
A NEaT Design for Reliable and Scalable
Network Stacks

Tomas Hruby Cristiano Giuffrida Lionel Sambuc Herbert Bos Andrew S. Tanenbaum
Vrije Universiteit Amsterdam

thruby@few.vu.nl,{giuffrida,lionel.sambuc,herbertb,ast}@cs.vu.nl

ABSTRACT
Operating systems provide a wide range of services,
which are crucial for the increasingly high reliability and
scalability demands of modern applications. Providing
both reliability and scalability at the same time is hard.
Commodity OS architectures simply lack the design
abstractions to do so for demanding core OS services
such as the network stack. For reliability and scalability
guarantees, they rely almost exclusively on ensuring a
high-quality implementation, rather than a reliable and
scalable design. This results in complex error recovery
paths and hard-to-maintain synchronization code.

We demonstrate that a simple and structured design
that strictly adheres to two principles, isolation and par-
titioning, can yield reliable and scalable network stacks.
We present NEaT, a system which partitions the stack
across isolated process replicas handling independent
requests. Our design principles intelligently partition
the state to minimize the impact of failures (offering
strong recovery guarantees) and to scale comparably to
Linux without exposing the implementation to common
pitfalls such as synchronization errors, poor locality, and
false sharing.

1. INTRODUCTION
Building reliable and scalable OS services such as the

network stack is a daunting task. Even when opportu-
nities for reliability [43] and scalability [19] exist at the
interface level, producing a reliable and scalable imple-
mentation is notoriously challenging [11, 14, 29]. This
problem is exacerbated by the dominant “build-and-fix”
model adopted in commodity OSes, which generally at-
tempts to retrofit reliability and scalability in legacy
implementations. This strategy—reliability and scalabil-
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

CoNEXT ’16, December 12 - 15, 2016, Irvine, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to

ACM. ISBN 978-1-4503-4292-6/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2999572.2999579

ity of implementation—misses important opportunities
to address key problems at design time and has trouble
scaling with the fast-paced evolution of modern hardware
and software [11].

This paper presents a new coordinated approach to
the reliability and scalability of the network stack—one
of the most demanding and dependability-sensitive sub-
systems. Our approach relies on two well-known key
principles—isolation and partitioning. That means, we
break large entities into smaller ones and isolate them
from each other in such a way that they cannot unex-
pectedly interfere with execution of each other. What
is new is that we apply them to an extreme degree
in our design, demonstrating that such a strategy can
(i) allow reliability and scalability to coexist and sym-
biotically improve with the number of available cores
and (ii) greatly simplify and improve the longevity of
the final implementation. To substantiate our claims,
we present NEaT, a reliable and scalable componen-
tized network stack implemented using a “clean slate”
approach on top of the NewtOS microkernel-based ar-
chitecture [37]. NEaT embraces our principles to isolate
individual threads of execution in separate processes
and transparently partition the network state (and user
requests) across N independent network stack replicas,
while preserving application-level sharing and standard
BSD socket interfaces. Thanks to its replicated design,
NEaT: (i) survives run-time failures with minimal service
disruption, (ii) scales comparably to the Linux’ network
stack, and (iii) minimizes code explicitly dealing with
reliability and scalability concerns—making it easier to
maintain in the face of constant hardware and software
changes.

We do not claim that our design (and its imple-
mentation) is the only one possible for a reliable and
scalable network stack, let alone for generic operating
system services. Rather, our goal is to demonstrate
that reliability and scalability are not conflicting re-
quirements and can be both effectively addressed at
design time using well-defined principles. Experience
shows that the alternative—reliability and scalability of
implementation—is increasingly unsustainable, threat-
ening the growing reliability and scalability demands of
modern applications.

359

http://dx.doi.org/10.1145/2999572.2999579

The Linux kernel is a case in point. With its code base
growing from the original few thousand lines of code
(LoC) to the millions of LoC and dozens of architectures
today [42], maintaining high reliability and scalability
standards has become increasingly prohibitive despite
huge community efforts. For instance, replacing the big
kernel lock with fine-grained locking and lockless data
structures took more than 8 years [3]. In addition, the
new synchronization mechanisms have been updated
several times since then, after repeatedly exhausting
their scalability opportunities on contemporary hard-
ware [16]. Further, as the size and complexity of the
kernel dramatically increase, so does the rate of faults in
the code, with an average fault lifespan of around 1 year
even for high-impact faults that can bring the system
to a halt [51].

While NEaT is a research prototype and it may not
be fair to compare it to full-featured and highly op-
timized systems such as Linux, its replicated network
stack design based on isolation and partitioning does
structurally solve many of the recurring implementation
issues described above (§2). Similarly, while prior work
has considered principles such as isolation and partition-
ing before—in different forms—for either reliability [29,
23, 38, 63, 43, 37, 21] or scalability [11, 14, 66, 26, 10],
our design rigorously combines these principles together
to address both reliability and scalability to demonstrate
their effectiveness in a BSD-compliant network stack.

Contributions. To summarize, our contributions are:

• We present a new approach to design reliable and
scalable network stacks based on the rigorous ap-
plication of two principles— isolation and parti-
tioning—and analyze the opportunities to solve
challenging implementation problems in existing
systems.

• We present the principle-based design and imple-
mentation of NEaT, a BSD-compliant network
stack that rigorously isolates and partitions its indi-
vidual components across N independent network
stack replicas running on top of a microkernel-
based architecture. We show that NEaT only
marginally relies on the implementation to obtain
the desired reliability and scalability properties.
Furthermore, the full decoupling between replicas
allows NEaT to assign independent user requests to
a random replica, ensuring load balancing and, as a
by-product, location unpredictability, resulting in
improved security against emerging memory error
attacks [13, 57]. NEaT demonstrates that sup-
porting reliability and scalability (and enhanced
security) by design is possible and, to our knowl-
edge, is the first network stack of its kind.

• We evaluate NEaT using a representative web
server application (lighttpd). Our results show that
NEaT can handle up to 13-35% more requests than

Linux, despite the underlying microkernel design
being traditionally perceived as a major limiting
factor to compete with commodity OS architec-
tures.

Outline. The remainder of the paper is laid out as fol-
lows. §2 provides background information, highlighting
problems in existing OS and network stack designs and
comparing our approach to reliability and scalability
with prior work. §3 and §4 present the design and im-
plementation of the NEaT network stack. §5 compares
to other userspace network stacks and §6 presents exper-
imental results, assessing the reliability and scalability
properties of our NEaT prototype and §7 concludes the
paper.

2. BACKGROUND
Shaping the design of reliable and scalable systems

using isolation and partitioning makes intuitive sense:
(i) they enforce fault containment and conflict-free fail-
ure recovery for reliability purposes; (ii) they enforce
data locality and conflict-free parallelism for scalability
purposes. The vast majority of commodity operating
systems—whose original design dates back to the single
core computing era—however, opt for a monolithic ar-
chitecture, where multiple threads typically coexist in
a single address space. This design naturally induces
a “shared everything” model, with no implicit isolation
nor partitioning and, as a result, no reliability and scal-
ability of design. In the next subsections, we develop
this intuition further and highlight the fundamental lim-
itations of this model and reliability and scalability of
implementation in general.

2.1 Reliability

Reliability of Implementation. The lack of isolation
in monolithic architectures complicates the implementa-
tion of effective fault containment mechanisms: a single
fault can arbitrarily propagate throughout the kernel,
corrupt arbitrary data structures, and lead the entire
operating system to fail. To mitigate this problem,
commodity operating systems such as Linux adopt a
pragmatic approach to reliability, relying on dedicated
error-handling logic or killing the offending process when
a fault is detected (kernel oops [68]). Unfortunately, the
former approach may also result in the introduction of
a large amount of complex but trusted recovery code,
which is often untested [8]—thus creating a vicious cir-
cle [29]—while the latter approach provides weak relia-
bility with the inability to detect (or recover from) global
error propagation—recently estimated to occur in more
than 25% of the cases [68]. To improve fault contain-
ment, researchers have devised a number of techniques
to retrofit isolation guarantees in existing kernel exten-
sions and, in particular, device drivers. Some approaches
rely on hardware-based isolation [63, 27, 17], others on

360

language- [69] or compiler-based strategies [40, 18], yet
others on virtualization techniques [61]. While such
approaches are generally effective in containing faults
in untrusted components, they are typically limited to
relatively small OS subsystems—recovery techniques for
subsystems comparable to the network stack do exist,
but at the cost of more complex recovery code [62]—and
may fail to guarantee full isolation when the subsystem
interacts with the rest of the kernel using nonstandard
interfaces [40].

