
caller’s authentication credentials. The main pur-
pose of such attributes is to allow a more refined
differentiation among DSO entities, while keep-
ing the role hierarchy reasonably simple. As an
example, considering the same e-banking appli-
cation, we assume a policy requirement stating
that a manager can only read the accounts of
the customers she has been assigned. In this case,
Manager is a role, readAccount is a DSO public
method, customerName is one of its parameters,
extAttr_name is an additional attribute — part
of a user certificate — that stores the user’s name,
and whichManager is an external function which,
provided a customer name, returns the name of
the manager assigned to that customer. Then,
the policy requirement can be expressed through
a statement of the form:

Manager canlnvoke readAccount underConditions

(extAttr name == whichManager(customerName));

Without external attributes, the only way to ex-
press such a rule would be to create a separate
role for each individual manager; this clearly
would not be a scalable solution.

4.4. Byzantine fault tolerance

As discussed in Section 3, one of the key aspects
in Globe is that DSO local representatives are
decoupled from the resources/physical infrastruc-
ture on which they run, since DSO administrators
have the option of creating replicas on Globe object
servers outside of their administrative control. It is
important to stress that Globe provides this feature
as additional flexibility given to DSO administra-
tors for choosing the replication strategy that best
fits their needs, as opposed to a design constraint.
Each DSO is free to choose any policy with respect
to which servers are allowed to host its replicas.
While for highly secure applications such as
e-banking, running on untrusted infrastructure
may be unacceptable, there are many less security-
critical scenarios where replication on marginally
trusted platforms can be extremely beneficial, as

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

14 B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx

demonstrated by the advent of content delivery net-
works and grid applications.

Deciding on how much trustworthiness to
demand from the hosting infrastructure is ulti-
mately a cost/benefits analysis problem for DSO
administrators. Nevertheless, perfect security is
practically impossible, so for any DSO we need to
consider the possibility that at least some of its rep-
licas may be corrupted, either due to malicious GOS
administrators, or to vulnerabilities in the hosting
platform itself (in the operating system, or in the
GOS code). In this context, it becomes essential to
provide mechanisms for Byzantine fault tolerance.

Our observation is that mechanisms for handling
Byzantine failures fall into two categories: those
aiming at damage prevention, and those aiming at
damage control. We will look at each of these cate-
gories, and explain how they could be integrated
with the Globe security architecture.

4.4.1. Mechanisms for damage prevention

The aim of such mechanisms is preventing mali-
cious replicas from causing any damage to their
DSOs, except possibly denial of service. The optimal
solution in this case is trusted remote computation as
proposed in [37,11,31,7,60]. Unfortunately, research
in this area is still in an incipient phase, and we expect
it will take years until such secure platforms will be
widely available. Because of this, in Globe we focus
on techniques for minimizing the impact of cor-
rupted replicas on the correct operation of a DSO.

Another mechanism that can be used for damage
prevention is state signing [36]. The idea is to have a
trusted replica sign the results of read operations,
which can then be distributed to marginally trusted
replica which then serve them to clients. Before
accepting a result, a given client first verifies that
the result is correctly signed by a trustworthy rep-
lica. The fine-grain access control mechanism out-
lined in the previous section can be used for
differentiating between these different classes of rep-
lica (e.g. in the simplest case, having two roles Trust-
edReplica and Marginally TrustedReplica). As an
example, a Globe-powered Web site (as described
in [73]) can have all its individual documents time-
stamped and signed with the object’s key, so that
for each GET request, the client’s proxy can check
that the untrusted cache has returned a valid docu-
ment. Through state signing we can achieve highly
secure distributed objects, since the harm that mali-
cious replicas can do is limited to denial of service.
However, state signing is rather application specific.

If the state is large, as is the case, for example, with
Web sites, we need to find a way to partition that
state so that each part can be signed separately. Par-
titioning needs to be done in units that match the
result values of read operations, which is not always
possible (consider a result value that needs to be
computed, e.g. an average value). Nevertheless, we
believe that in many cases, state signing, in combi-
nation with the more general reverse access control
mechanism, can make certain classes of Globe
applications safe to run on untrusted infrastructure.

Yet another mechanism for handling Byzantine
fault tolerance is through state machine replication
[68,26,46]. The idea here is for the client to invoke
the same method on a number of replicas (quorum),
and accept the result only when the same result is
returned by the group majority. The fine-grain
access control framework described in Section
4.3.2 can be used to express such replicated method
execution behavior.

4.4.2. Mechanisms for damage control

The techniques outlined in the previous section
are quite powerful, but cannot be used indiscrimi-
nately. Research on trusted computing is still in an
incipient stage, and it will take years until soft-
ware/hardware platforms supporting it become
mainstream. State signing is only suited for a rather
restricted class of applications — those mostly deal-
ing with static data reads. Finally, state machine
replication can be quite expensive to implement,
since the amount of resources required for a given
method invocation grows linearly to the quorum
size. The client-perceived request latency is also
likely to increase in this case, since it is dictated by
the slowest replica in the quorum.

Given these shortcomings, for the Globe security
architecture we are also considering a second class
of Byzantine fault tolerance techniques, which aim
at restricting the amount of damage malicious repli-
cas can cause to a DSO, detecting when this damage
occurs, and possibly taking corrective action after
the breach. Clearly, restricting, detecting, and
repairing is not as good as preventing altogether,
but on the other hand, this second class of mecha-
nisms are much more efficient to implement, hence
the potential tradeoff. Damage-restricting mecha-
nisms are based on an optimistic assumption that
replica corruption happens relatively infrequently,
so security mechanisms should be designed to
handle the common case efficiently — namely when
everything works correctly.

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx 15

One way to do damage control is through the
reverse access control mechanisms described in Sec-
tion 4.3. Recall that replicas are granted method exe-
cution rights that specify which of the DSO’s methods
they are allowed to handle. In this way, execution of
security-sensitive operations can be restricted to
trusted replicas (for example those running on trusted
hosts). This technique can be used in conjunction with
result auditing. Here, the basic idea is to have margin-
ally trusted replicas sign the results they produce;
these results are then audited by (trusted) auditor rep-
lica. In order to be able to do this, the auditor replica
needs to “lag behind” with state updates, essentially
delaying such updates until it has audited all results
computed for a given state version.

For the remaining of this section we will examine
this audit-based Byzantine fault tolerance mecha-
nism in more detail, and show how it can be inte-
grated with the overall Globe security architecture.
A more formal description of this technique is pre-
sented in [63].

4.4.2.1. Operational model. Without loss of general-
ity, we assume that a Globe DSO employing our
audit-based Byzantine fault tolerance mechanism
provides two types of operations (methods): read
operations do not change the DSO state, while write
operations do change the DSO state. Furthermore,
we group the entities (clients, replicas) involved with
the DSO into four categories:

e Clients perform read and write operations by
invoking the DSO’s methods.

e Slave replicas handle the clients’ read requests.

e Master replicas handle the clients’ write requests.

e Auditor replicas audit the results of the read
requests computed by the slaves in order to
ensure they are correct, and take corrective
action when detecting incorrect results.

A DSO following this operational model can be
designed using the fine-grained access control mech-
anism described in Section 4.3. This can be done by
designing a role hierarchy that specifies different
replica roles for executing the DSO state changing
and non-state changing methods, and using the
auditedBy policy statement (see Section 4.3.2) to
specify the auditor roles. We also require the DSO
to employ public key-based authentication mecha-
nisms between clients and replicas.

As for our state consistency model, we guarantee
that write operations are executed in some sequen-

tial order (state changes occur in the same sequence
on all replicas). On the other hand, we only provide
a weaker form of consistency for read operations:
essentially the result of a read request (from a given
client) may not take into account state changes that
have occurred in the “recent past’.

A special parameter maxLatency is used to quan-
tify this concept of ‘“‘recent past”. Essentially, our
read consistency model can be formalized as fol-
lows: a write operation that occurs at time 7 is
guaranteed to be taken into account for all read
operations performed after time 7, = T| + maxLa-
tency. For this definition, we assume that all DSO
replicas and clients have loosely synchronized
clocks, and the clock skew is negligible compared
to the maxLatency parameter.

4.4.2.2. The write protocol. Given this consistency
model, the algorithm for handling write operations
is shown in Fig. 4:

There are four (logical) steps:

1. A client connects to a master replica and invokes
a write method. The replica performs the access
control check, and if the client is allowed to
invoke the method, it executes it.

2. The master replica propagates (broadcasts) the
write to the other master replicas. The write is
propagated in a way that guarantees some
sequential ordering of concurrent write opera-
tions. There are many atomic broadcast proto-
cols that accomplish this [44,27,19]; for example
efficient atomic broadcast [44] could be a likely
candidate. In addition to the sequential ordering
of write operations, we also require the DSO to
have a special internal variable — stateVersion —
which is (atomically) incremented with each write

Slave

Replica
Slave
Replica

@ Slave
Replica

Master
Replica

Client @ Master
Replica

©)

4

Slave
Replica Dave

Replica

©) Master

Replica Stave
@ | Replica

Fig. 4. The write protocol.

