
Can We Make
Operating Systems

Reliable and Secure?
Andrew S. Tanenbaum, Jorrit N. Herder, and Herbert Bos

When was the last time your TV set crashed or
implored you to download some emergency
software update from the Web? After all, unless it
is an ancient set, it is just a computer with a CPU, a
big monitor, some analog electronics for decoding
radio signals, a couple of peculiar I/O devices (e.g.,
remote control, built in VCR or DVD drive) and a
boatload of software in ROM.

This rhetorical question points out a nasty little
secret that we in the computer industry do not like
to discuss: why are TV sets, DVD recorders, MP3
players, cell phones, and other software-laden elec-
tronic devices reliable and secure and computers
not? Of course there are many ‘reasons’ (comput-
ers are flexible, users can change the software, the
IT industry is immature, etc.), but as we move to an
era in which the vast majority of computer users
are nontechnical people, increasingly these seem
like lame excuses to them. What they expect from a
computer is what they expect from a TV set: you
buy it, you plug it in, and it works perfectly for the
next 10 years. As IT professionals, we need to take
up this challenge and make computers as reliable
and secure as TV sets.

The worst offender when it comes to reliability
and security is the operating system, so we will
focus on that. However, before getting into the de-
tails, a few words about the relationship between
reliability and security are in order. Problems with
each of them have the same root cause: bugs in the
software. A buffer overrun error can cause a sys-
tem crash (reliability problem), but it can also
allows a cleverly written virus or worm to take
over the computer (security problem). Although we
focus primarily on reliability below, improving
reliability also improves security.

WHY ARE SYSTEMS UNRELIABLE?
Current operating systems have two characteris-

tics which makes them unreliable and insecure:
they are huge and they have very poor fault isola-
tion. The Linux kernel has over 2.5 million lines of
code and Windows XP is more than twice as large.

One study of software reliability showed that code
contains 6-16 bugs per 1000 lines of executable
code [1] while a different one [7] put the fault den-
sity at 2-75 bugs per 1000 lines of executable code,
depending on module size. Using a conservative
estimate of 6 bugs per 1000 lines of code the Linux
kernel probably has something like 15,000 bugs;
Windows has as at least double that.

To make matters worse, typically about 70% of
the operating system consists of device drivers, and
they have error rates 3 to 7 times higher than ordi-
nary code [2], so the above guesses are probably
gross underestimates. Clearly, finding and correct-
ing all these bugs is simply not feasible, and bug
fixes frequently introduce new bugs.

The large size of current systems means that no
one person can understand the whole thing.
Clearly, it is difficult to engineer a system well
when nobody really understands it. This brings us
to the second issue: fault isolation. No single per-
son understands everything about how an aircraft
carrier works, either, but the subsystems on an air-
craft carrier are well isolated. A problem with a
clogged toilet cannot affect the missile-launching
subsystem.

Operating systems do not have this kind of isola-
tion between components. A modern operating
system contains hundreds or thousands of pro-
cedures linked together as a single binary program
running in kernel mode. Every single one of the
millions of lines of kernel code can overwrite key
data structures used by an unrelated component and
crash the system in ways difficult to detect. In
addition, if a virus or worm manages to infect one
kernel procedure, there is no way to keep it from
rapidly spreading to others and taking control of the
whole machine. Going back to our ship analogy,
modern ships have compartments within the hull so
if one of them springs a leak, only that one is
flooded, not the entire hull. Current operating sys-
tems are like ships before compartmentalization
was invented: every leak can sink the ship.

Fortunately, the situation is not hopeless.
Researchers are busy trying to produce more

- 2 -

reliable operating systems. Below we will address
four different approaches that are being taken to
make future operating systems more reliable and
secure, proceeding from the least radical to the
most radical solution.