Furthermore, when a fault is detected, recovery ac-
tions are necessary to ensure that the system is in a
globally consistent state. The lack of explicit state
partitioning in monolithic architectures, however, in-
duces “hidden” cross-thread dependencies that signifi-
cantly complicate this process. For this reason, com-
modity operating systems generally have to resort to
a best-effort failure recovery model [68]. To mitigate
this problem, researchers have proposed manual state
reconstruction [23]—which, however, introduces perva-
sive and hard-to-maintain recovery code—or software
transactional memory-like schemes to selectively roll-
back all the threads that yield conflicting state changes
with the faulting thread [43]—which, however, greatly
limits the performance and scalability of the system [29].
Techniques that retrofit partitioning into monolithic
kernels using virtualized domains have also been re-
cently attempted [49], but at the cost of greatly limiting
application-level sharing and cooperation.

Reliability of Design. A vast body of research has
been devoted to principles supporting reliability of de-
sign. Isolation, in particular, is a well-established de-
sign principle in reliable OS architectures. Microkernel-
based operating systems such as QNX [34], MINIX 3 [4],
Sawmill [28], and Singularity [38], in particular, are struc-
tured around a number of hardware- or software-isolated
processes communicating via message passing to sup-
port fault containment by design. NEaT is based on the
partitioned network stack of NewtOS [37], a variant of
MINIX 3, and supports different configurations. Unlike
these systems, NEaT generally provides much stronger
isolation guarantees—no multithreading—and relies on
isolation to also support scalability by design, not only
reliability. In addition, unlike NEaT, these systems do
not generally partition or replicate state across com-
ponents, with important scalability but also reliability
drawbacks. For example, prior work demonstrated that
most of these systems fail to recover from any failure
in their stateful components [21]. Techniques devised
to address this problem rely on state replication [21]
or checkpointing [29]. Thanks to its state partitioning
strategy, in contrast, NEaT can gracefully recover from
failures by restarting the faulty replica, with no impact
on the other replicas and thus minimal network state loss.
Our recovery strategy is inspired by replication-based
fault tolerance, a common design pattern in reliable
distributed systems [30].

2.2 Scalability

Scalability of Implementation. To scale to the in-
creasing number of available cores, network stacks in
monolithic kernel architectures have grown to become
massively threaded in modern implementations [67]. Al-
though multithreading is a widely accepted strategy
to achieve parallelism—and potentially scalability—the
lack of isolation between threads comes at the cost of
subordinating scalability to the implementation of com-
plex synchronization mechanisms that grant safe access
to shared data structures. Implementing provably cor-
rect synchronization primitives is challenging due to the
complexity of modern hardware and compilers [24]. Im-
plementing such primitives in a scalable way is even more
challenging and also heavily dependent on the particular
hardware [22].

Even widely deployed fine-grained locking primitives
such as Linux’ ticket spinlocks have been recently found
plagued with scalability problems, with researchers show-
ing that more scalable implementations such as MCS
locks [46] are necessary to avoid dramatic performance
drops on many-core architectures [16]. More scalable
alternatives to locking include lockless data structures or
lightweight synchronization mechanisms such as RCU [45].
While increasingly popular in the Linux kernel and es-
pecially in its network stack, RCU indirectly exemplifies
the difficulties of implementing scalable and general-
purpose synchronization primitives: it can only satisfy
less than 8% of the entire kernel (9,000 uses) [6] and
only provide scalable read-side semantics.

Further, monolithic architectures structured around a
single address space allow all their threads to implicitly
share arbitrary data structures. While a common pro-
gramming abstraction, this approach enforces no explicit
state partitioning and comes at the cost of subordinat-
ing scalability to the implementation’s ability to limit
sharing and preserve optimal data locality. In modern
cache-coherent multicore architectures, this is crucial to
prevent shared data from frequently (and unnecessarily)
traveling between caches and hindering scalability. This
is, for example, a well-known scalability bottleneck in
many common synchronization primitive implementa-
tions [16].

To mitigate this problem, monolithic architectures
strive to maintain data structures local to the core where
they are most frequently used. Such implementation-
driven strategies are, however, insufficient, since data
structures still follow processes that migrate across cores—
due to load balancing—and threads still share common
data structures within the same process. A particularly
insidious threat is false sharing, where different data
structures that are not logically shared happen to reside
on the same cache line, unnecessarily causing frequent—
but silent—cache line bouncing [44]. gcc’s controversial
__read_mostly attribute exemplifies the difficulties of
addressing this scalability problem at the implementa-

361

tion level: its adoption in the Linux kernel required
1554 annotations to group all the “read-mostly” variables
together—preventing conflicts with frequently modified
cachelines—but only to raise concerns that many remain-
ing “write-often” variables may then increase cache line
sharing—ultimately degrading write-side scalability [7].

Scalability of Design. While scalability of implemen-
tation is still a realistic—but already cumbersome—
option today [15], many researchers have recognized
the need for principles supporting scalability of design
before, without, however, applying them in a radical
way or also addressing reliability concerns. Tornado [26]
and K42 [10] first argued for “partitioning, distributing,
and replicating” data across independent (but not iso-
lated) objects to improve locality on shared-memory
multiprocessors. In a similar direction, Corey [14] pro-
poses granting applications the ability to limit sharing
of OS data structures and improve scalability. In all
these systems, however, multithreading and sharing are
still the norm, greatly limiting the opportunities offered
by true isolation and partitioning. Corey [14] partitions
the network stack state across multiple per-core replicas.
Unlike NEaT, however, Corey’s library OS-based design
imposes strict partitioning at the application level as
well, greatly limiting application-level sharing. More re-
cent solutions such as IX [12] and Arrakis [53]— building
on top of Dune and Barrelfish [11] multikernel architec-
tures (respectively)—share similar issues imposed by the
underlying library OS model.

Unlike all these systems, we will demonstrate that, in
the context of a network stack in particular, a more radi-
cal design based on even stricter isolation and partitioning—
no implicit or explicit sharing—is realistic and effective,
with important scalability, but also reliability benefits.
More recently, fos [66] also assessed the potential utility
of replicating core OS services across cores, but without
considering its reliability benefits or evaluating scalabil-
ity at high bit and request rates. Finally, recent work
advocates reconsidering scalability as a property of the
interfaces rather than of the implementation, proposing
a commutativity rule to assess the scalability of high-
level operations [19]. Our work is similar in that we
advocate for reconsidering the drive for scalability of
implementation, but also complementary in that we in-
vestigate scalability at the design rather than at the
interface level.

Finally, scalable network stacks such as IsoStack [58],
MegaPipe [31], and mTCP [39] focus solely on scalabil-
ity with no emphasis on reliability. They also take a
less radical approach to scalability with limited isolation
and partitioning as their main goal is to circumvent the
performance limitations imposed by monolithic archi-
tectures. However, the userspace library stacks such as
mTCP can also run in a multiserver OS on top of a
microkernel with similar benefits and limitations as in a
monolithic system.

NEaT

NEaT

NEaT

NEaT

NIC DrvApp SYSCALL

Figure 1: NEaT: a 4-replica example.

3. A RELIABLE AND SCALABLE
NETWORK STACK

We present NEaT, the first network stack designed
from the ground up for reliability and scalability. To
enforce isolation of its components, NEaT relies on a
microkernel-based architecture with all the core OS com-
ponents running as event-driven and hardware-isolated
processes. Thanks to such isolation guarantees, each
component of the network stack can be provided with
fault containment capabilities and also assigned its own
core. While beneficial for reliability, this design is highly
unsatisfactory for scalability purposes.

The key scalability problem of a system executing as
a set of isolated processes is that any of its components
may easily get overloaded, even when assigned an entire
CPU core for itself. We rule out having multithreaded
components spanning multiple cores as this strategy
would impose the same scalability limitations evidenced
in monolithic architectures. For this reason, NEaT opts
for a radically different design, that is partitioning the
network state across a number of isolated processes
replicated from the original components of the network
stack (replicas).