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

16 B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx

operation. Given the authentication and access
control mechanisms described in the previous
sections, it is assumed that any messages
exchanged between trusted replicas (including
those part of the atomic broadcast protocol used
to propagate writes) are transmitted over secure
(i.e. preserving at least data integrity, possibly
confidentiality). As such, any atomic broadcast
protocol that operates on a crash-fault model is
sufficient here. If the network is the attacker, it
can only drop or delay messages, but, given the
secure communication channels assumption, it
cannot inject or manipulate valid messages. In
these circumstances, any network attack is equiv-
alent to a node crash.

3. At the end of Step 2, the write has been propa-
gated to all the master replicas, and all these rep-
licas have incremented their stateVersion internal
variable to reflect the change. At this point, the
write operation has successfully completed, and
the first master replica (the one that has executed
the write) reports this to the client.

4. The master replicas propagate the state update to
the (marginally trusted) slaves. We assume each
slave is registered with one of the masters. Upon
receiving a write, each master propagates it to all
the slaves that are registered with it. In addition
to the state update, each master also sends its
slaves a lease for the new state. A lease is simply
the value of the stateVersion variable, time-
stamped, and signed by the master. Essentially,
a lease gives a slave the permission to serve read
requests on a given version of the DSO’s state. A
lease is valid from the moment it is issued, and it
expires after maxLatency time. This guarantees
that a slave cannot serve read requests that are
based on stale state older than maxLatency. We
provide more details on how leases are used when
we discuss the read protocol.

The distinctive feature of the write algorithm
described above is the “lazy” propagation of writes
(state updates) to slave replicas. Essentially, a slave
receives an update only after the corresponding
write operation has completed (from the point of
view of the client that has initiated it). The reason
we require this “lazy” state update algorithm, as
opposed to having masters and slaves participate
in some sort of total ordering broadcast, is perfor-
mance. Since only masters are trusted (not to exhibit
Byzantine-faulty behavior), a total ordering broad-
cast protocol including the slaves would have to

be resistant to Byzantine failures, and implementing
such an algorithm over a WAN is extremely expen-
sive. “Lazy” state updates make the write protocol
much more efficient, but also weaken the consis-
tency model, since a client cannot be guaranteed
that once his write is committed it will be seen in
all subsequent reads.

4.4.2.3. The read protocol. Read operations are
invoked by clients on slave replicas. Since these rep-
licas are only marginally trusted, they may return
incorrect results to client requests. In order to lever-
age this threat, results produced by slave replicas
need to be audited; the read protocol is designed
to facilitate this process. This protocol is shown in
Fig. 5, and consists of four (logical) steps:

1. A client invokes a read method which is pro-
tected by means of auditing against Byzantine
faults. In the DSO’s security policy, this is speci-
fied by a rule of the form:

Role, auditedBy Rolep canExecute
Method underConditions Conditions

The user proxy finds a DSO (slave) replica as-
signed Role, (using the Globe Location Service
— GLS - see Section 4.3.2), connects to it and
sends the method invocation request.

2. The slave replica performs the access control
check to ensure the user is allowed to invoke
Method under the DSO’s security policy. If this
is the case, the slave executes the read request,
and sends back the result, together with a pledge,
a valid lease for the version of the DSO state on
which the result was computed, as well as the
DSO credentials of the master replica that has
issued the lease.

The pledge sent by the replica has the following
format:

Client @ Slave
Replica
@ @
@ Auditor
Replica

Fig. 5. The read protocol.

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx 17

{H (request), H (result), stateVersion, timestamp},
where H is a secure hash function, and ygjave is the
slave replica’s private key. The pledge contains a
secure hash of the original request, a secure hash
of the result, the value of the stateVersion vari-
able (as it appears in the lease) and a timestamp,
indicating the time when the result was computed
by the slave.

3. Upon receiving the data from the slave, the user
proxy performs the following checks:

e It verifies the master replica credentials
received from the slave, ensuring that all sig-
natures are correct. If these checks pass, it
means that the master replica that has these
credentials has indeed the right to issue state
version leases to the slave that has produced
the read result.

o It verifies the lease, by checking the master
replica’s signature on it, and ensuring the
timestamp in the lease is less than maxLatency
old.

e [t verifies the pledge, by checking that the
hashes in the pledge match the hash of the ori-
ginal request, and the hash of the result (as
sent by the slave), that the stateVersion in
the pledge matches the one in the lease, and
that the timestamp in the pledge is within max-
Latency from the timestamp in the lease.

4. If all the checks pass, the user proxy accepts the
result, and forwards the original request, the
lease, the pledge, and master replica credentials
to the auditor. As specified by the access control
rule (see Step 1), the auditor is a replica assigned
Roleg, which the proxy can find using the GLS.

The distinctive characteristic of the read protocol
is that the client performs a series of checks on the
result, the lease, and pledge associated with the
result, before accepting them. These tests alone are
not sufficient to detect erroneous results; instead
their purpose is to ensure that the pledges signed
by the slaves can potentially be used as proofs of
misbehavior. Essentially, a pledge, constructed as
described above, commits the slave replica that
has signed it to a unique combination of the DSO’s
state, read request, and result (for that request). A
trusted auditor that has access to the same version
of the DSO state can simply re-execute the request;
should the hash of the result (as computed by the
auditor) not match the one in the pledge, the pledge
becomes a self-incriminating proof of the slave’s

misbehavior. We explain this auditing process in
detail next.

4.4.2.4. Auditing. Probably the most important fea-
ture of the Byzantine-fault tolerance mechanism we
propose is auditing. This is done by trusted auditor
replicas; its purpose is to detect potentially errone-
ous results produced by the (untrusted) slaves, so
that corrective action can be taken against them.

Compared to regular (non-auditor) replicas, each
auditor replica holds two additional data structures:
the read requests list (RRL) and the state updates list
(SUR).

The RRL consists of five fields, corresponding to
the information sent by clients at the end of the read
protocol (see the previous section): the read request
(as issued by the client), the pledge signed by the
slave that has computed the result, the lease, the cre-
dentials of the master replica that has issued the
lease, as well as the local user Id corresponding to
the user proxy that has requested the audit. Entries
in the RRL are ordered by the value of the state Ver-
sion variable, as it appears in the lease.

The SUR consists of state update (write)
requests, in the order in which they change the
object’s state. Essentially, each entry in this list cor-
responds to a new version of the DSO’s state, and
describes how the new state can be reached.

The auditor fills these lists with data it receives
from clients — (request, pledge, lease, master creden-
tials) tuples — and master replicas — state update
messages. The auditor re-executes the read requests
in order to check their correctness, while occasion-
ally applying state updates in order to (loosely)
keep in sync with the DSO state. The invariant we
want to preserve here is that a state transition is
performed only affer all the read requests that
depend on the previous state version have been ver-
ified by the auditor. One way to achieve this is to
introduce some additional delal — minState Update-
Delay, between the time a state update is initiated,
and the time the update is applied by the auditor.
The purpose of minStateUpdateDelay is to ensure
that the auditor can move to a new state only after
all audit requests for possible read requests per-
formed by clients on a previous state have been sent
received by the auditor. Remember that our state
consistency model allows slaves to compute read
results on an old (stale) state of the DSO, but this
state cannot be older than maxLatency compared
to the latest state update (otherwise the client would
reject the result after examining the slave’s lease —

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

18 B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx

see step 3 of the read protocol). As such, the min-
StateUpdateDelay should be at least equal to max-
Latency. In practice, minState UpdateDelay should
be slightly larger than maxLatency in order to offset
possible network delays and clock skews between
the client and the auditor. In this context, it is
important that the client forwards the pledge to
the auditor immediately after it has received it from
the slave (essentially, sending the pledge to the audi-
tor is integral part of the read operation, and the
result of the read is not accepted by the client until
the pledge has been successfully send to the audi-
tor). A malicious client may arbitrarily delay send-
ing the pledge to the auditor, but the only
outcome of this would be that the client itself runs
into the risk of accepting a read result which will
not be audited (essentially, a malicious client can
only harm itself).
The audit process works as follows:

1. The auditor takes a client read request from the
RRL and executes it.

2. The auditor takes the hash of the result, and
compares it to the hash in the pledge. If the
two hashes match, the result is correct, and the
auditor moves to the next request; otherwise,
the auditor moves to Step 3 in order to perform
additional checks.

3. If the two hashes do not match, the auditor ver-
ifies the pledge, lease, and master replica creden-
tials for the audit request, performing all the
checks that should have been performed by the
client before accepting the result being audited
(see previous section). The purpose of these
checks is to determine whether the slave has
indeed produced an erroneous result, or the client
is misbehaving, sending bogus data for auditing.
Depending on the outcome of these checks we
have two possibilities:

(a) The pledge, lease, and master replica creden-
tials are all valid. In this case, the client is hon-
est, and the slave replica has indeed produced
erroneous results. The auditor proceeds with
taking corrective action against the (now pro-
ven) malicious slave.

(b) At least one of the pledge, lease, or master rep-
lica credentials is not valid. In this case, the cli-
ent is acting maliciously, since, according to
the read protocol, it should have verified their
correctness before requesting the audit. In this
case, the auditor needs to take corrective
action against the client. Possible options here

include rejecting future audit requests from
that client, or even revoking the client’s DSO
credentials, essentially excluding the client
from the DSO domain.

