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Turning  
Teenagers  
into Stores

T
he intersection of computers, the Internet, 
music, and teenagers has uprooted the music 
industry. For more than a century after 
Thomas Edison’s 1877 invention of the pho-
nograph, the industry sold singles or albums 

recorded on wax or plastic media to consumers in record 
and department stores. New media were introduced, 
including the 78-rpm wax single, the 45-rpm single, the 
33-rpm LP record, and finally the Philips CD, but the 
business model stayed the same. With the invention and 
1991 standardization of the MP3 psychoacoustic com-
pression algorithm by engineers working on the Euro-
pean Union’s Eureka project 147, the era of download-
able digital music was launched.

After the Fraunhofer Institute released the first MP3 
encoder in 1994, many young music fans began to 
encode their audio CDs in MP3 format and store them 
on their computers’ hard disks. Before the invention of 
MP3, storing music on a PC’s hard disk wasn’t practical 
because a single CD could take up to 650 Mbytes, and 
hard disks were smaller than 1 Gbyte at this time. But 
with tenfold compression possible with little quality loss, 
storing and playing music on computers skyrocketed.

It didn’t take long before friends began exchanging 
music files over the Internet. Napster debuted in 1999, 
offering a central catalog of who had which songs, so peo-
ple could directly copy songs from the remote hard disks 

of people they didn’t know. Napster users thought of it as 
a wonderful new invention: peer-to-peer file sharing.

Unfortunately for them, people in the music indus-
try didn’t see it that way. They saw it as theft of their 
intellectual property, and they responded by suing Nap-
ster and closing it down. Decentralized services such as 
Kazaa and Grokster soon replaced Napster, and they 
were sued with mixed results. Then the music industry 
began suing individual teenagers for copyright viola-
tion, seeking maximum publicity when they settled out 
of court for thousands of dollars.

Eventually, it dawned on them that suing their own 
customers (especially children) wasn’t a good business 
model. This led to the development of online music stores 
that let customers legally buy and download songs from 
the store’s central server. The first major online-music 
seller was Apple with its hugely successful iTunes store 
(www.apple.com/itunes) and iPod player.

iTunes uses a completely centralized digital rights 
management (DRM) system called FairPlay, with users 
contacting an Apple server to buy and download music 
and authorize their usage. When Microsoft released its 
Zune player (www.zune.net) and online store in Novem-
ber 2006, it added a new feature lacking in iTunes: a 
limited ability for a user to transmit a song to a friend’s 
Zune player offline, without having to contact the cen-
tral Zune server. However, a user can only transmit a 
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song three times and store it for three days. 
If the friend likes the song, he must contact 
Zune’s server to buy it. Figure 1 shows the two 
models.

By now, the music companies have come to 
realize that digital music is their friend (just 
as the movie studios eventually stopped suing 
VCR manufacturers and began releasing mov-
ies for rent). They also realize that many teen-
agers become aware of songs when they plug 
into a friend’s music player and listen to music 
that way, a practice now known as “jack shar-
ing.” This knowledge has led some music exec-
utives to dream of turning teenagers into stores, 
legally reselling songs they’ve bought, a concept 
more prosaically called superdistribution.1

A MODEL FOR RESELLING MUSIC
What we need is a scheme that turns willing 

customers into full-fledged resellers. Amster-
dam’s Vrije Universiteit has developed a system 
that could serve as a prototype.

Consider this scenario: Bob visits an online 
content provider like iTunes and buys a song 
for 99 cents. Having an inkling that the song 
will also be a hit with his friends, he buys the 
right to resell the song to nine friends for a total 
of $8.91, getting a 10 percent discount for buy-
ing 10 units. He pays the $8.91 in advance by 
credit card. Bob then hooks up with his friend 
Mark and tells him about the cool song he just 
got. After hearing the song using Bob’s player, 
Mark decides to buy a copy. Bob sells Mark 
the copy (using the wireless link) for 95 cents, 
making a 6-cent profit.

On his way home, Bob meets up with Alice and sells 
a copy of the song to her. Alice tells Bob that her friend 
Mary might also be interested in the song, so she buys it 
and the right to resell it once, paying Bob $1.90. When 
Alice runs into Mary, she sells Mary the song for 97 
cents. Figure 2 illustrates these transactions.