NEaT’s design eliminates implicit synchronization and
sharing both within the individual processes (by disal-
lowing threading) and across generic OS processes (by
allowing communication only via message passing). The
latter guarantees that each process always modifies only
its own data structures—except the messaging queues.
At the same time, NEaT’s design also eliminates explicit
synchronization and sharing across stack replicas (by
disallowing communication) so that the network stack
can both scale and simplify failure recovery. A failing
replica does not prevent other replicas from continuing
running undisturbed, causing minimal service disruption
and state loss.

3.1 Overview
Figure 1 presents the high-level overview of NEaT,

which internally partitions the network state across sev-
eral replicas (4 in the example). Each replica communi-
cates with each NIC driver and, by default, applications
communicate with all the replicas of the network stack as
though only one logical instance were present—although
it is possible to configure NEaT differently. This is

362

NEaT 2

NEaT 1

NIC DrvApp SYSCALL

Figure 2: A dedicated path for packets of each connec-
tion.

transparent to the application programmer, since all the
blocking system calls are routed through a dedicated
system call server (SYSCALL). Our socket implemen-
tation (§3.2), however, allows applications to largely
bypass the SYSCALL server and communicate directly
with the assigned replica of the network stack (dashed
lines in Figure 1). This complexity is hidden by our
user-space POSIX library. The individual OS processes
are assigned dedicated cores, allowing fast communica-
tion between OS components without intervention of the
microkernel, an idea previously explored in the original
NewtOS’ network stack [37].

With no data sharing or synchronization across repli-
cas, NEaT allows each network socket to live only in a
single instance of the network stack. This is especially
important for TCP, as each TCP connection requires
the stack to maintain a large amount of state and NEaT
must ensure that every packet of each connection uses
the same path through the network stack (Figure 2).
The applications (libraries), the SYSCALL server, and
the network devices are responsible for selecting the net-
work stack replica to handle each socket. fos proposes
using a fleet coordinator for similar replica selection
problems [66]. NEaT, in contrast, allows no process
with a special role, since the intention is to avoid explicit
communication between the processes of the network
stack. Our solution is to delegate part of the data plane
functionality to the hardware, similar, in spirit, to Ar-
rakis [53] and IX [12]. In contrast to both projects,
NEaT does not aim at separating independent instances
of library systems or userspace stacks used by different
applications. NEaT aims at separating collections of
replicas that form a single network stack accessed by
multiple applications.

Contemporary network devices already have the abil-
ity to match incoming packets by a set of rules, split
the traffic, and steer packets to the intended network
stack replica using multiple internal NIC queues. The
NIC driver can thus dispatch the packets to the right
replica based on the receive queue of the NIC. Although
these modern features were originally motivated by the
design of monolithic systems and virtualization, NEaT
successfully exploits them to implement replica-aware
connection management.

3.2 Sockets
While adhering to the POSIX API, NewtOS refrains

from using a traditional implementation of network sock-
ets for scalability reasons. Our socket implementation,

which we described in detail in [35], requires the network
stack and the applications to run on different hardware
threads. While applications occasionally communicate
with the SYSCALL server, NEaT resolves the vast ma-
jority of the system calls within the application itself,
exposing socket buffers to the application level similar
to user-space message queues.

The socket design makes the replication transparent to
the applications as once a socket is open and the system
establishes the corresponding shared-memory channel,
an application can automatically communicate with the
right network stack replica without exact knowledge of
the particular replica on the other end. This makes the
fast path completely agnostic to the number of network
stack replicas, ensuring scalability to a large number of
network stacks (and cores).

In contrast to monolithic systems, multiserver sys-
tems have a key and a little counterintuitive CPU load
distribution difference. Our experience when running a
loaded server on Linux—also confirmed by others [39]—
indicates that it is realistic to expect approximately
70-80% of the execution to happen within the operating
system (the kernel). If an application in Linux uses
30% of overall cycles, this is exactly equivalent to the
same application using all cycles of 30% of all cores in
NewtOS. The conclusion is that while NEaT reduces the
number of cores normally available to the applications,
the load distribution has generally no negative impact
on the end-to-end networked application performance.

3.3 TCP Connections
We focus our analysis on TCP as UDP and other

protocols build on top of it are fairly simple to handle
as they are stateless, however, most Internet traffic uses
the more challenging stateful TCP protocol. TCP raises
interesting challenges by maintaining per-connection
state. When initiating a client connection, the socket
library selects the network stack replica to handle the
connection, while, when accepting a TCP connection
from a remote client, the NIC decides based on hashes
or filtering rules, as it is the first component to process
each packet. Once the decision on the replica responsible
to handle the connection is made, both the NIC and
the libraries must honor the choice. This process is
transparent to the application programmer and hidden
by the provided libraries (§4).

To be able to accept a connection through different
network stack replicas, the listening TCP sockets are
the only types of sockets that are replicated across all
the possible stacks. Binding listening sockets to a single
replica would otherwise force NEaT to assign all the
incoming connections to the same replica, resulting in
load imbalance (and less unpredictability, i.e., security).
Note that listening sockets are replicated across all the
network stacks only at listen()-time, given that there
is no general way of knowing whether a socket will be a
listening socket at creation time. listen() call tells the

363

library to create a socket per each replica of the stack,
they all listen at the same address and are not visible
to the application. Each “subsocket” remains then fully
isolated in a single replica, with the user library hiding
the underlying replication from the application itself.
Applications can simply use the original file descriptor
obtained at socket creation time, allowing the library to
perform the necessary socket-subsocket mapping oper-
ations behind the scenes if needed. The accept imple-
mentation, for instance, checks for any subsocket with
an available incoming connection and simply “accepts”
the connection from it. This also allows the loopback
devices to be implemented by each of the replicas. After
a connection is accepted with a new socket number, the
new socket is independent of all other sockets with its
own communication set up. This is fully transparent
to the application and the library. Neither needs to be
aware of which replica owns a particular socket. The
library only translates between socket numbers and the
internal communication channels. Therefore, there is no
need for synchronization. Details of the communication,
notifications and buffer mappings are described in [35].

Since connections are naturally spread across several
different isolated replicas, NEaT can easily allow for ac-
cepting connections in parallel and in a conflict-free way.
In a system with a single instance of the listening socket,
in contrast, there is contention when multiple threads at-
tempt to access the socket simultaneously. Recent work
has sought to directly address this particular problem
on Linux [31, 52]. Unlike these systems, NEaT elimi-
nates the need for synchronizing access to the subsockets
residing in different network stack replicas altogether,
allowing different application threads to accept from a
single subsocket while “stealing” connections from others
for load balancing purposes with synchronization limited
to the application.

3.4 Scaling Up and Down
By default, NEaT runs with a static number of repli-

cas to enforce stable and predetermined reliability guar-
antees. In settings where a limited number of cores is
available and reducing reliability guarantees is an option,
we describe how NEaT can fulfill more dynamic scala-
bility requirements by scaling the number of replicas in
use up and down depending on the current load and the
performance required by the applications. For example,
when certain parts of the system are not needed, it is
possible to place multiple components on a single core,
for example idle NIC drivers.

The system boots with at least one replica, depending
on the redundancy requirements. When NEaT becomes
overloaded, it automatically spawns a new network stack
replica. Since the NIC has rules for the existing connec-
tions, their distribution remains intact as long as each
connection exists. The new connections are assigned
across all the replicas. This may lead to initial imbalance
in load distribution after reconfiguration. We expect the

system to rebalance itself as soon as existing connections
terminate and new connections appear.

When the load drops again, NEaT can also scale down
and terminate some network stack replicas. Since the
connections are in a general case likely distributed across
all the replicas, simply shutting down a single replica
would result in abruptly terminating all the TCP connec-
tions handled by it—similar to the effect caused by an
unexpected failure. Migrating connections from a replica
in termination state to another replica in nontermination
state, however, would require handing off TCP-related
state and in-flight data of currently non-idle connections.
NEaT would also need to change the filtering rules in the
NIC. This strategy is overly complicated and also vio-
lates NEaT’s isolation principles, potentially introducing
subtle reliability and scalability issues. For these reasons,
NEaT adopts a different strategy, which (i) marks the
necessary replicas as in termination state and makes the
corresponding cores available to the applications; (ii)
instructs the NIC to distribute new connections only to
replicas in nontermination state but continue to serve
packets on existing connections across all the replicas;
(iii) garbage collects replicas in termination state as soon
as their connection count drops to zero. This approach
implements an effective lazy termination strategy with-
out breaking any of the existing connections. The trade
off is a slower scaling down phase, which, however, only
results in short-lived resource overcommitment periods
and can actually better handle load fluctuations—that
is quickly scaling up again whenever necessary.