The distinctive feature of the audit protocol is
that it has been optimized to ensure fast verification
of read results. Given our optimistic assumption
(that slave misbehavior is infrequent), in normal cir-
cumstances this verification only requires the audi-
tor to re-execute the request and compute a hash
value (a fast operation). The auditor does not per-
form any signature or credentials verification, since
it is assumed this was done by the client, as part of
the read protocol. A malicious client could have
omitted these checks, but our assumption is that cli-
ents are rational, and are interested in getting cor-
rect results.

In order to ensure fast auditing, further optimiza-
tions can be introduced: for example, the auditor
can keep a small associative cache containing (read
request, result hash) pairs. Before re-executing a
request, the auditor can search for it in this cache;
if an entry is found, the auditor can simply take
the hash of the result in the cache and compare it
against the one in the pledge, thus saving the request
execution time. This cache needs to be flushed after
each state update.

The reason for all these optimizations is to ensure
the auditor can keep up with the workload. It is also
important to understand that (as the name sug-
gests), the minStateUpdateDelay is only the mini-
mum delay the auditor may have to wait before
applying a state update. Depending on the number
of read requests it needs to audit for a given DSO
state, the auditor may have to delay the next state
update even longer (i.e. until it has finished auditing
all read requests for the current state). This will
likely happen if client read requests patterns are
bursty, or they exhibit significant rate variations
during the day (e.g. many requests during the work-
ing hours, quiet periods during the night). In this
case, the auditor may significantly “lag behind”
with applying state updates during the busy period,
but eventually recover (as long as it can keep up
with the average workload). The bottom line is that
the auditor has to perform the same work as (many)
slaves, this being the only way we could achieve the
economies of scale to justify our Byzantine fault tol-
erance mechanism. There are a number of solutions
for tackling the problem of the auditor not being
able to keep up with the workload:

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx 19

e Replicate the auditor. This has the drawback that
more trustworthy computing resources are
required.

e Perform probabilistic auditing. In this case the
auditor only verifies a random subset of all the
received audit requests. This is more economical
(does not require extra auditors), but has the
drawback that it may take longer to detect a
malicious slave.

4.4.2.5. Taking corrective action. The last part of the
Byzantine fault-tolerance mechanism we propose
regards the corrective action that should be taken
once a malicious slave is identified. As explained
earlier, this happens once the auditor detects a mis-
match between the hash of the result of a read
request it re-executes, and the hash committed in
the pledge by the slave which has originally com-
puted the result.

The first action the auditor needs to take is to
revoke the slave replica’s local credentials. This
essentially excludes the replica from the DSO
domain, prevents further client requests from being
directed to that replica, and thus prevents further
damage. Depending on the contractual agreements
between the DSO administrator and the administra-
tor of the GOS hosting the malicious replica, further
legal action can be taken. The pledge signed by the
slave can be used in courts as irrefutable evidence of
its misbehavior.

Preventing further damage is useful, but some-
thing may need to be done to fix the damage already
caused by the malicious replica. Here there are two
alternatives that may be considered.

First, damage can be fixed by reverting the DSO
to an old state, not affected by the erroneous results
computed by the malicious replica. Although slave
replicas only compute read results, depending on
the application functionality, it may be possible that
a client uses such an (erroneous) read result in a sub-
sequent write operation, in which case the DSO state
is (indirectly) compromised by the malicious slave.

Reverting to a safe old state is relatively straight-
forward to implement, since the auditor is guaran-
teed to always “lag behind” with state updates. At
the moment an erroneous read result is detected,
the auditor can simply broadcast a “recovery’ state
update, reverting the state of all DSO replicas to the
version it has at that moment (which is not affected
by the erroneous read). Having detailed knowledge
of the application functionality may allow the audi-
tor to perform even more ‘““intelligent” recovery, for

example only reverting to an old state if it detects
write operations that may depend on the erronecous
read result.

Although such a recovery strategy may seem
appealing, we were not able to identify any realistic
application scenarios where this may be useful. The
main problem with reverting state is that it does not
work well with interactive user applications, where
an erroneous read result may cause the user to per-
form some irreversible action (printing a file, mak-
ing an electronic payment, etc.). Reverting state is
effective in case of applications doing (distributed)
batch processing; in this case, reverting only
requires some of the batched operations to be
re-executed. However, as explained earlier, one
motivation for having an audit-based Byzantine
fault-tolerance mechanism is reducing response
latencies, by executing user requests on (marginally
trusted) replicas close to the user. In case of batch
processing, response latency is much less of a con-
cern, and in this case alternative Byzantine fault-tol-
erance mechanisms (based on state machine
replication, for example) may be more effective.

As a conclusion, taking corrective action by
reverting to an old state is definitely possible with
our scheme, but we do not expect this correction
mechanism to suit well the kind of applications to
which our scheme can be applied.

The second damage-repair mechanism that can
be applied is actually extremely simple: revoke the
malicious replica from the DSO, and simply ignore
whatever damage it might have caused. Ignoring
damage may seem a strange way of fixing it, but
nevertheless, we were able to identify a rather wide
class of applications where this may suffice. We
elaborate more on this next.

4.4.2.6. Discussion. The audit-based approach to
Byzantine fault-tolerance described in this section
was first introduced by us in [63]. We view it as an
economical alternative to state machine replication,
since the amount of resources needed to serve an
audit-based execution request is smaller than for
replicated execution; furthermore, in case of repli-
cated execution, the user-perceived latency is dic-
tated by the slowest replica in the composite
execution target, while for traceable execution the
user can select a “fast” (low-latency) replica, and
let the result be audited later. However, we must
point out that the BFT scheme described in this sec-
tion requires a DSO employing public key authenti-
cation mechanisms, which in itself (as we will see in

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

20 B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx

Section 5) may have a significant impact on the
user-perceived latency.

One class of applications which may be particu-
larly well-suited for this audit-based Byzantine fault
tolerance technique consists of applications that
provide information aggregation and manipulation
— search engines, news aggregators (Slashdot-like),
and online databases. In this case, it may be possible
to filter erroneous results by means of direct inspec-
tion (e.g. human users ignore data that is incompre-
hensible, or simply too far-fetched); furthermore,
individual information items may be protected by
means of state signing (for example all news articles
are signed before publication). In this case, only
aggregate query results may be (maliciously) altered
by rogue replicas. As such, rogue replicas can at
most provide incomplete results to queries, which
amounts more or less to denial of service. In this sit-
uation, simply removing malicious replicas after
detection may be reasonable.

In the Globe model writes are handled by master
replicas and reads by slaves. The model can be easily
extended to allow masters to serve both reads and
writes, for example for users or applications that
require O-staleness. This extension should be applied
only to a limited number of privileged users or
actions or a specific application. If generalized this
extension conflicts with one of the main goal of
Globe that is the ability to offload work from
trusted (expensive) master replicas to un-trusted
(cheaper) slaves.

4.5. Platform security

In order to bring computation close to clients,
DSO replicas are often instantiated on GOSes con-
trolled by third parties, similar to the grid distrib-
uted computing model [35]. Trusted or untrusted
GOS administrators are free to choose any policy
for hosting replicas; however, it is essential that all
hosted replica receive a ‘““fair” treatment, in the
sense that they correctly share the resources pro-
vided by the GOS. This is far from a trivial require-
ment, given the fact that replicas are instantiated
using mobile code, which can be used to launch all
sorts of attacks on the hosting platform (corrupt
storage, interfere with other replicas, waste memory
and CPU cycles, and launch all sorts of DoS
attacks). There are two general solutions for the
problem: sandboxing and code signing.

Sandboxing aims at creating an isolated execu-
tion environment for each hosted replica, and ensur-

ing all interactions outside the sandbox are tightly
controlled by the GOS. We emphasize that the focus
of this work is not designing new sandboxing tools,
but rather using existing one. Since the Globe mid-
dleware is primarily implemented in Java, we
decided to use the Java sandboxing mechanisms
and implemented custom sandboxing of untrusted
local representatives, which still allows replicas
(controlled) access to persistent storage. Another
issue we are concerned with is preventing hosted
replicas from launching distributed DoS attacks,
by creating network connections to arbitrary hosts
on the Internet. To prevent this, we only allow rep-
licas to connect to a limited numbers of replicas of
the same DSO (in order to propagate state updates).
In the future, we plan to complement these sand-
boxing mechanisms with a Java resource-manage-
ment system such as JSeal [74] to also constrain
memory allocation and CPU usage. For different
Globe middleware implementations (in C/C++ for
instance), use of alternative sandboxing tools, such
as Janus [40], should be also possible.

While sandboxing allows GOS administrators to
restrict the amount of computing resources a given
DSO replica can use, to decide on the actual
resource limits, we use code signing. Essentially,
the mobile code used to instantiate a DSO replica
is signed with the DSO’s key, so that GOS adminis-
trators can then set resource limits on a per-DSO
basis, limits which are stored in a GOS resource
management configuration file. It is up to the
administrator to decide on the resource allocation
policy: this can be either absolutely egalitarian (all
replicas receive the same fraction of the available
resources), based on external DSO certification
(DSO owned by certain organizations receive more
resources), or even based on pay-per-use economic
models.