ARMORED OPERATING SYSTEMS
The first approach, Nooks [8], is the most conser-

vative and is designed to improve the reliability of
existing operating systems such as Windows and
Linux. It maintains the monolithic kernel structure,
with hundreds or thousands of procedures linked
together in a single address space in kernel mode,
but it focuses on making device drivers (the core of
the problem) less dangerous. In particular, it pro-
tects the kernel from buggy device drivers by wrap-
ping each driver in a layer of protective software to
form a lightweight protection domain as illustrated
in Fig. 1. The wrapper around each driver care-
fully monitors all interactions between the driver
and the kernel. The technique can also be used for
other extensions to the kernel such as loadable file
systems, but for simplicity we will just refer to
drivers below.

1

...

Kernel
mode

Shell Make User

...

 File
system

 Memory
 mgmt

Sched-
 uling

Process
 mgmt

User
mode

WrapperNooks isolation manager

LAN
driver

Disk
driver

Printer
driver

Stub

Figure 1. The Nooks model.

The goals of the Nooks project are to (1) protect
the kernel against driver failures, (2) recover
automatically when a driver fails, and (3) do all of
this with as few changes as possible to existing
drivers and the kernel. Note that protecting the ker-
nel against malicious drivers is not a goal. The ini-
tial implementation was on Linux, but the ideas
apply equally well to other legacy kernels.

Isolation
The main tool used to keep faulty drivers from

trashing kernel data structures is the virtual mem-
ory page map. When a driver runs, all pages out-
side of it are changed to read-only, thus implemen-
ting a separate lightweight protection domain for
each driver. In this way, the driver can read kernel
data structures it needs but any attempt to directly
modify a kernel data structure results in a CPU
exception that is caught by the Nooks isolation
manager. Access to the driver’s private memory,
where it stores stacks, a heap, private data struc-
tures, and copies of kernel objects is read-write.

Interposition
Each driver class exports a set of functions that

the kernel can call. For example, sound drivers
might offer a call to write a block of audio samples
to the card, another one to adjust the volume, and
so on. When the driver is loaded, an array of
pointers to the driver’s functions is filled in, so the
kernel can find each one. In addition, the driver
imports a set of functions provided by the kernel,
for example, for allocating a data buffer.

Nooks provides wrappers for both the exported
and imported functions. When the kernel now calls
a driver function or a driver calls a kernel function,
the call actually goes to a wrapper that checks the
parameters for validity and manages the call as
described below. While the wrapper stubs (shown
as lines sticking into and out of the drivers in Fig.
1) are generated automatically from their function
prototypes, the wrapper bodies must be hand writ-
ten. In all, 455 wrappers were written, 329 for
functions exported by the kernel and 126 for func-
tions exported by device drivers.

When a driver tries to modify a kernel object, its
wrapper copies the object into the driver’s protec-
tion domain (i.e., onto its private read-write pages).
The driver then modifies the copy. Upon success-
ful completion of the request, modified kernel
objects are copied back to the kernel. In this way,
a driver crash or failure during a call always leaves
kernel objects in a valid state. Keeping track of
imported objects is object specific; code has been
hand written to track 43 classes of objects.

Recovery
After a failure, the user-mode recovery agent runs

and consults a configuration data base to see what
to do. In many cases, releasing the resources held
and restarting the driver is enough because most
errors are caused by unusual timing conditions
(algorithmic bugs are usually found in testing, but
timing bugs are not).

This technique can recover the system, but run-
ning applications may fail. In additional work [9],
the Nooks team added the concept of shadow
drivers to allow applications to continue after a
driver failure. In short, during normal operation,
communication between each driver and the kernel
is logged by a shadow driver if it will be needed for
recovery. After a driver restart, the shadow driver
feeds the newly restarted driver from the log, for
example, repeating the IOCTL system calls that set
parameters such as audio volume. The kernel is
unaware of the process of getting the new driver
back into the same state the old one was in. Once
this is accomplished, the driver begins processing
new requests.

- 3 -

Limitations
While experiments show that Nooks can catch

99% of the fatal driver errors and 55% of the non-
fatal ones, it is not perfect. For example, drivers
can execute privileged instructions they should not
execute; they can write to incorrect I/O ports; and
they can get into infinite loops. Furthermore, large
numbers of wrappers had to be written manually
and may contain faults. Finally, drivers are not
prevented from reenabling write access to all of
memory. Nevertheless, it is potentially a useful
step towards improving the reliability of legacy
kernels.