In general, creating and terminating network stack
replicas incurs latency and management overhead. In
addition, the number of replicas the applications can
indirectly use is limited by the ratio of cores dedicated
to the system compared to those dedicated to the appli-
cations. Many modern CPUs, however, support several
hardware threads on each core, for example the SPARC
T7 processor features 8 threads per core. This allows
NEaT to use significantly more replicas than cores while
preserving fast user-space communication, given that
each replica maintains its own hardware context. Inter-
estingly, as shown in §6, this strategy allows NEaT to
use available cores more efficiently, given that a single
process can hardly use up all the core’s cycles due to the
latency of main memory [50]. We conclude that scaling
down the number of replicas is not always necessary and,
when hyper-threading is available, a better scale-down
strategy is to relocate the replicas.

3.5 Scaling NIC Drivers
The only performance-sensitive component that NEaT

does not actively scale up is the NIC driver, since none of
our tests demonstrated the driver to be a potential per-
formance bottleneck and also other researchers [54] have
reported 10G line rate processing on a single core. From
a reliability point of view, previous research has demon-
strated the ability to seamlessly recover NIC drivers
without replication [33].

364

microkernel

NIC DrvTCP SYSCALL IPApp

Figure 3: A replica of the multi-component network
stack

3.6 Reliability
Isolation and partitioning of the network stack are key

to the reliability of NEaT. The individual replicas are
isolated and do not interact with each other, preventing
a failure in one of the replicas from having any direct
or indirect reliability impact on all the other replicas.
Currently, NEaT opts for a completely stateless failure
recovery strategy: when a replica crashes, a new replica
is created and all the TCP-related state associated to
the failed replica is lost. While supporting more com-
plex stateful recovery policies is possible, this simple
approach fully embraces our state partitioning strategy
and ensures minimal state loss with all the other repli-
cas continuing to serve existing and new connections
with no interference or global service disruption. During
the (short) recovery phase, the driver does not pass any
packets to the recovering replica until it announces itself
again. This strategy eliminates the need to reconfigure
the device.

3.7 Multi-component Network Stack
Although each network stack replica can run as a

single process, NEaT can also be configured (at compile
time) to vertically split each replica into multiple iso-
lated processes for increased reliability. Although this
strategy requires more cores and internal communica-
tion, it also yields improved reliability since it can fully
isolate faults in smaller network components. Exclud-
ing TCP, the other components are essentially stateless
(or pseudostateless) and thus more easily amenable to
application-transparent recovery even with a stateless re-
covery strategy. When adopting more heavyweight state-
ful recovery strategies such as the one described in [29],
our state partitioning strategy effectively decreases the
state surface to recover and reduces the likelihood of
state corruption. Figure 3 presents a simplified version
of a multi-component network stack replica, showing
only the IP and TCP components used for TCP process-
ing, but additional UDP and packet filter components
are also present and isolated from the rest of the stack.

3.8 Security
Replication has been previously proposed for secu-

rity purposes, using synchronized multivariant execution
to detect arbitrary memory error attacks [20, 55, 56].
Unlike these approaches—which incur high run-time
overhead—NEaT pursues the less ambitious goal of en-
forcing address space re-randomization [59] across user

connections. NEaT naturally enforces this security de-
fensive mechanism as part of its design at no extra cost.
This is simply done by binding each connection to a
random replica, while creating each replica indepen-
dently and with ASLR [1] enabled. The latter strategy
yields completely different memory layouts across (se-
mantically equivalent) replicas, resulting in consecutive
user connections being handled by processes with un-
predictably different memory layouts. Albeit not our
primary focus here, our design can support such address
space re-randomization strategy in a natural and inex-
pensive way, effectively countering recent memory error
attacks that rely on a stable memory layout across user
connections [13, 57].

4. HARDWARE SUPPORT
NEaT requires certain hardware features for an effi-

cient implementation. For example, the current imple-
mentation of our fast user-space communication channels
relies on the MWAIT x86 instruction that allows NEaT to
halt a core and enables a process running on another core
to wake up the first core using a simple memory write.
This eliminates kernel assistance for expensive interpro-
cessor interrupts and process halting. Note that NEaT
actually switches to such slower communication channels
as needed automatically, in particular when the load
is low and allowing the scheduler to colocate processes
on shared cores—thus freeing up the dedicated ones—
becomes an appealing option. To share the cores more
efficiently, NEaT also exploits hardware multithreading,
which results in increased parallelism, coalescing replicas
on fewer cores, and the ability to leverage MWAIT-based
communication channels. We evaluate the benefits of
hardware multithreading in §6.

Efficiently scaling the network stack replicas requires
dedicated NIC support to split the packet flow. Com-
monly available NICs feature many pairs of transmit
and receive queues. NEaT uses one pair of queues to
direct packets to each network stack replica. The con-
troller can place the packets on different queues based
on different criteria, using protocol fields to uniquely
identify each flow. In contrast to the number of cores,
the number of queues is not a limiting factor. In particu-
lar, modern network cards can already classify and steer
packets to different endpoints (i.e., different processes
and/or virtual machines) based on a hash of a 5-element
tuple including destination, source addresses, ports, and
protocol number, or also use precise filters over the same
fields. For example, Intel 10G cards can hold up to
8 thousand filters. Software is, however, responsible
for configuring the filters, which makes issuing frequent
updates impractical with hundreds of thousands of con-
nections per second. The NIC programming interface, in
particular, requires many read-write transactions across
the PCI bus to configure the filters, which can negatively
impact network processing [25]. For instance, the Intel
ixgbe driver on Linux can optionally use TCP packet

365

sampling, which sets up the NIC’s filters to track locality
of connections [15]—hence offloading the work done by
receive flow steering (RFS [32]). Due to performance
concerns, the driver only samples every 20th packet.

Since the NIC already inspects packets in its local
memory, we believe a much more practical solution—
which, however, requires extensions not yet available
in contemporary commodity hardware—is adding extra
logic into the NIC and creating “tracking” filters based
on the packets the NIC handles. Such filters would
simply instruct the NIC to ensure all the corresponding
packets of each flow follow the same route.

On contemporary hardware, it is theoretically possible
to implement the missing connection tracking features
in the NIC driver itself (mimicking a smart NIC). We,
however, felt this was a step in the wrong direction,
when compared to the much more realistic option of
offloading such support to the hardware, similar to TCP
segmentation (TSO), large receive (LRO), and other
similar features which eventually made their way into
modern hardware. For this reason—but also not to intro-
duce artificial overhead moving forward—we opted for a
different solution in our experiments, compensating for
the missing hardware features by limiting our evaluation
to server applications, while still relying on contempo-
rary NIC’s hash functions to randomly distribute the
inbound connections.

Summarizing, similar to Arrakis [53] and IX [12], our
scalability design strongly advocates for the devices tak-
ing over part of the system data plane while the oper-
ating system acts only as a control plane managing its
settings, for instance the TCP TIME_WAIT timeout. We
can also look at the NIC as an additional processing core
that runs certain parts of the stack very efficiently, while
lacking the huge flexibility of a generic core. Therefore,
dedicating a core of a truly many-core system might
be an option. We believe that, as modern NICs have
already evolved to match the requirements of monolithic
systems, reliability and scalability of design can effec-
tively initiate similar developments or may lead to a
renaissance of programmable network cards. If the pro-
grammable NIC were to offer the same interface as the
network driver (as we have done previously [36]), there
would be no need for the drivers and we could free their
cores.

5. COMPARISON WITH OTHER
USERSPACE NETWORK STACKS

As discussed in §2, the literature documents many
existing efforts to build user-mode network stacks. The
primary motivation to implement a network stack in user
space is to bypass and eliminate the overhead imposed
by the operating system, typically implemented as a
monolithic kernel that runs its own network stack in
privileged mode and exposes it to user applications. The
most common examples of such an operating system
architecture are Linux, BSD, and Windows.

Unlike traditional user-mode network stacks, NEaT’s
goal is not to bypass the operating system itself, but
to implement a generic network stack that is presented
by the operating system to the applications through
a standard and widely used POSIX interface. NEaT
is a user-mode stack by definition, as all parts of the
NewtOS operating system itself are implemented as
unprivileged code running on top of a microkernel. We
believe that any microkernel such as L4 or a multikernel
such as Barrelfish could offer similar IPC mechanisms
the NewtOS kernel provides. We also believe that even
a monolithic kernel such as Linux could provide such
mechanisms, and even though the NEaT design does
not naturally map to a monolithic system design, it can
represent a scalable and reliable alternative to the native
network stack of monolithic operating systems.