5. Performance evaluation

To measure Globe’s performance we performed
two experiment series. In the first series we focus
on security overhead during client method invoca-
tion on a DSO replica. We break down this method
invocation process into (logical) stages (for example
the client finding the replica, the client contacting the
replica, authentication, etc.) and we measure the
duration of each stage in various security settings.
Based on these measurements we calculate the total
overhead on the client and replica side, as well as
the (theoretical) replica throughput (i.e. how many

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx 21

invocations per second can the replica handle). We
then validate this theoretical throughput against
the real one, which we measure by having multiple
clients concurrently issuing requests. The second
experiment series consists of a number of (synthetic)
micro-benchmarks, stressing different parts of the
replica hosting system — the CPU, disk and network
stack. The purpose of these micro-benchmarks is to
measure the security overhead by comparing the real
throughput of a replica accessed by concurrent cli-
ents in various security settings.

For our experiments we only used the coarse-
grain (bitmap-based) access control framework
described in Section 4.3.1. Due to time and human
resources (programmers) limitations, we were not
able to integrate fine-grain access control and Byz-
antine fault tolerance mechanisms with our secure
Globe prototype. This is a limitation of our
approach, but we hope to address it as part of future
work.

The purpose of our experiments is to compare
the overhead introduced by our security architec-
ture. For this we considered four implementation
scenarios: a DSO with all security mechanisms dis-
abled (marked Plain in our graphs), and three secu-
rity-enabled implementations.

For the security-enabled DSO, we consider three
different authentication mechanisms:

e The TLS protocol for public key authentication
using the PureTLS library [3] (marked PureTLS
in our graphs).

e Our own implementation of the TLS protocol
(marked OwnTLS in our graphs).

e Our implementation of the symmetric key
authentication protocol described in Section
4.2.2 (marked Symmetric in our graphs). In this
case, the RKL size is set to 100 and the UKL size
is set to 10,000.

Our TLS implementation uses the latest Java
cryptographic extensions (JCE); the reason we
decided to develop an alternative TLS implementa-
tion is that at least at the time we were working on
the Globe prototype, there was no off-the-shelf TLS
library based on Sun’s Java Cryptography Exten-
sion Package (PureTLS uses the Bouncy Castle Java
cryptographic library [6], which is not optimal from
a performance point of view). The performance
numbers associated with our own TLS implementa-
tion can be seen as a best case scenario for public
key authentication mechanisms; however, our TLS

Table 2
Experimental setup

Replica host

PIII 933 MHz, 2 GB memory, 100 Mb/s Ethernet, Adaptec 29160
Ultra-160 SCSI controller Seagate 73 GB 10.000 rpm disk,
RedHat 7.2, Custom configured 2.4.9 kernel

Client proxy hosts
PIII 1 GHz, 1 GB memory, RedHat 7.2,
Custom configured 2.4.19-prel0 kernel

library has been developed for research purposes
only, and has not been hardened through years of
deployment and public scrutiny, so for implement-
ing actual Globe applications we recommend using
off-the-shelf authentication components.

The configuration for the machines hosting the
replica and the clients is shown in Table 2. On all
hosts the Globe middleware runs on top of the Java
2 runtime version 1.4.2 02.

The replica hosts are located at the Vrije Univer-
siteit in Amsterdam, while the client proxy hosts are
part of the DAS-2 distributed grid [15], consisting of
five LAN clusters located at five Dutch universities.
Each of these clusters use a Myrinet [2] multigigabit
LAN for local communication, while the wide-area
connectivity is provided by SurfNet — the Dutch
university Internet backbone [5]. We believe this set-
ting, where WAN interactions are “localized” (cli-
ents and replicas are in close network proximity),
realistically simulates deployment conditions for
Globe applications (as explained in Section 2, Globe
DSOs have the ability to replicate in order to bring
computation close to their clients).

5.1. Work breakdown and maximum throughput

The purpose of the first experiment series is to
evaluate the security overhead during the normal
operation of a Globe DSO, namely during the pro-
cessing of client requests. For this series we use the
Integer DSO under different security settings. The
Integer DSO is a distributed implementation of the
Integer Java class, using a master-slave replication
algorithm; as such, this is probably one of the sim-
plest possible Globe objects.

In this case, a (master) replica of the object is
instantiated on the replica host. We instantiate a
number of clients (user proxies) on the client proxy
hosts. The user proxies bind to the Integer DSO
master replica, and issue a write request (Integer.set-
Value()). Given this setup, we perform two experi-
ments, one to obtain the detailed workload

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

22 B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx

breakdown, and the other to measure the maximum
replica throughput.

5.1.1. Experiment I

The purpose of this experiment is to obtain a
detailed breakdown of replica/proxy workload dur-
ing regular DSO operation. For this experiment, the
object ID for the DSO being accessed is cached by
the client (thus, there is no need for a GNS lookup).
The client is also already registered with the object
and has cached its local DSO credentials, as well
as the proxy blueprint. Fig. 6 shows the stages
involved during a client request on a DSO replica:

1. The client instantiates the proxy for the DSO.
When security is enabled, the client initializes
the proxy’s security subobject with the (cached)
client authentication credentials.

2. The proxy queries the GLS for a replica allowed
to execute Integer.setValue().

3. The proxy connects to the contact point returned
by the GLS.

4. If security is enabled, the proxy and the replica
mutually authenticate and establish a secure
channel.

5. The proxy sends the Integer.setValue() request to
the replica (over the secure channel established at
Stage 4 if security is enabled, or over the regular
TCP channel established at Stage 3 if not). The
replica executes the request and sends the result
back to the proxy.

We repeat the Integer.setValue() operation 500
times for different security settings and measure
the average duration for each of the five stages.
The results are shown in Fig. 7.

We can see that authentication and secure chan-
nel establishment is by far the most expensive stage

Client
1. Instantiate proxy
GLS
2. Find Replica GLS Lookup
° Replica
E 3. Connect to replica Accept connection
=
Wait

4. Authenticate Authenticate

- | wait

Process Request

5. Issue request

Fig. 6. Stages involved in a client request.

Stages involved in a client request and
their duration

1000

o
o

o

o

w0

E

c 10 [l No Security
= [l PureTLS

5 W OwnTLS

o . [l Symmetric

0.1

T % F 3 ¥ 8 ¥ 8 ¥ %
$ 2 B 3 8§ 8 3 8 %
I T T A
o ™ < ‘9 w 2 3B
Poropos oz ¢
“ R a Y @&
Stages

Fig. 7. Stages involved in a client request and their duration (Y-
axis on logarithmic scale). The “Total proxy” values correspond
to the client-perceived latency for each setting.

during regular DSO operation. Public key authenti-
cation is particularly expensive. When using the
PureTLS library (which, as already mentioned, is
not particularly efficient), authentication alone
increases the client-perceived latency by almost
300 ms. Even when using our own (optimized)
TLS implementation, authentication still accounts
for almost 100 ms of the client-perceived latency.
The good news is that using the symmetric key
authentication protocol introduced in Section 4.2.2
can dramatically improve performance. In this case,
the authentication-introduced latency is an order of
magnitude smaller compared to compared to public
key authentication mechanisms.

Another measurement of interest is the total
amount of CPU time used by the replica when serv-
ing one client request. Having this, essentially allows
us to compute the maximum (theoretical) through-
put for the replica (e.g. how many client requests
per second can the replica serve). Fig. 8 shows the
results for this measurement:

From Fig. 8 we can see that using the symmetric
key authentication protocol introduced in Section
4.2.2 can significantly increase the maximum replica
throughput. In the next section we will validate the
numbers in Fig. 8 by having the replica serve con-
current client requests.

5.1.2. Experiment 2
The purpose of this second experiment is to val-
idate the theoretical throughput results from Exper-

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx 23

Security fea-

Total replica

Max. theoretical

tures enabled | CPU time throughput
(msec) (req/sec)
No security 247 404.85
PureTLS 169.17 5.91
OwnTLS 50.05 19.98
Symmetric 6.49 154.08

Fig. 8. Replica CPU time spent per request and maximum replica
throughput.

iment 1. The idea is to have concurrent clients
continuously sending requests to an IntegerDSO
replica. We want to measure the maximum through-
put the replica can sustain, and compare this to the
(theoretical) values derived in the previous section.
We run different numbers (ranging from 1 to 30)
of concurrent clients; these clients continuously send
Integer.setValue() requests to a master replica for
500 iterations. We measure the amount of time nec-
essary to complete one request. Based on this, we
then calculate the ‘““real” replica throughput. The
results are shown in Fig. 9.

