
C O V E R F E A T U R E

58	 Computer	 Published by the IEEE Computer Society	 0018-9162/08/$25.00 © 2008 IEEE

Turning
Teenagers
into Stores

T
he intersection of computers, the Internet,
music, and teenagers has uprooted the music
industry. For more than a century after
Thomas Edison’s 1877 invention of the pho-
nograph, the industry sold singles or albums

recorded on wax or plastic media to consumers in record
and department stores. New media were introduced,
including the 78-rpm wax single, the 45-rpm single, the
33-rpm LP record, and finally the Philips CD, but the
business model stayed the same. With the invention and
1991 standardization of the MP3 psychoacoustic com-
pression algorithm by engineers working on the Euro-
pean Union’s Eureka project 147, the era of download-
able digital music was launched.

After the Fraunhofer Institute released the first MP3
encoder in 1994, many young music fans began to
encode their audio CDs in MP3 format and store them
on their computers’ hard disks. Before the invention of
MP3, storing music on a PC’s hard disk wasn’t practical
because a single CD could take up to 650 Mbytes, and
hard disks were smaller than 1 Gbyte at this time. But
with tenfold compression possible with little quality loss,
storing and playing music on computers skyrocketed.

It didn’t take long before friends began exchanging
music files over the Internet. Napster debuted in 1999,
offering a central catalog of who had which songs, so peo-
ple could directly copy songs from the remote hard disks

of people they didn’t know. Napster users thought of it as
a wonderful new invention: peer-to-peer file sharing.

Unfortunately for them, people in the music indus-
try didn’t see it that way. They saw it as theft of their
intellectual property, and they responded by suing Nap-
ster and closing it down. Decentralized services such as
Kazaa and Grokster soon replaced Napster, and they
were sued with mixed results. Then the music industry
began suing individual teenagers for copyright viola-
tion, seeking maximum publicity when they settled out
of court for thousands of dollars.

Eventually, it dawned on them that suing their own
customers (especially children) wasn’t a good business
model. This led to the development of online music stores
that let customers legally buy and download songs from
the store’s central server. The first major online-music
seller was Apple with its hugely successful iTunes store
(www.apple.com/itunes) and iPod player.

iTunes uses a completely centralized digital rights
management (DRM) system called FairPlay, with users
contacting an Apple server to buy and download music
and authorize their usage. When Microsoft released its
Zune player (www.zune.net) and online store in Novem-
ber 2006, it added a new feature lacking in iTunes: a
limited ability for a user to transmit a song to a friend’s
Zune player offline, without having to contact the cen-
tral Zune server. However, a user can only transmit a

Paradiso is a prototype of a system that lets consumers contact content providers to buy

songs and videos—and to buy optional content-resale rights. In essence, the scheme would

turn customers into content distributors, provide wider reach, and free up content providers’

bandwidth. However, such an architecture requires strict security precautions and interoperable

digital rights management standards among player manufacturers and content providers.

Srijith K. Nair, Bruno Crispo, and Andrew S. Tanenbaum, Vrije Universiteit

Ron Gerrits, Inovia

	 February 2008	 59

song three times and store it for three days.
If the friend likes the song, he must contact
Zune’s server to buy it. Figure 1 shows the two
models.

By now, the music companies have come to
realize that digital music is their friend (just
as the movie studios eventually stopped suing
VCR manufacturers and began releasing mov-
ies for rent). They also realize that many teen-
agers become aware of songs when they plug
into a friend’s music player and listen to music
that way, a practice now known as “jack shar-
ing.” This knowledge has led some music exec-
utives to dream of turning teenagers into stores,
legally reselling songs they’ve bought, a concept
more prosaically called superdistribution.1

A MODEL FOR RESELLING MUSIC
What we need is a scheme that turns willing

customers into full-fledged resellers. Amster-
dam’s Vrije Universiteit has developed a system
that could serve as a prototype.