Userspace stacks such as mTCP [39], MegaPipe [31],
and OpenOnload [5] target low latencies by avoiding
system calls and interacting directly with the devices.
These stacks are linked directly against a given applica-
tion to bypass the operating system. Thereby, they are
not generally available to other applications on the sys-
tem to facilitate sharing and cooperation. This strategy
minimizes various overheads that a generic network stack
cannot afford ignoring and hence applications that use
such a network stack outperform applications that use
the good-for-all stack provided by the operating system.
NEaT and NewtOS draw inspiration from these projects
and their sockets (§3.2 and [35]) are implemented in a
nearly system-call-less fashion. Similarly, the networks
stacks of Arrakis [53] and IX [12] are tuned for low la-
tency and low overhead, closer to a library OS design
rather than a general-purpose stack like NEaT.

On the reliability side, userspace network stacks in-
crease the overall reliability of the system, as a fault in
the network stack does not affect applications that do
not use it. However, there is no isolation between the
stack and its application. Nevertheless, such network
stacks are useful in certain domains and it is, in fact,
plausible to allow particular applications in NewtOS to
use such a design next to other applications that use
NEaT within the same system.

6. EVALUATION
We evaluated NEaT using two different multicore ma-

chines: (i) a 12-core AMD Opteron 6168 (1.9 GHz) and
(ii) a dual-socket quad-core Intel Xeon E5520 (2.26 GHz).
The AMD machine has more physical cores, but the Xeon
machine features 2 hardware threads per core (hyper-
threading). For our experiments, we used a 10G Intel
i82599 network card in each machine. This network
card implements some features required in order to steer
incoming network traffic to different replicas, as well as
TSO (TCP Segment Offloading) which greatly improves
performance and allows smaller configurations to reach
a full 10Gb/s throughput utilization. The two machines
are connected through a 10GbE DAC—Direct Attach

366

Option Tuned kreq/s

defaults 184.118
sched+eth+irqAff+rxAff 186.667
sched+eth+irqAff+rxAff+serv 223.987

Table 1: Request rate breakdown per option tuned,
with 12 concurrent httperf instances, each opening 1000
connections, with 1000 requests for a 20 byte file per
connection. sched refers to the scheduler policy set
to deadline, eth turns off auto-negotiation and uses
TSO, irqAff sets IRQ affinities, rxAff sets receive queues
affinity, serv denotes lighttpd being pinned to cores.

Copper—SFP+ cable. Depending on the experiment
they alternate roles between system under test and load
generator.

6.1 Linux
For comparison purposes, we selected Ubuntu Server

14.04 LTS as our Linux reference system. We configured
our installation with default settings except for the fine
tuning presented in Table 1 to yield the highest possi-
ble performance. Likewise, we used a default lighttpd
configuration, except for the two following changes: (i)
we allowed up to a thousand (1000) requests per TCP
connection, and (ii) we ran each lighttpd server on a
different TCP port. This section provides details on
tuning Linux on the AMD machine.

Table 1 presents a breakdown of options we tuned in
order to improve as much as possible the performance
of our Linux baseline to ensure a fair comparison. We
first evaluated the out-of-the-box performance (defaults)
on our testbed, then we changed the scheduler policy
to earliest deadline. Next, we used ethtool to turn
auto-negotiation off and TSO on. As shown in the table,
we obtained the first substantial gains when setting the
IRQs affinities (irqAff). We observed, in turn, that the
request rate drops when we manually set the receive
queues affinity (reqAff), most likely explained by the
lighttpd processes being scheduled on different cores
than where the related receive queues are pinned. The
best performing configuration is when we also pin the
lighttpd processes to a specific core (serv). Using RFS
did not result in observable benefits and as such was not
considered in the final configuration.

In each case, we used 12 httperf processes —one per
client machine’s core— each targeted at one specific,
different port. For each port we started a different
lighttpd server.

Httperf dismisses from the request rate and through-
put any connection which has an error. Given that errors
might happen at any time during the connection, the
actual bandwidth is higher than reported when connec-
tion errors occur. Figure 4 shows a clear correlation
between the number of requests issued and the evolution
of latency. As soon as we switch to moderately large files
(between 100K - 1M), the latency dramatically increases,

 40

 50

 60

 70

 80

 90

 100

1B 10B 100B 1K 10K 100K 1M 10M
 10

 100

 1000

 10000

R
e
q
u
e
s
ts

 [
k
re

q
]

L
a
te

n
c
y
 [
m

s
]

Requested File size

Linux, Optimal Configuration

Requests
Latency

Figure 4: Latency and total number of requests vs. file
size

 0

 50

 100

 150

 200

 250

1B 10B 100B 1K 10K 100K 1M 10M
 0

 200

 400

 600

 800

 1000

 1200

R
e
q
u
e
s
t
ra

te
 [
k
re

q
/s

]

T
h
ro

u
g
h
p
u
t
[M

B
/s

]

Requested File size

Linux, Optimal Configuration

Request rate
Throughput

Figure 5: Throughput and request rate vs. file size

the number of requests drops, as the link bandwidth
becomes the limiting factor. Figure 5 shows the relation-
ship between the successful request rate and bandwidth.
As soon as the link bandwidth reaches saturation, we
see a high variance in the number of successful trans-
fers. For file sizes between 100KB, 1MB and 10MB, the
bandwidth fluctuates heavily as connection errors start
appearing —timeouts and connection resets mainly—
forcing httperf to discard results in its reports, lowering
the scores. As figure 5 shows, as soon as the file size
exceeds 7KB, the 10Gb/s bandwidth becomes the bot-
tleneck. This is why, in all the following experiments, we
used a very small size of 20 bytes for the requests as this
is what stresses the most the network stack, the least
the web server and other components of the OS, and
also guarantees that the hardware doesn’t introduces
limitation other than CPU-bound issues.

6.2 Scalability
Evaluating the scalability of NEaT required us to

select a representative server application, known to effi-
ciently scale to a large number of CPUs and thus able to
expose scalability deficiencies in the underlying network
stack. As we wanted to evaluate the stack by itself, the
actual application is not really important, as long as it
“does as little as possible”, lest we (partially) measure
the application or other subsystems rather than the net-

367

Web 1 Web 2 Web 3 Web 4TCP 2 IP 2

OS TCP 1NIC Drv IP 1 Web 5SYSCALL

(a) Multi-component stacks

Web 1 Web 2 Web 3 Web 5NEaT 3

OS NEaT 1NIC Drv NEaT 2 Web 6SYSCALL

Web 4

(b) Single-component stacks

Figure 6: AMD - The best configurations - all 12 cores

work stack. For our purposes, we selected lighttpd, an
efficient web server application, and made it serve only
static files cached in memory to minimize interference
with other operating system subsystems.

We evaluated NEaT both in single- and multi-component
configurations. In the figures, we denote such configura-
tions as NEaT Nx and Multi Nx respectively, where N
refers to the number of replicas used. We also refer to a
particular replica R as NEaT R and TCP R (or IP R).

To evaluate the scalability, we used the httperf bench-
marking utility to repeatedly open persistent connections
and request a small 20-byte file 100× per connection.
This workload stresses the network stack without taking
advantage of NIC offloading features, while allowing us
to scale up the number of servers freely. A lighttpd in-
stance serving just 8 or more simultaneous connections
can drive the application cores close to 100% utiliza-
tion. At the same time, repeatedly requesting small
files stresses the network stack as it must handle many
requests from the network as well as the applications.