The results of this experiment validate the maxi-
mum theoretical throughput values derived in
Experiment 1. We can see from Fig. 9, that with
only one client continuously sending request, the
replica throughput is considerably lower than the
maximum throughput achievable; the reason for
this is that the replica sits idle during the time the
(sole) client is doing processing, and during the time
requests/results are transfered over the network.
The replica throughput rapidly increases as more
clients join in with sending requests; in this case,

T T
10000 [‘PureTLS-real, —&—]
‘PureTLS-theoretical’ T

wn -]
‘OwnTLS-theoretical’

3 ‘Symmetric-real’ - £F -
<z ‘Symmetric-theoretical’

Z 1000 | ‘NoSec-real’ =X - o
3 ‘NoSec-theoretical’

=

g XK= X=X ==~ X - - -X

£

B i0py P UE-8-8---3----- - g----- B 1
=

=) /

3

= *,v#v*‘rr e P o +

= 10 b4 4

0 5 10 15 20 25 30 35
Number of clients

Fig. 9. Measured throughput for various security settings. The
bold lines represent the theoretical throughput derived from
Experiment 1. The Y-axis of the graph is on logarithmic scale.

the previously idle replica time is used to serve con-
current requests. The maximum throughput is
achieved with somewhere between 5 and 10 concur-
rent clients. Above this threshold, the overhead
associated with multithreading (each client request
is served as a separate thread) begins to affect the
replica performance (basically some CPU cycles
are used on multithreading instead of useful work).
In general, these results show that public key
authentication mechanisms are quite heavyweight.
In the case of Pure TLS, about six concurrent cli-
ents are enough to saturate the replica. Even our
optimized TLS implementation can at most handle
about twenty concurrent clients before the replica
becomes saturated. We view this as an inherent lim-
itation of public key authentication; not surpris-
ingly, Web servers that handle SSL/TLS
connections are typically equipped with hardware
cryptographic accelerators. On the other hand, sym-
metric key authentication is relatively lightweight.

5.2. Microbenchmarks

The purpose of this second experiment series is to
evaluate the security overhead through a series of
(synthetic) benchmarks. For each benchmark, each
client repeatedly executes a transaction for many
iterations (typically 500). At the end, we measure
how many transactions per second the replica can
sustain for different numbers of concurrent clients,
different security configurations and different work-
loads. Each transaction consists of the following
steps:

e bind() — In this step the client downloads the
object proxy code and instantiates its object local
representative, then finds the replica, connects to
it, and runs the mutual authentication protocol.

o performOperation() — In this step, the client issues
the actual method invocation request. For our
benchmarks, the operations are artificial work-
loads stressing different parts of the replica host-
ing system — the CPU, disk and network stack.

e unbind() — The client disconnects.

Each benchmark simulates a different type of
workload — disk workload, cpu workload and net-
work workload. For each type of workload we con-
sidered the “light” and “heavy” case as follows:

e disk access workload: “light” — 1 disk access/
trans.; “heavy” — 100 disk accesses/trans.

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

24 B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx

e CPU workload: “light’ — 10 ms CPU time/trans.;
“heavy” — 300 ms CPU time/trans.

e data transfer workload: “light” — 10 KB network
data transfer/trans.; “heavy” — 1 MB network
data transfer/trans.

In addition to this we also considered the
“empty”” benchmark which consisted of an “empty”
transaction — basically the client binds to a replica
and then immediately unbinds without issuing any
request.

One point we need to stress here is that for the
TLS performance numbers we have disabled session
caching, so each iteration requires a complete hand-
shake. We believe such a setting is more realistic for
the usage scenarios we envision for Globe applica-
tions because of the following reasons:

e There is a limit on how long a TLS connection
can be cached. Ref. [30] suggests this limit to be
set to at most 24 h. There are certain types of
potential Globe applications — electronic newspa-
pers and e-commerce applications for example —
with a usage pattern consisting of periodic, but
less frequent client requests (in the order of days
rather than hours). For such applications TLS
session caching would have no impact on
performance.

e One of the great advantages of dynamic applica-
tion replication with Globe is the ability to deal
with “flash crowd” events. When such events
occur, Globe objects have the ability to quickly
react, and instantiate new replicas to handle the
peak workload. However, a new replica comes
without any cached TLS sessions; again, in this
case TLS session caching has no impact on
performance.

¢ In Globe, replica selection for method invocation
is done by the replication subobject of the client
proxy, based on the replica contact points
returned by the Globe Location Service. In the
simplest case, the client proxy may always select
the closest object replica. However, for certain
types of Globe applications, especially those
involving extensive computational workload (ser-
vice computing and Grid applications for exam-
ple), the replica selection algorithm needs to
take into account additional factors besides net-
work proximity, such as balancing workload
among replicas. Since replica workload is
dynamic, as clients come and go, it is less likely
that any given client will interact with the same

replica over a number of sessions. Furthermore,
a client may have to switch replicas when invok-
ing different methods, based on the reverse access
control settings for the object. In all these scenar-
ios, caching TLS connections will have a much
reduced impact on the overall performance.

Fig. 10 shows the performance results for
“empty” transactions. Although this is not a very
realistic workload, it gives an insight of the actual
cost of security mechanisms (authentication in par-
ticular). We can see that when security mechanisms
are disabled, Globe performs several times better
than the most efficient security implementation.
On the other hand, using the symmetric key authen-
tication module is an order of magnitude more effi-
cient compared to public key authentication, which
proves the protocol we introduced in Section 4.2.2
can be extremely useful for securing Globe
applications.

Figs. 11-16 show the detailed performance
results for the other types of workload considered.
We also provide a summary, ‘“head-to-head” com-
parison of the maximum achievable throughput
for all workloads in Figs. 17 and 18. From these fig-
ures, we can see that in the case of “light” transac-
tions, security adds a significant overhead. On the
other hand, this is also where the symmetric key
authentication protocol we propose shows the most
promising results, since it performs several times
better than public key authentication schemes.

In the case of workloads consisting of “heavy”
transactions, the performance penalty introduced
by security mechanisms is much lower (in relative
terms), since a larger fraction of the computing
resources used per transaction are spent for doing
the actual work. It is worth noting that for two types

PureTLS —O—
‘OwnTLS’ =+
‘Symmetric’ --{}--
‘NoSec” X+
P
© 1000 F E|
2 (XX I x X
i
3 X EBBE--—E--D ----- Bpeeeeeeees Beeeeeees Teeeeeeees ol
E 100 X EH E
é E'E
g e S o S
= L * |
g 0 WVVV
| ! ! ! ! ! !
0 5 10 15 20 25 30 35

Number of clients

Fig. 10. GOS throughput under “empty” transactions workload.

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx 25

' ' ' ' PureTLS. —o—
1000 F gownlLs, j‘.‘é.‘.‘ E
ymmetric
— ‘NoSec’
E XXXXX”‘XMX X X Mo X
Z X
2 N =i i s s s R B |
5 100F IZB E
£
=] J
£ 2 B it SO o + + +
El +.+++’
g 10f., J
= +
= fwevv
)
0 5 10 15 20 25 30 35

Number of clients

Fig. 11. GOS throughput under light disk access workload.

16 F ' ' ' ' PureTLS’ —o— |
‘OwnTLS’ =+
‘Symmetric’ --{--
14 ‘NoSec” "X+ |
3 | e
2 g
BE
Swor R + o + 1
8 ottt +
A= 4
= ;
=3 B
& ;
 l]
g +
£ af 1
=
2 4
0 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Number of clients

Fig. 12. GOS throughput under heavy disk access workload.

120 . ; . . Y
‘PureTLS’ —O—
‘OwnTLS’ =+
‘Symmetric’ --£}--
g 1o ‘NoSec” X+ 4
o3
E X K
2 XXX : x
8 sof xX X x |
=] ‘
I3 B
c ' BE-G--&--6 a o
S e X pBEEETHoEee R oo |
3. !
) ‘e
= /
S 40 XM]
= :
== ;
20 FO |
+_++++++ +ot + + + +
g 1 ! 1 Y Y Y
0 5 10 15 20 25 30 35

Number of clients

Fig. 13. GOS throughput under light CPU workload.

of workload (disk intensive and CPU intensive), the
performance gap between the “‘no security” Globe
implementation and the one employing the symmet-
ric key authentication module is extremely small. In
the case of network intensive workload, the efficient
symmetric key authentication mechanism is offset by
the overhead of encrypting a large amount of data

4r j j j j T PureTLs, —o—
OwnTLS’ =+
‘Symmetric’ --{}--
— ‘NoSec’ X
3
Q 351 b
3 e [tatata s B < SO0 SRR &] x
ERE
3 ;
g3 e
5] gt + IR R +
=2
= :
=1
Bl]
& 2
E +
2
=
= []
15 L L L L L L
0 5 10 15 20 25 30 35

Number of clients

Fig. 14. GOS throughput under heavy CPU workload.

j j j j ‘PureTL‘S’#
1000 | ‘OwnTLS % |
‘Symmetric’ -~}
— ‘NoSec’ X
3
3 Nt O SR ARNPS X X X
g x
= [l N e IR i IR e IO
Z 100f X = AR = R T =) =] 3 4
2 X EB
3
£
% e e + + +
<] +
= 10 F - E
= :
= }Wv
1 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Number of clients

Fig. 15. GOS throughput under light network workload.

PureTLS’ —o—
. OwnTLS’

Throughput (requests/sec)

0 1 1 1 1
0 5 10 15 20 25 30 35

Number of clients

Fig. 16. GOS throughput under heavy network workload.

(1 MB), which is done for all secure Globe imple-
mentations, but is disabled in the non-secure version.