Consider this scenario: Bob visits an online
content provider like iTunes and buys a song
for 99 cents. Having an inkling that the song
will also be a hit with his friends, he buys the
right to resell the song to nine friends for a total
of $8.91, getting a 10 percent discount for buy-
ing 10 units. He pays the $8.91 in advance by
credit card. Bob then hooks up with his friend
Mark and tells him about the cool song he just
got. After hearing the song using Bob’s player,
Mark decides to buy a copy. Bob sells Mark
the copy (using the wireless link) for 95 cents,
making a 6-cent profit.

On his way home, Bob meets up with Alice and sells
a copy of the song to her. Alice tells Bob that her friend
Mary might also be interested in the song, so she buys it
and the right to resell it once, paying Bob $1.90. When
Alice runs into Mary, she sells Mary the song for 97
cents. Figure 2 illustrates these transactions.

From the point of view of consumers like Bob and Alice,
the benefit is evident. By acting as a reseller on behalf of
the content owner, the consumer earns a profit per song
sold. Mark and Mary also benefit by getting the song
immediately and for less than the retail price. The content
owner can reach a wider range of potential consumers,
and, more importantly, the network formed between
the consumers is more taste-targeted than any market-
ing campaign. Furthermore, by transacting many of the
sales without involving the central distribution server, the
content vendor’s server and bandwidth requirements are
greatly reduced, cutting associated costs.

Of course, the trick is to have the technology to enable
the above scenario in such a way that content doesn’t
become freely available.

THE TECHNOLOGY
Achieving interoperability between different manu-

facturers’ players and providers’ content requires IEEE
or other standards. Player manufacturers would need
to design according to these specifications and undergo
compliance testing and accreditation from a certification
authority. Upon passing the accreditation tests, the CA
would certify the manufacturer by signing its public key.
The manufacturer would in turn sign the unique public
key of each player it produces, thus producing a chain
of trust to identify all specification-compliant players.
Each player would contain its own certified public and
private keys, the manufacturer’s certified public key, and
the CA’s public key.

The manufacturer needs to store the player’s private
key in secure hardware to prevent direct unmediated
access. All private-key operations must be performed
within the secure hardware in a controlled manner.
Among other functions, the secure hardware must per-
form asymmetric and symmetric key encryption and
decryption and collision-resistant hashing.

User 1 User 2

User 3

Central server

Buy
content Buy

content

Buy
content

Free
sample

User 1

User 2

Sample
N times

Central server

(b)(a)

Figure 1. Music distribution models. (a) Apple uses a central store model to
sell its iTunes. (b) Microsoft’s Zune allows limited sharing of content.

Content provider

Bob

Alice

Mary

Mark

One copy

One copy

One copy and
one reselling copy

One personal copy and
right to resell content

nine times

1

2

3

4

Figure 2. Content buying and reselling process flow.

60	 Computer

Since an attacker or misbehaving consumer might mis-
use content, it’s stored encrypted. In addition, a cryp-
tochip (preferably soldered to the player’s motherboard
or to a PCI plug-in card) performs sensitive operations.
The cryptochip must contain a CPU, nonvolatile mem-
ory for key storage, and some working RAM. In this
way, the player can issue a command to the cryptochip
saying, “Fetch the encrypted song at memory address
0x122400, decrypt it with symmetric key #4 in your
internal list, and generate audio on your output pins.”

In this way, the plaintext music is never released out-
side the cryptochip. A chip like the trusted platform
module (www.trustedcomputinggroup.org/groups/tpm)
already provides some of these features. We feel that
technology is advanced enough to expect implementa-
tion of such features, given enough financial incentives.
With the content never appearing in plaintext outside the
cryptochip, the security requirements on the rest of the
software become much less stringent.

SYSTEM ARCHITECTURE
In our architecture,2,3 a consumer contacts a provider

to buy a song, video, or other content and optionally
the right to resell it N times. The request message con-
tains the player’s public key. Once the consumer has paid
for the content and the rights, the provider encrypts the
content on the fly with a newly generated symmetric
Advanced Encryption Standard (AES) key and sends
the encrypted content to the consumer’s (now called the
reseller’s) player.