6.3 Scalability on a 12-core AMD
We first present results on the 12-core AMD. The

number of available cores allows us to compare both
single- and multi-component configurations. Figure 6
illustrates both configurations in their best-performing
setups and Figure 7 presents scalability results for the
different configurations of NEaT. In our experiments,
we dedicated one of the cores to all the remaining oper-
ating system processes (OS) and one of the cores to the
SYSCALL server, which generally needs its own core for
low-latency messaging when the load is relatively low,
but its role is crucial to ramp up the load for testing
purposes. As the load grows, the core becomes increas-
ingly idle, since the applications can bypass it with our
mostly system-call-less socket design.This leaves our test
machine with 10 cores available for the network stack
and lighttpd. As Figure 7 shows, a configuration consist-
ing of a single replica of the multi-component stack can
scale fairly linearly up to 4 lighttpd instances. At that
point, the stack becomes overloaded, but 3 cores remain
completely unused. Adding one more replica can use
up 2 (TCP, IP) of the 3 remaining cores, allowing the

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5 6

R
e
q
u
e
s
t
ra

te
 [
k
re

q
/s

]

of lighttpd instances

NEaT 2x
NEaT 3x

Multi 1x
Multi 2x

Figure 7: AMD - Scaling lighttpd and the network stack

throughput to scale further, up to 5 lighttpd instances.
Although the CPU usage suggests that NEaT could ef-
fectively scale further, no more cores are available to
scale up our multi-component stack with more replicas
or applications. While we do not have more cores at our
disposal, we believe NEaT would in fact scale to larger
numbers with no restrictions. The single-component
version of NEaT, on the other hand, scales further. In
particular, NEaT 2x performs comparably to its multi-
component counterpart when serving up to 5 lighttpd
instances. With an additional replica (NEaT 3x), NEaT
perfectly scales up to 6 lighttpd instances. Similar to
Multi 2x, NEaT is not overloaded yet.

We have conducted similar experiments for lighttpd
running on Linux on the same hardware. When using all
12 cores, in the best performing configuration, lighttpd
handled 224 kilo-requests per second (krps). With 3
single-component replicas, NEaT reached 302 krps (i.e.,
34.8% more requests per second).

6.4 Scalability on a 8-core Xeon
Current trends suggest that the number of cores will

keep growing (for example, Intel announced a new 72-
core version of Knight’s Landing [2] and SPARC T7
has 256 threads on a die) and, above all, as other re-
searchers have suggested [41, 48, 60, 65], cores will
become more heterogeneous and specialized. Neverthe-
less, our experience demonstrates that NEaT can replace
cores by hardware threads—which are much cheaper—
allowing NEaT’s processes to use the available cores
more efficiently. The general intuition is that hyper-
threading allows NEaT to efficiently colocate relatively
idle processes—which need their own context—like the
SYSCALL server. Although a hardware thread is not
the same as a fully-fledged core, the threaded setup can
handle more load and provide redundancy. To confirm
this intuition, we present our scalability results on a
Xeon with hyper-threading.

Figure 8 depicts an example of using hyper-threading
to reduce the number of cores that 2 NEaT replicas
normally require in core-only configurations (a). For
example, NEaT can colocate the NIC driver with the
SYSCALL server, since as the driver’s thread becomes

368

NEaT 2

NEaT 1

NIC DrvApp SYSCALL

(a) All components on dedicated cores

App
SYSCALL

NIC Drv

NEaT 2

NEaT 1

(b) Colocated components using hyper-threading

App
SYSCALL

NIC Drv

TCP IP

IP 2TCP 2

(c) Colocated multi-component configuration of NEaT

Figure 8: Reducing the used number of cores with
threads

 0

 50

 100

 150

 200

 250

 300

 350

1 2 3 4 6 8

R
e
q
u
e
s
t
ra

te
 [
k
re

q
/s

]

of lighttpd instances

Multi 1x
Multi 2x

Multi 2x HT

Figure 9: Xeon - Scaling the multi-component stack

more loaded, the SYSCALL’s thread gets less loaded,
ensuring little interference between the two processes.
NEaT can also successfully place multiple NIC drivers
on the same core. Similarly, the multi-component con-
figuration of NEaT can use only 3 cores instead of the
6 cores used in the original configuration (Figure 8c).
We use HT to denote the NEaT configurations that use
hyper-threading.

In contrast to the AMD, deploying the TCP and IP
processes leaves only 4 cores available for lighttpd. NEaT
can now, however, take advantage of hyper-threads to
run 8 instances. Figure 9 shows that similar to the AMD
case, the throughput of the network stack peaks when
using 4 lighttpd instances.

To scale further, we ran a second replica (Multi 2x),
which leaves only 2 cores for lighttpd. Using all 4 threads
of those cores reported similar performance to the 3-
application-instance scenario in the previous test. This
is expected, since the network stack is not the bottle-
neck and the 33% speedup (2 cores instead of 3) of
the application is within the bounds of the benefits of
hyper-threading. Further scaling up—denoted by points
6 and 8 in Figure 9—uses threads on the cores occupied
by the network stack itself, first using both TCP (6
lighttpd instances) and then both IP cores (8 lighttpd

NEaT 3 NEaT 4SYSCALL

NIC Drv NEaT 1

Web 9
OS NEaT 2

Web 5

Web 1

Web 8

Web 4

Web 7

Web 3

Web 6

Web 2

Figure 10: Xeon - The best-performing configuration of
the NEaT, fully exploiting hyper-threading.

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3 4 5 8 9

R
e
q
u
e
s
t
ra

te
 [
k
re

q
/s

]

of lighttpd instances

NEaT 1x HT
NEaT 1x
NEaT 2x HT
NEaT 2x
NEaT 4x HT

Figure 11: Xeon - Scaling the single-component stack

instances). In the latter configuration, Figure 9 shows
the throughput peaking at 322 krps.

Finally, we colocated two replicas on different threads
from the same cores (Multi 2x HT, Figure 8c)—enforcing
this policy for both TCP and IP replicas. As expected, 4
lighttpd instances yielded similar performance to the 1-
replica configuration, since the stack is not the bottleneck
and—while using the same number of cores as in the
1-replica configuration—can handle 8 lighttpd instances
(4 cores, both threads).

When evaluating single-component configurations, we
used up to 4 replicas, as shown in Figure 10. The labels
(NEaTx and WebX) illustrate the order in which we
scaled up NEaT and lighttpd. We present the results in
Figure 11. Note that once NEaT becomes overloaded,
it can spawn another replica and keep processing the
growing load. As the figure shows, NEaT 4x can sustain
the load of 372 krps, using all cores up to 100%. This
is a 13.4% improvement over 328 krps maximum we
measured for the best Linux configuration on the Xeon,
running 16 lighttpd instances on each of the 8 cores /
16 threads.

6.5 Impact of Different Configurations
Finally, we evaluated the impact of the different config-

urations of NEaT and compared their overhead in detail.
We used a modified test issuing only a single request
per connection, which significantly increases the load on
the network stack itself. We evaluated 5 different con-
figurations of the network stack using the 12-core AMD
and different workloads. We deployed (i) 1 lighttpd in-
stance processing 8 to 64 simultaneous connections, (ii)
2 instances processing 32 simultaneous connections, and
(iii) 4 instances processing 64 simultaneous connections.
Figure 12 reports our results, demonstrating that when
the load is relatively low, using only a single replica
of the multi-component stack to handle 8 connections
is better than using 2 such replicas. This is primarily

369

 10

 15

 20

 25

 30

 35

 40

 45

8 16 32 64 2srv,32 4srv,64

R
e
q
u
e
s
t
ra

te
 [
k
re

q
/s

]

test configuration

 NEaT 1x
 NEaT 2x
NEaT 3x
Multi 2x
Multi 1x

Figure 12: 12-core AMD - Comparing performance of
different configurations stressed by the same workload.

CPU load
Active

in kernel Polling Web krps

6% 33.3% 51.8% 3

60% 14.2% 27.9% 45

88% 5.4% 19.7% 90

97% 0.1% 7.4% 242

Table 2: 10G driver CPU usage breakdown on Xeon.

due to the fact that lightly loaded components often
sleep, which introduces latency that is more evident in
the multi-component stack. At higher loads, having
multiple network stack replicas becomes more obviously
beneficial.

Table 2 presents samples collected using statistical
profiling of the NIC driver under a range of loads serving
3 replicas. A mostly idle driver spends a significant por-
tion of the active time suspending/resuming in the kernel
(as Intel’s MWAIT is a privileged instruction), polling the
3 stacks and the NIC queues. The “wasted” time shrinks
with increasing load. When the core’s usage is close to
100%, the driver almost never enters the kernel and uses
more than 90% of its time processing. Other components
show similar behavior. Note that the CPU usage grows
sharply, but levels off as the driver trades more of the
“wasted” time for useful processing. While the CPU load
is 60% when the lighttpd handles 45 krps, the load is
only 88% when the number of requests doubles and still
lower than 100% when the number of requests increases
almost 5-fold.