5.3. Discussion
We believe the results of these experiments vali-

date our security design. Although security intro-
duces a significant penalty, it is by no means

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

26 B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx

Benchmark - "light" transactions

750 —

Throughput

HE =

Empty Disk cpPu Netw.
Light Light Light

Transaction Type

Fig. 17. GOS maximum throughput for “light” transactions.

Benchmark - "heawy" transactions

§ 10
w 9
c
@ 8 [NoSecurity
= 7 [l Symmetric Key
- 6 — Pratocol
g CITLS town impl)
o 5 OPureTLs

4
=l
£ 3 |

2

1

0 T T

Disk Heavy CPU Heawy Netw. Heavy
Transaction type

Fig. 18. GOS maximum throughput for “heavy” transactions.

prohibitive; most importantly, our design allows
application developers to mediate between security
and performance by choosing the modules that best
fit their needs. For applications where lightweight
transactions are the norm, we believe that our sym-
metric key authentication protocol can be a great
advantage. For applications where a more heavy-
weight workload is to be expected, decision on
whether to use symmetric or public key authentica-
tion will likely be determined by additional factors
(besides performance), such as whether non-repudi-
ation is an issue, or a highly dynamic (and unpredict-
able) user population needs to be accommodated.
It is also important to understand that for our
experiments we did not consider the impact of rep-
lication to the overall performance. For our experi-
ments we decided to have replicas and clients in
relatively close network proximity, which would
correspond to a “smart” replication strategy. In
general, the impact of replication strategies on the

overall performance is orthogonal to the problem
we addressed in this section, namely quantifying
the security overhead (i.e. the security overhead is
always present, no matter how “smart” or “dumb”
replica placement is). A very comprehensive analysis
of the impact of replication on performance in the
Globe context is presented in [61].

6. Related work

In the past decade, distributed systems security
has received considerable attention. One of the most
comprehensive security models is the one designed
for CORBA [9]. The CORBA model has provisions
for user authentication, authorization, access con-
trol, security of network traffic, auditing, non-repu-
diation, and security administration. Security itself
is implemented in the form of application-specific
policy objects, which are invoked when a remote
request is dispatched or received. While the CORBA
security design is extremely flexible, it is also server
centric and may be less scalable over wide-area net-
works. The CORBA model does not deal at all with
mobile code, and has little support for interdomain
security. Furthermore, mechanisms for Byzantine
fault-tolerance (BFT) are not part of the original
design, although various approaches for integrating
such mechanisms with the overall CORBA architec-
ture have been proposed [20,49,56,29,39] (Ref. [55]
provides a good overview of all these efforts). In
particular, the Immune System [56] provides an ele-
gant solution by using an interception strategy for
integrating BFT mechanisms to CORBA. In the
Immune System, BFT mechanisms are based on
object groups — essentially sets of replicas of the
same basic CORBA object placed on different hosts.
In order to ensure state consistency among replicas,
Immune uses active replication. Each request is
transparently routed to all replicas of a object
group; results from all replicas are collected and
subject to a majority voting in order to detect Byz-
antine faults. The strongest feature of the Immune
system is that it integrates BFT mechanisms in a
transparent way, by placing the replication/multi-
cast layers between the ORB and the operating sys-
tem. In this way unmodified CORBA client and
server objects can be enhanced with BFT features,
while running on an unmodified ORB.

The interception strategy allows the Immune Sys-
tem to support nested method invocations, unlike
Globe. We do not support nested method invoca-
tions because there is no scalable and transparent

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx 27

mechanism to handle the problems that arise when a
replicated object invokes the method of another
object [13]. The solutions employed by the Immune
System and similar efforts depend on resilient group
communication protocols to coordinate the actions
of the caller replicas (and callee replicas if the called
object is also replicated). Such protocols are how-
ever very expensive over a wide-area network.
Globe does support conceptual nesting of objects,
as object identifiers can be stored in the state of a
(parent) object.

What makes the Java [41] security design close to
our model is the fact that it explicitly considers the
issue of protecting hosts against malicious mobile
code. In fact, the platform security part of our design
can be implemented using the security features
offered by Java 2.0. There are a number of object-
based distributed architectures implemented on top
of Java [34,16,43,33]. Similar to us, [43] addresses
some of the security issues derived from service rep-
lication, but their work focuses more on defining a
policy language for expressing global security poli-
cies rather than providing a unified security architec-
ture. Ref. [33] presents a comprehensive security
architecture with provisions for trust management,
mutual client-service authentication, and user access
control, but does not address reverse access control
and Byzantine fault tolerance issues.

One project that is similar in vision to Globe is
WebOS [70]. The idea is to provide operating system
services to wide-area applications, including mecha-
nisms for naming, persistent storage, remote execu-
tion, authentication and security. CRISIS [18] is
the security architecture for WebOS. Like the Globe
security architecture, CRISIS combines a wide range
of security primitives in order to provide a compre-
hensive protection architecture, with provisions for
delegation of privileges, hierarchical trust, authori-
zation and a secure time service. Unlike Globe, CRI-
SIS relies entirely on public key certificates for
authorization and delegation; this, combined with
the proposed revocation mechanism that requires
frequent certificate counter-signing by an online
trusted authority, makes their design more heavy-
weight than ours. Furthermore, CRISIS does not
directly address the issue Byzantine fault-tolerance,
and does not provide any mechanisms for dealing
with partially trusted application servers.

There are a number of projects that deal with
security problems that arise in metacomputing envi-
ronments. Globus is a distributed system designed
for computational grids. Its security model gives

extensive support for inter-domain user authentica-
tion and remote-process creation, but it is less con-
cerned with trust models for hosts, so, in the end,
users have little control on which machines their
code is running. The reverse access control mecha-
nisms in Globe offer a lot more flexibility from this
point of view. Legion [77]is another effort in the sci-
entific computation area. There are some similarities
between Globe and Legion. For example, they are
both object based, and both make use of self-certi-
fied object identifiers. However Legion does not deal
with dynamic object replication, and introduces a
more high-level security design, stressing flexibility
and extensibility, but less architecture and protocols.

There are also a number of projects that specifi-
cally deal with Byzantine fault tolerance in the con-
text of replicated services. Phalanx [50] is a software
system for building persistent services that support
shared data abstractions, such as public key infra-
structures and e-voting. Ref. [26] describes a toolkit
for building Byzantine fault tolerant systems. Like
our design, [26] stresses the importance of efficient
symmetric key protocols for authentication over
wide-area networks, but their key distribution
scheme is less flexible than the one we propose.
Furthermore, none of these systems addresses
reverse access control and platform security issues.

Finally, in the past few years there has been an
explosion of peer-to-peer (P2P) applications that
have sprung out either as academic projects
(SETI@home [10], Publius [75]), or as freeware
tools to facilitate media exchange (Kazaa and
Gnutella). What makes such applications interesting
is the fact they rely on storage and computation on
unsecure platforms and, despite traditional security
wisdom, manage to get reasonably accurate results.
Much effort is put into models and mechanisms by
which the security of these systems can be improved.
For example, in OceanStore [47], content can be
integrity-checked by clients, whereas other systems
concentrate on securing remote untrusted storage
[38] or content traceability [14]. Other interesting
attempts to provide security and integrity for P2P
systems are described in Refs. [28,25]. However,
many of these systems put emphasis on immutable
files, which may severely restrict the area of possible
applications.

7. Conclusion

In this paper we have described the design and
implementation of a security architecture for Globe,

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

28 B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx

a wide-area object-based middleware. Our design
addresses a broad range of security threats, and
does not rely on any centralized authority that
would limit the scalability of the system. Our secu-
rity architecture consists of a number of modules,
separated through standard interfaces, each of them
handling a particular set of security issues (trust
management, authentication, access control, Byzan-
tine fault tolerance, and platform security). This
allows developers to easily replace any of these
modules with alternative implementations, better
suited for specific Globe applications.

As a result of this work, we have identified a series
of new security problems that are specific to repli-
cated services. These include reverse access control
for restricting replica privileges with respect to
method execution, and protection of distributed
objects against malicious hosts running instances
of their code. Another significant contribution is a
novel symmetric key authentication protocol, which
combines some of the advantages of public key
authentication schemes (in particular, their reliance
on an offline TTP), with the computational efficiency
specific to symmetric key cryptographic primitives.

As for future work, we plan to integrate the JSeal
[74] toolkit with our Globe implementation in order
to allow fine grain management of object server
resources. We are also considering implementing
additional security modules for allowing more flex-
ible Byzantine fault tolerance, based on state
machine replication and auditing, as suggested in
[26,63].

References

[1] Advanced Encryption Standard, FIPS 197, NIST, US Dept.
of Commerce, Washington, DC, November 2001.

[2] Myricom web site: http://www.myri.com/.

[3] “PureTLS” web site: http://www.rtfm.com/puretls/.

[4] Secure Hash Standard, FIPS 180-1, Secure Hash Standard,
NIST, US Dept. of Commerce, Washington, DC, April
1995.

[5] SurfNet web site: http://www.surfnet.nl/.

[6] “The Legion of the Bouncy Castle” web site: http://
www.bouncycastle.org/.