The content provider also
sends the symmetric key
encrypted with the player’s
public key and the rights the
reseller bought, expressed in
a suitable language. It signs
the rights with a secret key to
prove they’re valid. The secure
hardware on the consumer’s
player checks the integrity of
the content and the rights. If
valid, they’re stored on an
insecure hard disk or flash
memory. Since the rights infor-
mation is signed by the content
provider and its hash is stored
in a secure memory, the owner
can’t tamper with it.

Process steps
Each time a reseller such

as Bob wishes to resell the
content, the cryptochip first
checks to see if the maximum
number of sales the license
defines has been reached. If

not, it goes through the following steps, which Figure 3
illustrates. In Step 1, Bob asks a buyer such as Alice to
send her public key, PKA, and a certificate chain rooted at
the CA over the wireless link to Bob’s player. In Step 2, 	
Alice’s player sends the PKA and certificate chain. In Step
3, Bob’s cryptochip verifies that Alice’s claimed public
key is in her certificate, that the player’s manufacturer
signed the certificate, and that the CA approved the
manufacturer.

If all goes well, Bob’s player now knows that Alice’s
player has been certified as compliant. After all, although
Alice can easily generate a private-public-key pair, she
can’t produce a certificate chain back to the CA guarantee-
ing that the key is authentic, and without this authenticity,
Bob’s cryptochip won’t allow the transaction to proceed.

In Step 4, Alice pays Bob using cash, PayPal, credit
card, or another agreed-upon means. This step is out of
band and not part of the protocol. In Step 5, when Bob
is satisfied with the payment, he pushes a button on his
player to approve the sale. In Step 6, the cryptochip first
updates the number of sales remaining and keeps this
counter in its secure internal memory. Then, in Step 7, it
generates a fresh symmetric key, AESnew.

Using the existing stored per-song symmetric key, in
Step 8, the cryptochip reads the song from main memory
and decrypts it, and in Step 9, reencrypts it with AESnew,
and puts the newly encrypted song elsewhere in insecure
RAM, leaving the original intact.

In Step 10, Bob’s cryptochip encrypts the new symmet-
ric key, AESnew, with Alice’s valid public key and puts it

Alice Bob

1. Bob’s player requests public key and certificate chain

2. Alice’s player sends PKA and certificate chain

3. Bob’s player verifies public key

4. (Out-of-band) payment by cash, PayPal, credit card, or other method

5. Bob approves payment

Bob’s player automatically:
 6. Updates remaining-sales counter
 7. Generates AESnew
 8. Decrypts stored song
 9. Encrypts song with AESnew
 10. Encrypts AESnew rights with PKA

11. Bob’s player sends AESnew (song), PKA(AESnew, rights)

Alice’s player:
12. Decrypts and saves AESnew, rights
13. Stores encrypted song on HD

Figure 3. How Bob sells Alice a song. The yellow boxes are messages, the green ones are steps
the cryptochips perform, and the blue ones are manual steps.

	 February 2008	 61

in RAM as well. Bob can steal the song and the key from
RAM, but it won’t do him any good as they’re encrypted,
the song with a symmetric key he doesn’t know and the
song key with Alice’s public key. Furthermore, he can’t
get at the “remaining-sales” counter, which is kept safely
in the cryptochip’s internal nonvolatile memory.

Next, in Step 11, Bob’s player sends Alice the AES-
encrypted song and encrypted AES key for this song. In
Step 12, upon receipt of the message, Alice’s cryptochip
decrypts it and saves the song key, AESnew, internal to
itself; in Step 13, it saves the encrypted song on the (inse-
cure) hard disk or flash memory.

Critical events
Steps 6-10 are performed as a single atomic transac-

tion, but if Bob’s player is switched off between steps
6 and 11, maliciously or otherwise, he loses one resale
right and must deal with an unhappy customer who
didn’t get the song she paid for. Other critical events
are an accidental communication breakdown between
the reseller and the consumer while the transaction is
in progress or when the reseller cheats the consumer by
delivering a bogus song. To resolve all these situations,
a “recovery subprotocol”3 lets the consumer contact the
content provider directly to resolve the issue.