6.6 Reliability
To thoroughly assess the reliability properties of our

design, we first performed fault injection experiments
on the different components of a NEaT replica. For our
purposes, we developed a fault injection tool inspired
by similar tools adopted in prior work to evaluate fault-
tolerant designs [64, 47]. In our experiments, we injected
faults into various (randomly selected) parts of the code
in the network stack and monitored their impact on the
execution. We ignored runs without any visible crash

Fully transparent recovery 53.8%

TCP connections lost 46.2%

Table 3: Fault injection experiment results.

within a minute from the injection (e.g., runs with no
fault activation) and collected results from 100 failing
runs. We restarted the system after every run to clean
up. For our experiments, we used the same test workload
as the one used for our scalability evaluation.

Table 3 shows the recovery success rate in our fault
injection experiments. In more than 50% cases, we ob-
served fully transparent failure recovery—applications
nor the users notice—with no manual intervention needed
and the effect on network traffic being no worse than a
packet delay or loss. Since packet losses happen regularly
on the Internet, we expect the impact of (infrequent)
failure recovery to be negligible in practice—even under
heavy load conditions. In all the other cases, the faults
caused a crash in the TCP component, which resulted
in the abrupt termination of all the open TCP connec-
tions (and loss of TCP state in general). After recovery,
however, the TCP server was always reachable and, as
expected, ready to establish new client connections.

Our fault injection results directly derive from the
properties of our stack implementation, which, for drivers,
IP, UDP, and packet filter component, maintain no or
little read-mostly state which can thus be preserved in
an independent data store, configuration file, or just
recreated at restart time. In contrast, our TCP com-
ponent maintains significant per-connection read/write
state, read/write control state, and in-flight data. As a
result, only TCP faults can cause visible state loss (and
failures) in a single replica of our stack. In addition,
thanks to the state partitioning and isolation strategy
used by NEaT, only the TCP connections (and state) of
the failing replica are lost while the connections managed
by other replicas are completely unaffected. In other
words, the larger the number of replicas, the lower the
fraction of state lost after failures and thus the higher
the reliability guarantees.

We discuss the reliability of a single replica experiment
in more detail in our previous work [37]. Due to the
complete isolation of the replicas, the fact that we run
multiple replicas of the same multi-component network
stack side by side has no impact on the fault recovery
capabilities of each replica independently. We verified
each replica can recover from a crash of its components
without any interference with the other replicas. More
interestingly, the overall resiliency of a network stack
that consists of multiple replicas grows with the number
of replicas.

To estimate the concrete reliability benefits of our
replicated design, Figure 13 shows the expected fraction
of state preserved after a failure against the maximum
throughput across all the different configurations we

370

0

20

40

60

80

100

150 200 250 300 350 400

Ex
pe

ct
ed

 %
 o

f s
ta

te

pr
es

er
ve

d
af

te
r a

 fa
ilu

re

Max Throughput (kilo-requests/second)

NEaT 1x
cores 1

Multi 1x
cores 1

NEaT 2x
cores 2

Multi 2x
cores 2
threads 4

Multi 2x
cores 4

NEaT 3x
cores 3

NEaT 4x
cores 2
threads 4

Figure 13: Expected fraction of state preserved after a
failure vs. max throughput across network stack setups.

evaluated on the Xeon. We used the code size (propor-
tional to code coverage for our test workload) of each
component to estimate the probability that a single com-
ponent fails when a failure occurs within the network
stack—assuming uniform failure probability through-
out the code—and the resulting expected fraction of
state preserved after a failure. We also assumed the
simple stateless TCP recovery strategy used in NEaT,
which results in (only) the TCP state being always
irrecoverable—after a TCP failure—as evidenced earlier.
To further improve reliability, an option is to rely on
checkpointing techniques [9] to support a (TCP) stateful
recovery strategy allowing existing connections to sur-
vive failures. However, such techniques typically incur
nontrivial run-time and recovery-time overhead (other
than being generally unable to recover from a corrupted
state), trading off performance for reliability. In contrast,
as shown in the figure, NEaT’s performance and relia-
bility both increase with the number of replicas across
all our configurations, confirming that our design allows
reliability and scalability to effectively coexist with no
compromises. In addition, as the figure demonstrates,
given any fixed number of available cores (and HTs),
NEaT’s single- and multi-component configurations yield
different performance-reliability tradeoffs, opening up in-
teresting research opportunities on fine-grained isolation
and allocation policies.

7. CONCLUSION
Reliability and scalability are commonly perceived

as largely independent—and possibly conflicting— re-
quirements concerning the implementation of operating
system services. This paper challenged the common
belief, demonstrating that two key design principles,
isolation and partitioning, can effectively address reli-
ability and scalability of a core OS service such as the
network stack at the same time, and both with constant
returns with respect to the number of available CPUs
on modern multicore architectures. The principles we
employ also demonstrated that not only is reliability and
scalability of design possible, but represents a realistic
and far superior alternative to reliability and scalability
of implementation, plagued with problems and increas-
ingly unable to “scale” to the complexity of modern

hardware and software systems. Using such principled
design, we implemented NEaT, a reliable and scalable
network stack that isolates and partitions its state across
multiple and truly independent replicas. Thanks to the
design principles, NEaT can outperform Linux both in
terms of reliability—withstanding failures and reducing
service disruption as the number of replicas increases—
and scalability—up to 13-35% higher throughput in our
benchmark with 4 replicas—while retaining full com-
patibility with the BSD socket API and supporting full
sharing and cooperation at the application level.

8. ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers and

our shepherd Olivier Bonaventure for their valuable feed-
back. This work was supported by the European Com-
mission through project H2020 ICT-32-2014 “SHARCS”
under Grant Agreement No. 64457 and the Netherlands
Organisation for Scientific Research (NWO) through the
grant 639.023.309 VICI “Dowsing”.

9. REFERENCES
[1] ASLR: Leopard versus Vista.

http://blog.laconicsecurity.com/2008/01/
aslr-leopard-versus-vista.html.

[2] Intel’s ”knights landing” xeon phi coprocessor detailed.
http://www.anandtech.com/show/8217/
intels-knights-landing-coprocessor-detailed.

[3] Killing the Big Kernel Lock.
http://lwn.net/Articles/380174/.

[4] MINIX 3. http://www.minix3.org.
[5] OpenOnload. http://www.openonload.org.
[6] RCU Linux Usage. http://www.rdrop.com/users/

paulmck/RCU/linuxusage.html.
[7] RFC: remove read mostly.

http://lwn.net/Articles/262557.
[8] The ”too small to fail” memory-allocation rule.

http://lwn.net/Articles/627419/.
[9] CRIU. http://criu.org/, 2015.

[10] J. Appavoo, D. D. Silva, O. Krieger, M. Auslander,
M. Ostrowski, B. Rosenburg, A. Waterland, R. W.
Wisniewski, J. Xenidis, M. Stumm, and L. Soares.
Experience Distributing Objects in an SMMP OS.
ACM Trans. Comput. Syst., 2007.

[11] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The Multikernel: A New OS Architecture
for Scalable Multicore Systems. In Proceedings of the
ACM Symposium on Operating Systems Principles,
pages 29–44, 2009.

[12] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A Protected
Dataplane Operating System for High Throughput and
Low Latency. In Proceedings of the USENIX
Symposium on Oper. Sys. Design and Impl., Oct. 2014.

[13] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and
D. Boneh. Hacking Blind. In Proceedings of the IEEE
Symposium on Security and Privacy, 2014.

[14] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao,
F. Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu,
Y. Dai, Y. Zhang, and Z. Zhang. Corey: An Operating
System for Many Cores. In Proceedings of the USENIX

371

http://blog.laconicsecurity.com/2008/01/aslr-leopard-versus-vista.html
http://blog.laconicsecurity.com/2008/01/aslr-leopard-versus-vista.html
http://www.anandtech.com/show/8217/intels-knights-landing-coprocessor-detailed
http://www.anandtech.com/show/8217/intels-knights-landing-coprocessor-detailed
http://lwn.net/Articles/380174/
http://www.minix3.org
http://www.openonload.org
http://www.rdrop.com/users/paulmck/RCU/linuxusage.html
http://www.rdrop.com/users/paulmck/RCU/linuxusage.html
http://lwn.net/Articles/262557
http://lwn.net/Articles/627419/
http://criu.org/

Symposium on Oper. Sys. Design and Impl., pages
43–57, 2008.