From the point of view of consumers like Bob and Alice, 
the benefit is evident. By acting as a reseller on behalf of 
the content owner, the consumer earns a profit per song 
sold. Mark and Mary also benefit by getting the song 
immediately and for less than the retail price. The content 
owner can reach a wider range of potential consumers, 
and, more importantly, the network formed between 
the consumers is more taste-targeted than any market-
ing campaign. Furthermore, by transacting many of the 
sales without involving the central distribution server, the 
content vendor’s server and bandwidth requirements are 
greatly reduced, cutting associated costs.

Of course, the trick is to have the technology to enable 
the above scenario in such a way that content doesn’t 
become freely available.

THE TECHNOLOGY
Achieving interoperability between different manu-

facturers’ players and providers’ content requires IEEE 
or other standards. Player manufacturers would need 
to design according to these specifications and undergo 
compliance testing and accreditation from a certification 
authority. Upon passing the accreditation tests, the CA 
would certify the manufacturer by signing its public key. 
The manufacturer would in turn sign the unique public 
key of each player it produces, thus producing a chain 
of trust to identify all specification-compliant players. 
Each player would contain its own certified public and 
private keys, the manufacturer’s certified public key, and 
the CA’s public key.

The manufacturer needs to store the player’s private 
key in secure hardware to prevent direct unmediated 
access. All private-key operations must be performed 
within the secure hardware in a controlled manner. 
Among other functions, the secure hardware must per-
form asymmetric and symmetric key encryption and 
decryption and collision-resistant hashing.
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Figure 1. Music distribution models. (a) Apple uses a central store model to 
sell its iTunes. (b) Microsoft’s Zune allows limited sharing of content.
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Figure 2. Content buying and reselling process flow.



60	 Computer

Since an attacker or misbehaving consumer might mis-
use content, it’s stored encrypted. In addition, a cryp-
tochip (preferably soldered to the player’s motherboard 
or to a PCI plug-in card) performs sensitive operations. 
The cryptochip must contain a CPU, nonvolatile mem-
ory for key storage, and some working RAM. In this 
way, the player can issue a command to the cryptochip 
saying, “Fetch the encrypted song at memory address 
0x122400, decrypt it with symmetric key #4 in your 
internal list, and generate audio on your output pins.”

In this way, the plaintext music is never released out-
side the cryptochip. A chip like the trusted platform 
module (www.trustedcomputinggroup.org/groups/tpm) 
already provides some of these features. We feel that 
technology is advanced enough to expect implementa-
tion of such features, given enough financial incentives. 
With the content never appearing in plaintext outside the 
cryptochip, the security requirements on the rest of the 
software become much less stringent.

SYSTEM ARCHITECTURE
In our architecture,2,3 a consumer contacts a provider 

to buy a song, video, or other content and optionally 
the right to resell it N times. The request message con-
tains the player’s public key. Once the consumer has paid 
for the content and the rights, the provider encrypts the 
content on the fly with a newly generated symmetric 
Advanced Encryption Standard (AES) key and sends 
the encrypted content to the consumer’s (now called the 
reseller’s) player.

The content provider also 
sends the symmetric key 
encrypted with the player’s 
public key and the rights the 
reseller bought, expressed in 
a suitable language. It signs 
the rights with a secret key to 
prove they’re valid. The secure 
hardware on the consumer’s 
player checks the integrity of 
the content and the rights. If 
valid, they’re stored on an 
insecure hard disk or flash 
memory. Since the rights infor-
mation is signed by the content 
provider and its hash is stored 
in a secure memory, the owner 
can’t tamper with it.

Process steps
Each time a reseller such 

as Bob wishes to resell the 
content, the cryptochip first 
checks to see if the maximum 
number of sales the license 
defines has been reached. If 

not, it goes through the following steps, which Figure 3 
illustrates. In Step 1, Bob asks a buyer such as Alice to 
send her public key, PKA, and a certificate chain rooted at 
the CA over the wireless link to Bob’s player. In Step 2, 	
Alice’s player sends the PKA and certificate chain. In Step 
3, Bob’s cryptochip verifies that Alice’s claimed public 
key is in her certificate, that the player’s manufacturer 
signed the certificate, and that the CA approved the 
manufacturer.