It’s important to note that the resale is offline. Nei-
ther Bob nor Alice has to contact the content provider
since Bob has already paid for Alice’s copy of the music
(as well as the eight unsold copies) in advance. By using
teenagers as salespeople, the content provider saves on
computing power and bandwidth costs.

What happens if Bob can’t find eight more friends who
want the song? The publishers of books, magazines, and
newspapers have precisely the same problem, and they gen-
erally allow their sales outlets to return unsold stock for
credit to encourage them to have an ample supply on hand.
Of course, the publisher can rescind any quantity discount
granted initially when the vendor returns the unsold copies.
Following this tradition, music vendors are likely to follow
suit, but that’s their business decision to make.

When Alice wants to listen to her newly purchased
song, the cryptochip in her player extracts its symmetric
key, AESnew, stored in its internal memory and fetches,
decrypts, and plays the song one block at a time. In this
way, the bulk data—the songs—are stored in the large
cheap memory, with each song encrypted with a unique
symmetric (AES) key.

SECURITY CONSIDERATIONS
However secure and foolproof we assume a system

to be, experience has shown that all it takes is a sin-
gle weak link to compromise its security. Our scheme
assumes that certified players behave in the stipulated
manner and that they follow the protocols correctly.
However, it might be possible to crack a player using
out-of-band methods, such as using an electron micro-

scope to read the keys in the cryptochip’s internal non-
volatile memory.

Watermarking and traitor-tracing techniques4 can be
used to identify such compromised players. Once iden-
tified, the compromised player’s identity (public key) is
added into a player revocation list. The system can push
this list to each consumer’s player the next time it con-
nects to a content provider. Other researchers have pro-
posed various ways to minimize the size of such lists.5
As an enhancement, the players could also exchange
revocation lists when they exchange content. A compli-
ant player is designed to refuse communication with any
player listed in the revocation list.

Of course, our system also suffers from the “analog
hole” problem. An attacker can always record the content
with a microphone while it’s being played and redistrib-
ute it in an uncontrolled manner. There’s no definitive
solution for this problem; however, the degradation in
the quality of the copy obtained through analog record-
ing could be an attack deterrent.

It’s important to note that our system doesn’t intro-
duce any new vulnerability. These attacks also apply to
current players that don’t allow controlled peer-to-peer
distribution.

PROTOTYPE IMPLEMENTATION
We’ve implemented Paradiso (www.few.vu.nl/~srijith/

paradiso), a system prototype, using a $230 Neuros
development board (http://wiki.neurostechnology.com/
index.php/OSD_Beta), representative of what’s found in
mobile music players. Shown in Figure 4, this board has
a TI 200-MHz ARM926, 120-MHz C54x DSP proces-
sor specifically developed for multimedia applications,
64 Mbytes of SDRAM and 10/100 Mbps Ethernet port,
among others. The board runs a modified version of the
Linux 2.6 kernel. We used OpenSSL libraries for cryp-
tographic support and software techniques for atomic
actions.6

Figure 4. Prototype implementation using Neuros OSD boards.

62	 Computer

The developer boards acted as compliant players.
However, since we couldn’t obtain a developer board
with a suitable cryptochip and secure store, we used a
software layer to emulate the hardware security layer.
We believe that once the interface and protocols have
been defined, implementing them on another (secure)
processor wouldn’t be difficult.

Experiments performed with our prototype show that
it takes around 10 seconds to perform steps 6-13 for a
5-Mbyte file. Performance measurements also show that
the music file’s quality doesn’t suffer from the lag due to
the decryption steps. While the prototype implements
the cryptographic steps in the software, a production
unit will implement them in the hardware, thus we can
expect a speedup and better performance.

M icrosoft’s Zune took the first baby step toward
implementing our proposed system by letting
users forward songs to friends. However, the

similarity ends there. The recipient still must contact
the content provider to purchase the content and asso-
ciated license. Zune’s existence is an indication of the
digital medium’s potential, as well as content owners’
and player manufacturers’ receptiveness to explore new
avenues to widen their reach.