PARAVIRTUAL MACHINES
A second approach has its roots in the concept of

a virtual machine, which goes back to the late
1960s [3]. In short, this idea is to run a special con-
trol program, called a virtual machine monitor, on
the bare hardware instead of an operating system,
Its job is to create multiple instances of the true
machine. Each instance can run any software the
bare machine can. The technique is commonly used
to allow two or more operating systems, say Linux
and Windows, to run on the same hardware at the
same time, with each one thinking it has the entire
machine to itself. The use of virtual machines has
a well-deserved reputation for extremely good fault
isolation—after all, if none of the virtual machines
even know about the other ones, problems in one of
them cannot spread to other ones.

The research here is to adapt this concept to pro-
tection within a single operating system, rather than
between different operating systems [5]. Further-
more, because the Pentium is not fully virtualiz-
able, a concession was made to the idea of running
an unmodified operating system in the virtual
machine. This concession allows modifications to
be made to the operating system to make sure it
does do anything that cannot be virtualized. To dis-
tinguish this technique from true virtualization, this
one is called paravirtualization.

Specifically, in the 1990s, a research group at the
University of Karlsruhe built a microkernel called
L4 [6]. They were able to run a slightly modified
version of Linux (L4Linux [4]) on top of L4 in
what might be described as a kind of virtual
machine. The researchers later realized that
instead of running only one copy of Linux on L4,
they could run multiple copies. This insight led to
the idea of having one of the virtual Linux
machines run the application programs and one or
more other ones run the device drivers, as illus-
trated in Fig. 2.

2

User
mode

L4 Microkernel

 File
system

 Memory
 mgmt

Sched-
 uling

Process
 mgmt

Inter-
rupts

LAN
driver

Disk
driver ...

Linux VM #1 Linux VM #2

Kernel
mode

OS

Shell make

Figure 2. Virtual machines.

By putting the device drivers in one or more vir-
tual machines separated from the main one running
the rest of the operating system and the application
programs, if a device driver crashes, only its virtual
machine goes down, not the main one. An addi-
tional advantage of this approach is that the device
drivers do not have to be modified as they see a
normal Linux kernel environment. Of course, the
Linux kernel itself had to be modified to achieve
paravirtualization, but this is a one-time change and
does not have to repeated for each device driver.

A major issue is how the device drivers actually
perform I/O and handle interrupts, since they are
running in the hardware’s user mode. Physical I/O
is handled by the addition of about 3000 lines of
code to the Linux kernel on which the drivers run
to allow them to use the L4 services for I/O instead
of doing it themselves. Furthermore, another 5000
lines of code were added to handle communication
between the three drivers ported (disk, network,
and PCI bus) and the virtual machine running the
application programs.

In principle, this approach should provide a
higher reliability than that of a single operating sys-
tem since when a virtual machine containing one or
more drivers crashes, the virtual machine can be
rebooted and the drivers returned to their intial
state. No attempt is made to return drivers to their
previous (pre-crash state) as in Nooks. Thus if an
audio driver crashes, it will be restored with the
sound level set to the default, rather than to the one
it had prior to the crash.

Performance measurements have shown that the
overhead of using paravirtualized machines in this
fashion is about 3–8%.

MULTISERVER OPERATING SYSTEMS
The first two approaches are focused on patching

legacy operating systems. The next two are
focused on future ones. The first of these directly
attacks the core of the problem: having the entire
operating system run as a single gigantic binary
program in kernel mode. Instead, only a tiny
microkernel runs in kernel mode with the rest of
the operating system running as a collection of
fully isolated user-mode server and driver

- 4 -

processes. This idea has been around for 20 years,
but was never fully explored the first time around
because it has slightly lower performance than a
monolithic kernel and in the 1980s, performance
counted for everything and reliability and security
were not on the radar. Of course, at the time,
aeronautical engineers did not worry too much
about miles per gallon or the ability of cockpit
doors to withstand armed attacks. Times change.