[7] Trusted Computing Platform Alliance, TCPA main specifi-
cation v. 1.1b, http://www.trustedcomputing.org/.

[8] The Common Object Request Broker: Architecture and
Specification, revision 2.6, www.omg.org, October 2000,
OMG Document formal/01-12-01.

[9] CORBA Security Service Specification, Version 1.7,
www.omg.org, March 2001, Document Formal/01-03-08.

[10] D. Anderson, Peer-to-Peer: Harnessing the Power of Dis-
ruptive Technologies, O’Reilly & Associates, Sebastopol, CA
95472, July 2001 (Chapter 5).

[11] W. Arbaugh, D. Farber, J. Smith, A secure and reliable
bootstrap architecture, in: Proc. 18th IEEE Symp. on
Security and Privacy, May 1997, pp. 65-71.

[12] T. Aura, P. Nikander, J. Leiwo, DOS-resistant authentica-
tion with client puzzles, in: Proc. 8th Cambridge Interna-
tional Workshop on Security Protocols, 2000, pp. 170-
177.

[13] A. Bakker, M. Van Steen, A. Tanenbaum, Replicated
invocations in wide-area systems, in: Proc. of the 8th ACM
SIGOPS European Workshop, September 1998.

[14] A. Bakker, M. van Steen, A. Tanenbaum, A law-abiding
peer-to-peer Network for free-software distribution, in: Proc.
IEEE Int’l Symp. on Network Computing and Applications,
Cambridge, MA, February 2002.

[15] H.E. Bal, R. Bhoedjang, R.F.H. Hofman, C.J.H. Jacobs, T.
Kielmann, J. Maassen, R. van Nieuwenpoort, J. Romain, L.
Renambot, T. Riihl, R. Veldema, K. Verstoep, A. Baggio, G.
Ballintijn, I. Kuz, G. Pierre, M. van Steen, A.S. Tanenbaum,
G. Doornbos, D. Germans, H.J.W. Spoelder, E.J. Baerends,
S.J.A. van Gisbergen, H. Afsermanseh, G.D. van Albada, A.
Belloum, D. Dubbeldam, Z.W. Hendrikse, L.O. Hertzber-
ger, A.G. Hoekstra, K. Iskra, D. Kandhai, D. Koelma, F.
van der Linden, B.J. Overeinder, P.M.A. Sloot, P. Spinnato,
D.H.J. Epema, A.J.C. van Gemund, P. Jonker, A. Radule-
scu, K. van Reeuwijk, H.J. Sips, P.M.W. Knijnenburg, M.S.
Lew, F. Sluiter, L. Wolters, H. Blom, C. de Laat, The
distributed ASCI supercomputer project, Operat. Syst. Rev.
34 (4) (2000) 76-96.

[16] D. Balfanz, L. Gong, Experience with secure multi-process-
ing in Java, in: Proc. 18th IEEE Intl. Conf. on Distributed
Computing Systems, May 1998, pp. 398-405.

[17] G. Ballintijn, M. van Steen, A.S. Tanenbaum, Scalable user-
friendly resource names, IEEE Internet Comput. 5 (5) (2001)
20-27.

[18] E. Belani, A. Vahdat, T. Anderson, M. Dahlin, The CRISIS
wide area security architecture, in: Proc. 7th USENIX
Security Symposium, 1998, pp. 15-30.

[19] K. Birman, A. Schiper, P. Stephenson, Lightweight casual
and atomic group multicast, ACM Trans. Comput. Syst. 9
(3) (1991) 272-314.

[20] K.P. Birman, R.V. Renesse (Eds.), Reliable Distributed
Computing with the Isis Toolkit, Wiley-IEEE Computer
Society Press, 1994.

[21] M. Bishop, Computer Security: Art and Science, Addison-
Wesley, 2002.

[22] C. Boyd, A class of flexible and efficient key management
protocols, in: Proc. 9th IEEE Computer Security Founda-
tion Workshop, 1996.

[23] Bruno Crispo, Bogdan C. Popescu, Andrew S. Tanenbaum,
Symmetric key authentication services revisited, in: Infor-
mation Security and Privacy: 9th Australasian Conference,
July 2004, pp. 248-261.

[24] M. Burrows, M. Abadi, R.M. Needham, A logic of
authentication, ACM Trans. Comput. Syst. 8 (1) (1990)
18-36.

[25] M. Castro, P. Druschel, A.J. Ganesh, A.I.'T. Rowstron, D.S.
Wallach, Secure routing for structured peer-to-peer overlay
networks, in: Proc. 5th USENIX Symposium on Operating
System Design and Implementation, December 2002.

[26] M. Castro, B. Liskov, Practical byzantine fault tolerance, in:
Proc. 3rd USENIX Symposium on Operating Systems
Design and Implementation, February 1999, pp. 173-186.

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

http://www.myri.com/
http://www.rtfm.com/puretls/
http://www.surfnet.nl/
http://www.bouncycastle.org/
http://www.bouncycastle.org/
http://www.trustedcomputing.org/
http://www.omg.org
http://www.omg.org

B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx 29

[27] T. Chandra, S. Toueg, Unreliable failure detectors for
reliable distributed systems, J. ACM 43 (2) (1996) 225-
267.

[28] F. Cornelli, E. Damiani, S.D.C. di Vimercati, S. Paraboschi,
P. Samarati, Choosing reputable servents in a P2P Network,
in: Proc. of the Eleventh Int’l WWW Conference, Honolulu,
HI, May 2002.

[29] M. Cukier, J. Ren, C. Sabnis, D. Henke, J. Pistole, W.
Sanders, D. Bakken, M. Berman, D. Karr, R. Schantz,
AQuA: An adaptive architecture that provides dependable
distributed objects, in: Proc. 17th Symp. on Reliable Distrib.
Syst., October 1998, pp. 245-253.

[30] T. Dierks, C. Allen, The TLS Protocol Version 1.0, IETF
RFC 2246, January 1999.

[31] J. Dyer, M. Lindemann, R. Perez, R. Sailer, S. Smith, L. van
Doorn, S. Weingart, Building the IBM 4758 secure copro-
cessor, IEEE Comput. 34 (2001) 57-66.

[32] G. Eddon, H. Eddon, Inside Distributed COM, Microsoft
Press, Redmond, WA, 1998.

[33] P. Eronen, P. Nikander, Decentralized Jini security, in: Proc.
8th Network and Distributed System Security Symposium,
February 2001.

[34] M. Fleury, F. Reverbel, The JBoss extensible server, in: Proc.
Middleware 2003, Hudson River Valley, NY, June 2000, pp.
344-373.

[35] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid:
enabling scalable virtual organizations, Int. J. Supercomput.
Appl. 15 (3) (2001).

[36] K. Fu, M.F. Kaashoek, D. Mazieres, Fast and secure
distributed read-only file system, Comput. Syst. 20 (1) (2002)
1-24.

[37] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, D. Boneh,
Terra: a virtual machine-based platform for trusted com-
puting, in: Proc. 19th ACM Symp. on Operating Systems
Principles, 2003, pp. 193-206.

[38] E. Goh, H. Shacham, N. Modadugu, D. Boneh, SiRiUS:
Securing remote untrusted storage, in: Proc. 10th Network
and Distributed System Security Symposium, February
2003.

[39] A. Gokhale, B. Natarajan, D.C. Schmidt, S. Yajnik,
DOORS: Towards high-performance fault-tolerant
CORBA, in: Proc. 2nd Intl. Symp. on Distributed Objects
and Applications, 2000, pp. 39-48.

[40] I. Goldberg, D. Wagner, R. Thomas, E.A. Brewer, A secure
environment for untrusted helper applications, in: Proc. 6th
Usenix Security Symposium, San Jose, CA, 1996.

[41] L. Gong, Inside Java 2 Platform Security, Addison-Wesley,
Palo Alto, CA 94303, 1999.

[42] R. Housley, W. Ford, W. Polk, D. Solo, Internet X.509
Public Key Infrastructure: Certificate and CRL Profile, RFC
2459, http://www ietf.org/rfc/rfc2459.txt, January 1999.

[43] S. Ioannidis, S. Bellovin, J. Ioannidis, Design and imple-
mentation of virtual private services, in: Proc. 12th IEEE
Intl. Workshops on Enabling Technologies, June 2003, pp.
269-274.

[44] M. Kaashoek, A. Tanenbaum, An evaluation of the Amoeba
group communication system, in: Proc. 16th Intl. Conference
on Distributed Computing Systems, 1996, pp. 436-447.

[45]1 J. Kohl, B. Neuman, The Kerberos Network Authentication
Service (Version 5), Technical report, IETF Network
Working Group, Internet Request for Comments RFC-
1510, 1993.

[46] R. Kotla, M. Dahlin, High throughput byzantine fault
tolerance, in: Proc. 2004 Intl. Conf. on Dependable Systems
and Networks, June 2004.

[47] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R.
Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C.
Wells, B. Zhao, OceanStore: An architecture for global-scale
persistent storage, in: Proc. 9th ACM ASPLOS, Cambridge,
MA, November 2000, ACM, pp. 190-201.