Although we designed our prototype to generate rev-
enue, DRM technology can easily be extended to serve
the needs of consumer-produced digital content. For
example, a band could produce and release a song under
one of the “noncommercial” Creative Commons licenses
and upload it to a content provider as a way to promote
its new album. The trusted player, on noticing the song’s
license, would let the song be exchanged for free.

Similarly, Bob could use the same technology to share
the latest video clip he’s shot. One of Zune’s perceived
shortcomings is that irrespective of the origin and license
of the content a user exchanges with another, the con-
tent is deleted after three plays or days. It’s evident that
designers incorporated such limitations to prevent using
Zune as a new illegal peer-to-peer medium. However, in
this age of consumer-generated content, a DRM scheme
shouldn’t deny copyright owners the right to give away
content for free if they so choose. Just imagine the fuss
if all computers automatically deleted all free software
after three days.

The goals of a Paradiso-like system, however, aren’t
realizable without some mind-set change. As of now,
every player manufacturer uses DRM technology that’s
not interoperable with other manufacturers. A Parad-
iso-like architecture would require major manufacturers
and content owners to use interoperable DRM technol-
ogy standards. The success of industry-wide specifica-
tions like the mobile industry’s Open Mobile Alliance
indicates that such an alliance is possible, given strong
enough incentives. ■

Acknowledgments
The work described in this article has been supported

by NWO project Account 612.060.319. We thank Bog-
dan C. Popsecu, Chandana Gamage, Mohammad T.
Dashti, and Hugo Jonker for their assistance.

References
	1.	 R. Mori and M. Kawahara, “Superdistribution: The Concept

and the Architecture,” IEICE Trans., E73, no. 7, 1990, pp.
1133-1146.

	2.	 S.K. Nair et al., “Enabling DRM-Preserving Digital Content
Redistribution,” Proc. 7th IEEE Int’l Conf. E-Commerce
Technology, IEEE Press, 2005, pp. 150-158.

	3.	 M.T. Dashti, S.K. Nair, and H.L. Jonker, “Nuovo DRM
Paradiso: Towards a Verified Fair DRM Scheme,” Proc. Int’l
Symp. Fundamentals of Software Eng. (FSE 07), Springer-
Verlag, 2007, pp. 33-48.

	4.	 B. Chor, A. Fiat, and M. Naor, “Tracing Traitors,” Proc.
Advances in Cryptology, (CRYPTO 94), LNCS 839, Springer-
Verlag, 1994, pp. 257-270.

	5.	 D.A. Cooper, “A More Efficient Use of Delta-CRLs,” Proc.
2000 IEEE Symp. Security and Privacy, IEEE Press, 2000,
pp. 190-202.

	6.	 R. Gerrits, “Implementing a DRM-Preserving Digital Con-
tent Redistribution System,” master’s thesis, Vrije Universit-
eit, 2006.

Srijith K. Nair is a PhD student in the Department of
Computer Science at Vrije Universiteit, Amsterdam. His
research interests are information flow control, policy
enforcement, system security, and privacy. He received
an MSc in computer science from the National University
of Singapore. Nair is a member of the IEEE and the ACM.
Contact him at srijith@few.vu.nl.

Ron Gerrits is the owner of the Web-development firm
Inovia. He obtained an MSc in Internet and Web technol-
ogy from Vrije Universiteit. Contact him at msc.r.gerrits@
inovia.nl.

Bruno Crispo is an associate professor in the Depart-
ment of Computer Science at Vrije Universiteit and at
the University of Trento, Italy. His research interests are
networks, distributed systems, cryptography, and secu-
rity protocols. Crispo received a PhD in computer science
from the University of Cambridge, United Kingdom. He is
a member of the IEEE. Contact him at crispo@cs.vu.nl.

Andrew S. Tanenbaum is a professor in the Department
of Computer Science at Vrije Universiteit. His research
interests are reliable operating systems and security. He
received a PhD from the University of California, Berke-
ley. Tanenbaum is a Fellow of the IEEE and the ACM and
a member of the Royal Netherlands Academy of Arts and
Sciences. Contact him at ast@cs.vu.nl.