Multiserver Architecture
To make the idea of a multiserver operating sys-

tem clearer, let us look at a modern example,
MINIX 3, which is illustrated in Fig. 3. The
microkernel handles interrupts, provides the basic
mechanisms for process management, implements
interprocess communication, and does process
scheduling. It also offers a small set of kernel calls
to authorized drivers and servers, such as reading a
user’s address space or writing to authorized I/O
ports. The clock driver shares the microkernel’s
address space, but is scheduled as a separate pro-
cess. No other drivers run in kernel mode.

3

Microkernel handles interrupts,
processes, scheduling, IPC SysClock

Shell make User...

File Proc. Reinc Other... Servers
User
mode

Disk TTY Ether Print Other... Drivers

Process

Kernel
mode

Figure 3. The MINIX 3 architecture

Above the microkernel is the device driver layer.
Each I/O device has its own driver that runs as a
separate process, in its own private address space,
protected by the MMU (Memory Management
Unit) hardware. Driver processes are present for
the disk, terminal (keyboard and monitor), Ether-
net, printer, audio, and so on. The drivers run in
user mode and cannot execute privileged instruc-
tions or read or write the computer’s I/O ports; they
must make kernel calls to obtain these services.
While introducing a small amount of overhead, this
design also greatly enhances reliability, as dis-
cussed below.

On top of the device driver layer is the server
layer. The file server is a small (4500 lines of exe-
cutable code) program that accepts requests from
user processes for the POSIX system calls relating
to files, such as read, write, lseek, and stat and
carries them out. Also in this layer is the process
manager, which handles process and memory
management, and carries out POSIX and other sys-
tem calls such as fork, exec, and brk.

A somewhat unusual server is the reincarnation
server, which is the parent process of all the other
servers and all the drivers. If a driver or server

crashes, exits, or fails to respond to the periodic
pings, the reincarnation server kills it (if necessary)
and then restarts it from a copy on disk or in RAM.
Drivers can be restarted this way, but currently
only servers that do not maintain much internal
state can be restarted.

Other servers include the network server, which
contains a complete TCP/IP stack, the data store (a
simple name server used by the other servers), and
the information server, which aids debugging.

Finally, above the server layer come the user
processes. The only difference with other UNIX
systems is that the library procedures for read,
write, and the other system calls do their work by
sending messages to servers. Other than this differ-
ence (hidden in the system libraries), they are nor-
mal user processes that can use the POSIX API.

Interprocess Communication
Interprocess communication (IPC) is of crucial

importance in a multiserver operating system,
allowing all proceses to cooperate. However, since
all servers and drivers in MINIX 3 run as physi-
cally isolated processes, they cannot directly call
each other’s functions or share data structures. In-
stead, IPC in MINIX 3 is done by passing fixed-
length messages using the rendezvous principle:
when both the sender and the receiver are ready,
the message is copied directly from the sender to
the receiver. In addition, an asynchronous event
notification mechanism is available. Events that
cannot be delivered are marked pending a in bit-
map in the process table.

Interrupts are integrated with the message passing
system in an elegant way. Interrupt handlers use
the notification mechanism to signal I/O comple-
tion. This mechanism allows a handler to set a bit
in the driver’s ‘‘pending interrupts’’ bitmap and
then continue without blocking. When the driver is
ready to receive the interrupt, the kernel turns it
into a normal message.

Reliability Features
MINIX 3’s reliability comes from multiple

sources. To start with, only 4000 lines of code run
in the kernel, so with a (conservative) estimate of 6
bugs per 1000 lines, the total number of bugs in the
kernel is probably only about 24 (vs. 15,000 for
Linux and far more for Windows). Since all device
drivers except the clock are user processes, no for-
eign code ever runs in kernel mode. The small size
of the kernel also may make it practical to verify its
code, either manually or by formal techniques.