[48] I. Kuz, M. van Steen, H. Sips, The globe infrastructure
directory service, Comput. Commun. 25 (9) (2002) 835-
845.

[49] S. Maffeis, Adding group communication and fault-tolerance
to CORBA, in: Proc. USENIX Conf. on Object-Oriented
Technologies, June 1995.

[50] D. Malkhi, M.K. Reiter, Secure and scalable replication in
phalanx, in: Proc. 17th Symposium on Reliable Distributed
Systems, October 1998, pp. 51-58.

[51] D. Mazieres, M. Kaminsky, M.F. Kaashoek, E. Witchel,
Separating key management from file system security, in:
Proc. 17th Symp. on Operating Systems Principles, Kiawah
Island, SC, 1999, pp. 124-139.

[52] S. Mical, Efficient certificate revocation, Technical report,
MIT/LCS, 1996.

[53] M. Myers, R. Ankney, A. Malpani, S. Galperin, C. Adams,
X.509 Internet Public Key Infrastructure Online Certificate
Status Protocol — OCSP, IETF RFC 2560, June 1999.

[54] M. Naor, K. Nissim, Certificate revocation and certificate
update, in: Proceedings 7th USENIX Security Symposium,
January 1998.

[55] P. Narasimhan, Transparent fault tolerance for CORBA,
Ph.D. thesis, University of California, Santa Barbara,
1999.

[56] P. Narasimhan, K.P. Kihlstrom, L. Moser, P.M. Melliar-
Smith, Providing support for survivable CORBA applica-
tions with the immune system, in: Proc. International
Conference on Distributed Computing Systems, May 1999,
pp. 507-516.

[57] R. Needham, M. Schroeder, Using encryption for authen-
tication in large networks of computers, Commun. ACM 21
(12) (1978) 993-999.

[58] R. Needham, M. Schroeder, Authentication revisited, ACM
Operat. Syst. Rev. 21 (7) (1987) 7-7.

[59] A. Oram, Peer-to-Peer: Harnessing the Power of Disruptive
Technologies, O’Reilly & Associates, Inc., 2001.

[60] M. Peinado, Y. Chen, P. England, J. Manferdelli, NGSCB:
A trusted open system, in: Proc. 9th Australasian Conf. on
Inf. Security and Privacy, July 2004, pp. 86-98.

[61] G. Pierre, I. Kuz, M. van Steen, A.S. Tanenbaum, Differ-
entiated strategies for replicating Web documents, Comput.
Commun. 24 (2) (2001) 232-240.

[62] B. Popescu, M. van Steen, A.S. Tanenbaum, A security
architecture for object-based distributed systems, in: Proc.
18th Annual Computer Security Applications Conference,
IEEE, December 2002, pp. 161-171.

[63] B.C. Popescu, B. Crispo, A.S. Tanenbaum, Secure data
replication over untrusted hosts, in: Proc. 9th Workshop on
Hot Topics in Operating Systems (HotOS IX), USENIX,
May 2003, pp. 121-126.

[64] B.C. Popescu, B. Crispo, A.S. Tanenbaum, M. Zeemen,
Expressing security policies for distributed objects applica-
tions, in: Proc. 11th Cambridge International Workshop on
Security Protocols, Springer-Verlag, 2003.

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

http://www.ietf.org/rfc/rfc2459.txt

30 B.C. Popescu et al. | Computer Networks xxx (2007) xxx—xxx

[65] R. Sandhu, Rationale for the RBAC96 family of access
control models, in: Proc. Ist ACM Workshop on Role-
based Access Control, ACM Press, New York, NY, USA,
1996, p. 9.

[66] R. Sandhu, E. Coyne, H. Feinstein, C. Youman, Role-based
access control models, IEEE Comput. 29 (2) (1996) 38-47.

[67] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, H. Levy, An
analysis of Internet content delivery systems, in: Proc. Sth
Symp. on Operating Systems Design and Implementation,
December 2002.

[68] F.B. Schneider, Implementing fault-tolerant services using
the state machine approach: a tutorial, ACM Comput. Surv.
22 (4) (1990) 299-319.

[69] F. Stajano, R.J. Anderson, The resurrecting duckling:
security issues for ad-hoc wireless networks, in: Proc. 7th
Int. Workshop on Security Protocols, Springer-Verlag, 2000,
pp. 172-194.

[70] A. Vahdat, T. Anderson, M. Dahlin, D. Culler, E. Belani, P.
Eastham, C. Yoshikawa, WebOS: Operating system services
for wide area applications, in: Proc. 7th IEEE Symposium on
High Performance Distributed Computing, July 1998, pp.
52-64.

[71] M. van Steen, F. Hauck, P. Homburg, A. Tanenbaum,
Locating objects in wide-area systems, [IEEE Commun. Mag.
(January) (1998) 104-109.

[72] M. van Steen, P. Homburg, A. Tanenbaum, Globe: A wide-
area distributed system, IEEE Concurrency 7 (1) (1999) 70—
78.

[73] M. van Steen, A. Tanenbaum, I. Kuz, H. Sips, A scalable
middleware solution for advanced wide-area web services,
Distrib. Syst. Eng. 6 (1) (1999) 34-42.

[74] J. Vitek, C. Bryce, The JavaSeal mobile agent kernel, in:
Proc. 1st Intl. Symp. on Agent Systems and Applications,
1999, pp. 103-116.

[75] M. Waldman, A.D. Rubin, L.F. Cranor, Publius: A robust,
tamper-evident, censorship-resistant, Web publishing sys-
tem, in: Proc. 9th Usenix Security Symposium, Denver, CO,
August 2000, pp. 59-72.

[76] B. Waters, A. Juels, J. Halderman, E. Felten, New client
puzzle outsourcing techniques for DoS resistance, in: To be
presented at the 11th ACM Conf. on Computer and
Communications Security, October 2004.

[77] W.A. Wulf, C. Wang, D. Kienzle, A new model of security
for distributed systems, Technical Report CS-95-34, 10,
1995.

[78] P.R. Zimmermann, The Official PGP User’s Guide, MIT
Press, 1995.

Bogdan C. Popescu is a Ph.D. student at
Vrije Universiteit in Amsterdam. His
research interests include network and
system security, trusted computing, and
digital rights management. He has
received a B.Sc. degree from the Uni-
versity of Maine, and a M.Sc. degree
from the University of Maryland at
College Park.

Bruno Crispo is a faculty member at the
University of Trento and at the Vrije
Universiteit Amsterdam. His research
interests are security protocols, authen-
tication, authorization and accountabil-
ity in large distributed systems, and
sensors security. He has a Ph.D. in
Computer Science from the University of
Cambridge, UK. Contact him at
crispo@cs.vu.nl.

Andrew S. Tanenbaum has an S.B. from
MIT and a Ph.D. from the University of
California at Berkeley. He is currently a
Professor of Computer Science at the
Vrije Universiteit in Amsterdam.

He is the principal designer of three
operating systems: TSS-11, Amoeba, and
MINIX. TSS-11 was an early system for
the PDP-11. Amoeba is a distributed
operating systems for SUN, VAX, and
similar workstation computers. MINIX
is a small operating system designed for high reliability and
embedded applications as well as for teaching.

In addition, he is the author or coauthor of five books. These
books have been translated into 20 languages and are used all
over the world. He has also published more than 100 refereed
papers on a variety of subjects and has lectured in a dozen
countries on many topics.

He is a Fellow of the ACM, a Fellow of the IEEE, and a
member of the Royal Dutch Academy of Sciences. In 1994 he was
the recipient of the ACM Karl V. Karlstrom Outstanding Edu-
cator Award. In 1997 he won the ACM SIGCSE Award for
Outstanding Contributions to Computer Science.

Arno Bakker (arno@cs.vu.nl) was awar-
ded his Master’s degree in Computer
Science in 1996 and his Ph.D. in the same
field in 2002, both from the Vrije Uni-
versiteit in Amsterdam. He is one of the
designers and implementors of the Globe
and Globule middleware platforms for
large-scale (Web) applications. Since
September 2005 he works in the Free-
band/I-Share project, a cooperation
between various universities in The
Netherlands. Developed as part of this project is the Tribler peer-
to-peer television software which aims to radically reduce the cost
of TV broadcasting over the Internet.

Netw. (2007), doi:10.1016/j.comnet.2006.11.008

Please cite this article in press as: B.C. Popescu et al., Design and implementation of a secure wide-area ..., Comput.

	Design and implementation of a secure wide-area object middleware
	Introduction
	An overview of the Globe middleware
	Threat model
	The Globe security architecture
	Trust management
	Authentication
	Public key authentication mechanisms
	Symmetric key authentication mechanisms

	Access control
	Coarse-grained access control
	Fine-grained access control
	Basic idea
	Administrative rights
	Method invocation rights
	Method execution rights

	Conditions

	Byzantine fault tolerance
	Mechanisms for damage prevention
	Mechanisms for damage control
	Operational model
	The write protocol
	The read protocol
	Auditing
	Taking corrective action
	Discussion

	Platform security

	Performance evaluation
	Work breakdown and maximum throughput
	Experiment 1
	Experiment 2

	Microbenchmarks
	Discussion

	Related work
	Conclusion
	References