If all goes well, Bob’s player now knows that Alice’s 
player has been certified as compliant. After all, although 
Alice can easily generate a private-public-key pair, she 
can’t produce a certificate chain back to the CA guarantee-
ing that the key is authentic, and without this authenticity, 
Bob’s cryptochip won’t allow the transaction to proceed.

In Step 4, Alice pays Bob using cash, PayPal, credit 
card, or another agreed-upon means. This step is out of 
band and not part of the protocol. In Step 5, when Bob 
is satisfied with the payment, he pushes a button on his 
player to approve the sale. In Step 6, the cryptochip first 
updates the number of sales remaining and keeps this 
counter in its secure internal memory. Then, in Step 7, it 
generates a fresh symmetric key, AESnew.

Using the existing stored per-song symmetric key, in 
Step 8, the cryptochip reads the song from main memory 
and decrypts it, and in Step 9, reencrypts it with AESnew, 
and puts the newly encrypted song elsewhere in insecure 
RAM, leaving the original intact.

In Step 10, Bob’s cryptochip encrypts the new symmet-
ric key, AESnew, with Alice’s valid public key and puts it 

Alice Bob

1. Bob’s player requests public key and certificate chain 

2. Alice’s player sends PKA and certificate chain

3. Bob’s player verifies public key

4. (Out-of-band) payment by cash, PayPal, credit card, or other method 

5. Bob approves payment  

Bob’s player automatically:
 6.  Updates remaining-sales counter  
 7.  Generates AESnew  
 8.  Decrypts stored song  
 9.  Encrypts song with AESnew
 10.  Encrypts AESnew rights with PKA

11. Bob’s player sends AESnew (song), PKA(AESnew, rights)

Alice’s player:
12. Decrypts and saves AESnew, rights
13. Stores encrypted song on HD

Figure 3. How Bob sells Alice a song. The yellow boxes are messages, the green ones are steps 
the cryptochips perform, and the blue ones are manual steps.
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in RAM as well. Bob can steal the song and the key from 
RAM, but it won’t do him any good as they’re encrypted, 
the song with a symmetric key he doesn’t know and the 
song key with Alice’s public key. Furthermore, he can’t 
get at the “remaining-sales” counter, which is kept safely 
in the cryptochip’s internal nonvolatile memory.

Next, in Step 11, Bob’s player sends Alice the AES-
encrypted song and encrypted AES key for this song. In 
Step 12, upon receipt of the message, Alice’s cryptochip 
decrypts it and saves the song key, AESnew, internal to 
itself; in Step 13, it saves the encrypted song on the (inse-
cure) hard disk or flash memory.

Critical events
Steps 6-10 are performed as a single atomic transac-

tion, but if Bob’s player is switched off between steps 
6 and 11, maliciously or otherwise, he loses one resale 
right and must deal with an unhappy customer who 
didn’t get the song she paid for. Other critical events 
are an accidental communication breakdown between 
the reseller and the consumer while the transaction is 
in progress or when the reseller cheats the consumer by 
delivering a bogus song. To resolve all these situations, 
a “recovery subprotocol”3 lets the consumer contact the 
content provider directly to resolve the issue. 

It’s important to note that the resale is offline. Nei-
ther Bob nor Alice has to contact the content provider 
since Bob has already paid for Alice’s copy of the music 
(as well as the eight unsold copies) in advance. By using 
teenagers as salespeople, the content provider saves on 
computing power and bandwidth costs.

What happens if Bob can’t find eight more friends who 
want the song? The publishers of books, magazines, and 
newspapers have precisely the same problem, and they gen-
erally allow their sales outlets to return unsold stock for 
credit to encourage them to have an ample supply on hand. 
Of course, the publisher can rescind any quantity discount 
granted initially when the vendor returns the unsold copies. 
Following this tradition, music vendors are likely to follow 
suit, but that’s their business decision to make.

When Alice wants to listen to her newly purchased 
song, the cryptochip in her player extracts its symmetric 
key, AESnew, stored in its internal memory and fetches, 
decrypts, and plays the song one block at a time. In this 
way, the bulk data—the songs—are stored in the large 
cheap memory, with each song encrypted with a unique 
symmetric (AES) key. 