The IPC design of MINIX 3 does not require
message queuing or buffering, which eliminates the
need for buffer management in the kernel and
structurally prevents resource exhaustion. Further-
more, since IPC is a powerful construct, the IPC

- 5 -

capabilities of each server and driver are tightly
confined. For each process the available IPC primi-
tives, allowed destinations, and the use event notifi-
cations is restricted. User processes, for example,
can use only the rendezvous principle and can send
to only the POSIX servers.

In addition, all kernel data structures are static.
All of these features greatly simplify the code and
eliminate kernel bugs associated with buffer over-
runs, memory leaks, untimely interrupts, untrusted
kernel code, and more. Of course, moving most of
the operating system to user mode does not elim-
inate the inevitable bugs in drivers and servers, but
it renders them far less powerful. A kernel bug can
trash critical data structures, write garbage to the
disk, etc.; a bug in most drivers and servers cannot
do as much damage since none of these processes
are strongly compartmentalized and very much res-
tricted in what they can do.

The user-mode drivers and servers do not run as
superuser. They cannot access memory outside
their own address spaces except by making kernel
calls (which the kernel inspects for validity).
Stronger yet, the set of permitted kernel calls, IPC
capabilities, and allowed I/O ports are controlled
on a per-process basis by bitmaps and ranges with-
in the kernel’s process table. For example, the prin-
ter driver can be forbidden from writing to users
address spaces, touching the disk’s I/O ports, or
sending messages to the audio driver. In traditional
monolithic systems, any driver can do anything.

Another reliability feature is the use of separate
instruction and data spaces. Should a bug or virus
manage to overrun a driver or server buffer and
place foreign code in data space, it cannot be exe-
cuted by jumping to it or having a procedure return
to it, since the kernel will not run code unless it is
in the process’ (read-only) instruction space.

There are other specific features aimed at
improving reliability, but probably the most crucial
one is the self-healing property. If a driver does a
store through an invalid pointer, or gets into an
infinite loop, or otherwise misbehaves, it will
automatically be replaced by the reincarnation
server, often without affecting running processes.
While restarting a logically incorrect driver will not
remove the bug, in practice many problems are
caused subtle timing and similar bugs and restart-
ing the driver will repair the system. In addition,
this mechanism allows recovery of failures that are
caused by attacks, such as the ‘ping of death.’

Performance Considerations
Multiserver architectures based on microkernels

have been criticized for decades because of alleged
performance problems. However, various projects
have proven that modular designs can actually have

competitive performance. Despite the fact that
MINIX 3 has not been optimized for performance,
the system is reasonably fast. The performance loss
caused by user-mode drivers is less than 10% and
the system is able to build itself, including the ker-
nel, common drivers, and all servers (123 compila-
tions and 11 links) in under 4 sec on a 2.2 GHz
Athlon.

The fact that multiserver architectures make it
possible to provide a highly-reliable UNIX-like
environment at the costs of only a small perfor-
mance overhead makes this approach practical for
wide-scale adoption. MINIX 3 for the Pentium is
available for free download under the Berkeley
license at www.minix3.org. Ports to other architec-
tures and to embedded systems are underway.

LANGUAGE-BASED PROTECTION
The most radical approach comes from a com-

pletely unexpected source—Microsoft Research.
In effect, it says throw out the whole concept of an
operating system as a single program running in
kernel mode, plus some collection of user
processes running in user mode, and replace it with
a system written in new type-safe languages that do
not have all the pointer and other problems associ-
ated with C and C++. Like the previous two ap-
proaches, this one has been around for decades.
The Burroughs B5000 computer used this ap-
proach. The only language available then was
Algol and protection was handled not by an MMU
(which the machine did not have) but by the refusal
of the Algol compiler to generate ’dangerous’ code.
Microsoft Research’s approach updates this idea
for the 21st century.

Overview
This system, called Singularity, is written almost

entirely in a new type-safe language called Sing#.
This language is based on C#, but augmented with
message passing primitives whose semantics are
defined by formal, written contracts. Because the
system and user processes are all tightly con-
strained by language safety, all processes can run
together in a single virtual address space. This
design leads to both safety (because the compiler
will not allow a process to touch another process’
data) and efficiency (because kernel traps and con-
text switches are eliminated). Furthermore, the
Singularity design is flexible since each process is
a closed world and thus can have its own code, data
structures, memory layout, runtime system,
libraries, and garbage collector. The MMU is
enabled, but only to map pages rather than to estab-
lish a separate protection domain for each process.

A key design principle in Singularity is that
dynamic process extensions are forbidden. Among
other consequences, loadable modules such as

- 6 -

device drivers and browser plug-ins are not permit-
ted because they would introduce unverified
foreign code that could corrupt the mother process.
Instead, such extensions must run as separate
processes, completely walled off and communicat-
ing by the standard interprocess communication
mechanism (described below).

The Microkernel
The Singularity operating system consists of a

microkernel process and a set of user processes, all
typically running in a common virtual address
space. The microkernel controls access to hard-
ware, allocates and deallocates memory, creates,
destroys, and schedules threads, handles thread
synchronization with mutexes, handles interprocess
synchronization with channels, and supervises I/O.
Each device driver runs as a separate process.

Although most of the microkernel is written in
Sing#, a small portion is written in C#, C++, or
assembler and must be trusted since it cannot be
verified. The trusted code includes the HAL
(Hardware Abstraction Layer) and the garbage col-
lector. The HAL hides the low-level hardware
from the system by abstracting out concepts such as
I/O ports, IRQ lines, DMA channels, and timers to
present machine-independent abstractions to the
rest of the operating system.

Interprocess Communication
User processes obtain system services by sending

strongly typed messages to the microkernel over
point-to-point bidirectional channels. In fact, all
process-to-process communication uses these chan-
nels. Unlike other message-passing systems, which
have SEND and RECEIVE functions in some
library, Sing# fully supports channels in the
language, including formal typing and protocol
specifications. To make this point clear, consider
this channel specification:

contract C1 {
in message Request(int x) requires x > 0;
out message Reply(int y);
out message Error();

state Start:
Request? -> Pending;
state Pending: one {
Reply! -> Start;
Error! -> Stopped;
}
state Stopped: ;

}

This contract declares that the channel accepts
three messages, Request, Reply, and Error, the
first one with a positive integer as parameter, the
second one with any integer as parameter and the
third one with no parameters. When used for a

channel to a server, the Request messages goes
from the client to the server and the other two go
the other way. A state machine specifies the proto-
col for the channel.

In the Start state, the client sends the Request
message, putting the channel into the Pending state.
The server can either respond with a Reply mes-
sage or an Error message. The Reply message
transitions the channel back to the Start state,
where communication can continue. The Error
message transitions the channel to the Stopped state
ending communication on the channel.

The Heap
If all data, such as file blocks read from disk, had

to go over channels, the system would be very
slow, so an exception is made to the basic rule that
each process’ data is completely private and inter-
nal to itself. Singularity supports a shared object
heap, but at each instant every object on the heap
belongs to a single process. However, ownership of
an object can be passed over a channel.

As an example of how the heap works, consider
I/O. When a disk driver reads in a block, it puts the
block on the heap. Later, the handle for the block is
passed to the user requesting the data, maintaining
the single-owner principle but allowing data to
move from disk to user with zero copies.

The File System
Singularity maintains a single hierarchical name

space for all services. A root name server handles
the top of the tree, but other name servers can be
mounted on its nodes. In particular, the file system,
which is just a process, is mounted on /fs, so a
name like /fs/users/linda/foo could be a user’s file.
Files are implemented as B-trees, with the block
numbers as the keys. When a user process asks for
a file, the file system commands the disk driver to
put the requested blocks on the heap. Ownership is
then passed as described above.

Verification
Each system component has metadata describing

its dependencies, exports, resources, and behavior.
This metadata is used for verification. The system
image consists of the microkernel, drivers, and
applications needed to run the system, along with
their metadata. External verifiers can perform
many checks on the image before it is executed,
such as making sure that drivers do not have
resource conflicts.

Verification is a three-step process:

1. The compiler checks type safety, object owner-
ship, channel protocols, etc.

2. The compiler generates MSIL (Microsoft
Intermediate Language), which is a portable JVM-
like byte code that can be verified.