SECURITY CONSIDERATIONS
However secure and foolproof we assume a system 

to be, experience has shown that all it takes is a sin-
gle weak link to compromise its security. Our scheme 
assumes that certified players behave in the stipulated 
manner and that they follow the protocols correctly. 
However, it might be possible to crack a player using 
out-of-band methods, such as using an electron micro-

scope to read the keys in the cryptochip’s internal non-
volatile memory.

Watermarking and traitor-tracing techniques4 can be 
used to identify such compromised players. Once iden-
tified, the compromised player’s identity (public key) is 
added into a player revocation list. The system can push 
this list to each consumer’s player the next time it con-
nects to a content provider. Other researchers have pro-
posed various ways to minimize the size of such lists.5 
As an enhancement, the players could also exchange 
revocation lists when they exchange content. A compli-
ant player is designed to refuse communication with any 
player listed in the revocation list.

Of course, our system also suffers from the “analog 
hole” problem. An attacker can always record the content 
with a microphone while it’s being played and redistrib-
ute it in an uncontrolled manner. There’s no definitive 
solution for this problem; however, the degradation in 
the quality of the copy obtained through analog record-
ing could be an attack deterrent.

It’s important to note that our system doesn’t intro-
duce any new vulnerability. These attacks also apply to 
current players that don’t allow controlled peer-to-peer 
distribution. 

PROTOTYPE IMPLEMENTATION
We’ve implemented Paradiso (www.few.vu.nl/~srijith/

paradiso), a system prototype, using a $230 Neuros 
development board (http://wiki.neurostechnology.com/
index.php/OSD_Beta), representative of what’s found in 
mobile music players. Shown in Figure 4, this board has 
a TI 200-MHz ARM926, 120-MHz C54x DSP proces-
sor specifically developed for multimedia applications, 
64 Mbytes of SDRAM and 10/100 Mbps Ethernet port, 
among others. The board runs a modified version of the 
Linux 2.6 kernel. We used OpenSSL libraries for cryp-
tographic support and software techniques for atomic 
actions.6

Figure 4. Prototype implementation using Neuros OSD boards.
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The developer boards acted as compliant players. 
However, since we couldn’t obtain a developer board 
with a suitable cryptochip and secure store, we used a 
software layer to emulate the hardware security layer. 
We believe that once the interface and protocols have 
been defined, implementing them on another (secure) 
processor wouldn’t be difficult. 

Experiments performed with our prototype show that 
it takes around 10 seconds to perform steps 6-13 for a  
5-Mbyte file. Performance measurements also show that 
the music file’s quality doesn’t suffer from the lag due to 
the decryption steps. While the prototype implements 
the cryptographic steps in the software, a production 
unit will implement them in the hardware, thus we can 
expect a speedup and better performance.

M icrosoft’s Zune took the first baby step toward 
implementing our proposed system by letting 
users forward songs to friends. However, the 

similarity ends there. The recipient still must contact 
the content provider to purchase the content and asso-
ciated license. Zune’s existence is an indication of the 
digital medium’s potential, as well as content owners’ 
and player manufacturers’ receptiveness to explore new 
avenues to widen their reach. 

Although we designed our prototype to generate rev-
enue, DRM technology can easily be extended to serve 
the needs of consumer-produced digital content. For 
example, a band could produce and release a song under 
one of the “noncommercial” Creative Commons licenses 
and upload it to a content provider as a way to promote 
its new album. The trusted player, on noticing the song’s 
license, would let the song be exchanged for free.

Similarly, Bob could use the same technology to share 
the latest video clip he’s shot. One of Zune’s perceived 
shortcomings is that irrespective of the origin and license 
of the content a user exchanges with another, the con-
tent is deleted after three plays or days. It’s evident that 
designers incorporated such limitations to prevent using 
Zune as a new illegal peer-to-peer medium. However, in 
this age of consumer-generated content, a DRM scheme 
shouldn’t deny copyright owners the right to give away 
content for free if they so choose. Just imagine the fuss 
if all computers automatically deleted all free software 
after three days.

The goals of a Paradiso-like system, however, aren’t 
realizable without some mind-set change. As of now, 
every player manufacturer uses DRM technology that’s 
not interoperable with other manufacturers. A Parad-
iso-like architecture would require major manufacturers 
and content owners to use interoperable DRM technol-
ogy standards. The success of industry-wide specifica-
tions like the mobile industry’s Open Mobile Alliance 
indicates that such an alliance is possible, given strong 
enough incentives. ■
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