- 7 -

3. MSIL is compiled to x86 code by a back-end
compiler, which could insert runtime checks into
the code (the current back-end compiler does not
do this though).

The point of redundant verification is to catch
errors in the verifiers.

CONCLUSION
We have examined four different attempts to

improve operating system reliability. All of them
focus on preventing buggy device drivers from
crashing the system. The Nooks approach is to
individually hand wrap each driver in a software
jacket to carefully control its interactions with the
rest of the operating system, but leaves all the
drivers in the kernel. The paravirtual machine
approach takes this one step further and moves the
drivers to one or more paravirtual machines distinct
from the main one, taking away even more power
from the drivers. Both of these approaches are
intended to improve the reliability of existing
(legacy) operating systems.

In contrast, the next two approaches are aimed at
replacing legacy operating systems with more reli-
able and secure ones. The multiserver approach
runs each driver and operating system component
in a separate user process and allows them to com-
municate using the microkernel’s IPC mechanism.
Finally, Singularity is the most radical of all, using
a type-safe language, a single address space, and
formal contracts to carefully limit what each
module can do.

What is worth noting is that three of the four
research projects use microkernels: L4, MINIX 3,
and the Singularity kernel, respectively. It is not
known yet which, if any, of these approaches will
be widely adopted in the long run. Nevertheless it
is interesting to note that microkernels—long dis-
carded as unacceptable due to their lower perfor-
mance than monolithic kernels—may be making a
comeback due to their inherently higher reliability,
which many people now regard as more important
than performance. The wheel of reincarnation has
turned.

ACKNOWLEDGEMENTS
We would like to thank Brian Bershad, Galen

Hunt, and Michael Swift for their comments and
suggestions. This work was supported in part by
the Netherlands Organization for Scientific
Research (NWO) under grant 612-060-420. Refer-
ences

1. V.R. Basili and B.T. Perricone, ‘‘Software
Errors and Complexity: an Empirical Investiga-
tion,’’ Commun. of the ACM , vol. 27, Jan.
1984, pp. 42-52.

2. A. Chou, J. Yang, B. Chelf, S. Hallem, and D.
Engler, ‘‘An Empirical Study of Operating Sys-
tem Errors,’’ Proc. 18th ACM Symp. on
Operating Syst. Prin. , ACM, pp. 73-88, 2001.

3. R.P. Goldberg, ‘‘Architecture of Virtual
Machines,’’ Proc. of the Workshop on Virtual
Computer Systems , ACM, pp. 74-112, 1973.

4. H. Hartig, H. Hohmuth, J. Liedtke, S. Schon-
berg, and J. Wolter, ‘‘The Performance of
Microkernel-Based Systems,’’ Proc. 16th ACM
Symp. on Operating Syst. Prin. , pp. 66-77,
1997.

5. J. LeVasseur, V. Uhlig, J. Soess, and Stefan
Gotz, ‘‘Unmodified Device Driver Reuse and
Improved System Dependability via Virtual
Machines,’’ Proc. Sixth Symp. on Operating
System Design and Impl. pp. 17-30, 2004.

6. J. Liedtke, ‘‘On Microkernel Construction,’’
Proc. 15th ACM Symp. on Operating Syst.
Prin. , pp. 237-250, 1995.

7. T.J. Ostrand and E.J. Weyuker, ‘‘The distribu-
tion of faults in a large industrial software sys-
tem,’’ Proc. Int’l Symp. on Software Testing
and Analysis , ACM, 2002, pp. 55-64.

8. M. Swift, B. Bershad, and H. Levy, ‘‘Improving
the Reliability of Commodity Operating Sys-
tems,’’ ACM Trans. on Operating Systems , vol.
23, pp. 77-110, 2005.

9. M. Swift, M. Annamalai, B. Bershad, and H.
Levy, ‘‘Recovering Device Drivers,’’ Proc.
Sixth Symp. on Oper. Syst. Design and Impl. ,
pp. 1-16, 2004.