[15] S. Boyd-Wickizer, A. T. Clements, Y. Mao,
A. Pesterev, M. F. Kaashoek, R. Morris, and
N. Zeldovich. An Analysis of Linux Scalability to Many
Cores. In Proceedings of the USENIX Symposium on
Oper. Sys. Design and Impl., pages 1–8, 2010.

[16] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and
N. Zeldovich. Non-scalable locks are dangerous. In
Proceedings of the Linux Symposium, July 2012.

[17] S. Boyd-Wickizer and N. Zeldovich. Tolerating
Malicious Device Drivers in Linux. In Proceedings of the
USENIX Annual Technical Conference, page 9, 2010.

[18] M. Castro, M. Costa, J.-P. Martin, M. Peinado,
P. Akritidis, A. Donnelly, P. Barham, and R. Black.
Fast Byte-granularity Software Fault Isolation. In
Proceedings of the ACM Symposium on Operating
Systems Principles, pages 45–58, 2009.

[19] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T.
Morris, and E. Kohler. The scalable commutativity
rule: Designing scalable software for multicore
processors. In Proceedings of the ACM Symposium on
Operating Systems Principles, pages 1–17, 2013.

[20] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu,
J. Davidson, J. Knight, A. Nguyen-Tuong, and J. Hiser.
N-variant systems: A secretless framework for security
through diversity. In Proceedings of the USENIX
Security Symposium, pages 105–120, 2006.

[21] F. M. David, E. M. Chan, J. C. Carlyle, and R. H.
Campbell. CuriOS: Improving Reliability Through
Operating System Structure. In Proceedings of the
USENIX Symposium on Oper. Sys. Design and Impl.,
pages 59–72, 2008.

[22] T. David, R. Guerraoui, and V. Trigonakis. Everything
you always wanted to know about synchronization but
were afraid to ask. In Proceedings of the ACM
Symposium on Operating Systems Principles, pages
33–48, 2013.

[23] A. Depoutovitch and M. Stumm. Otherworld: Giving
Applications a Chance to Survive OS Kernel Crashes.
In Proceedings of the European Conference on
Computer Systems, pages 181–194, 2010.

[24] M. Desnoyers, P. E. McKenney, and M. R. Dagenais.
Multi-core Systems Modeling for Formal Verification of
Parallel Algorithms. SIGOPS Oper. Syst. Rev.,
47(2):51–65, 2013.

[25] M. Flajslik and M. Rosenblum. Network Interface
Design for Low Latency Request-Response Protocols.
In Proceedings of the USENIX Annual Technical
Conference, pages 333–346, 2013.

[26] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm.
Tornado: Maximizing Locality and Concurrency in a
Shared Memory Multiprocessor Operating System. In
Proceedings of the USENIX Symposium on Oper. Sys.
Design and Impl., pages 87–100, 1999.

[27] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan,
M. M. Swift, and S. Jha. The Design and
Implementation of Microdrivers. In Proceedings of the
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
168–178, 2008.

[28] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. J.
Elphinstone, V. Uhlig, J. E. Tidswell, L. Deller, and
L. Reuther. The SawMill Multiserver Approach. In
Proceedings of the ACM SIGOPS European Workshop,

pages 109–114, 2000.
[29] C. Giuffrida, L. Cavallaro, and A. S. Tanenbaum. We

Crashed, Now What? In Proceedings of the Workshop
on Hot Topics in System Dependability, pages 1–8,
2010.

[30] R. Guerraoui and A. Schiper. Software-based
Replication for fault Tolerance. Computer, 30(4):68–74,
1997.

[31] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
MegaPipe: A New Programming Interface for Scalable
Network I/O. In Proceedings of the USENIX
Symposium on Oper. Sys. Design and Impl., 2012.

[32] T. Herbert. RFS: Receive Flow Steering.
http://lwn.net/Articles/381955/, 2010.

[33] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. Failure Resilience for Device Drivers. In
Proceedings of the Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, 2007.

[34] D. Hildebrand. An Architectural Overview of QNX. In
Proceedings of the Workshop on Micro-kernels and
Other Kernel Architectures, pages 113–126, 1992.

[35] T. Hruby, T. Crivat, H. Bos, and A. S. Tanenbaum. On
sockets and system calls: Minimizing context switches
for the socket api. In Proceedings of the Conference on
Timely Results in Operating Systems, 2014.

[36] T. Hruby, K. van Reeuwijk, and H. Bos. Ruler: easy
packet matching and rewriting on network processors.
In Symposium on Architectures for Networking and
Communications Systems (ANCS’07), Orlando, FL,
USA, December 2007.

[37] T. Hruby, D. Vogt, H. Bos, and A. S. Tanenbaum.
Keep Net Working - on a Dependable and Fast
Networking Stack. In Proceedings of the Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 1–12, 2012.

[38] G. C. Hunt, J. R. Larus, D. Tarditi, and T. Wobber.
Broad New OS Research: Challenges and
Opportunities. In Proceedings of the Workshop on Hot
Topics in Operating Systems, 2005.

[39] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park. mTCP: a Highly Scalable
User-level TCP Stack for Multicore Systems. In
Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation, 2014.

[40] A. Kadav, M. J. Renzelmann, and M. M. Swift.
Fine-grained Fault Tolerance Using Device Checkpoints.
In Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 473–484, 2013.

[41] Khubaib, M. A. Suleman, M. Hashemi, C. Wilkerson,
and Y. N. Patt. MorphCore: An Energy-Efficient
Microarchitecture for High Performance ILP and High
Throughput TLP. In Proceedings of the Annual
IEEE/ACM International Symposium on
Microarchitecture, pages 305–316, 2012.

[42] O. Koren. A Study of the Linux Kernel Evolution.
SIGOPS Oper. Syst. Rev., 40(2):110–112, Apr. 2006.

[43] A. Lenharth, V. S. Adve, and S. T. King. Recovery
Domains: An Organizing Principle for Recoverable
Operating Systems. In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 49–60, 2009.

[44] T. Liu and E. D. Berger. SHERIFF: Precise Detection
and Automatic Mitigation of False Sharing. In
Proceedings of the ACM International Conference on

372

http://lwn.net/Articles/381955/

Object Oriented Programming Systems Languages and
Applications, pages 3–18, 2011.

[45] P. E. Mckenney and J. D. Slingwine. Read-Copy
Update: Using Execution History to Solve Concurrency
Problems. In Parallel and Distributed Computing and
Systems, pages 509–518, Oct. 1998.

[46] J. M. Mellor-Crummey and M. L. Scott. Algorithms for
Scalable Synchronization on Shared-memory
Multiprocessors. ACM Trans. Comput. Syst.,
9(1):21–65, Feb. 1991.

[47] W. T. Ng and P. M. Chen. The systematic
improvement of fault tolerance in the rio file cache. In
Proceedings of the 29th Annual International
Symposium on Fault-Tolerant Computing, pages 76–83,
1999.

[48] E. B. Nightingale, O. Hodson, R. McIlroy,
C. Hawblitzel, and G. Hunt. Helios: Heterogeneous
Multiprocessing with Satellite Kernels. In Proceedings
of the ACM Symposium on Operating Systems
Principles, pages 221–234, 2009.

[49] R. Nikolaev and G. Back. Virtuos: An operating
system with kernel virtualization. In Proceedings of the
ACM Symposium on Operating Systems Principles,
pages 116–132, 2013.

[50] K. Olukotun, L. Hammond, and J. Laudon. Chip
Multiprocessor Architecture: Techniques to Improve
Throughput and Latency. 2007.

[51] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall,
and G. Muller. Faults in linux: Ten years later. In
Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 305–318, 2011.

[52] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris.
Improving Network Connection Locality on Multicore
Systems. In Proceedings of European Conference on
Computer Systems, 2012.

[53] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe.
Arrakis: The Operating System is the Control Plane.
In Proceedings of the USENIX Symposium on Oper.
Sys. Design and Impl., Oct. 2014.

[54] L. Rizzo and G. Lettieri. iVALE, a Switched Ethernet
for Virtual Machines. In Proceedings of the
International Conference on Emerging Networking
Experiments and Technologies, pages 61–72, 2012.

[55] B. Salamat, A. Gal, T. Jackson, K. Manivannan,
G. Wagner, and M. Franz. Multi-variant Program
Execution: Using Multi-core Systems to Defuse
Buffer-Overflow Vulnerabilities. In Proceedings of the
International Conference on Complex, Intelligent and
Software Intensive Systems, pages 843–848, 2008.

[56] B. Salamat, T. Jackson, A. Gal, and M. Franz.
Orchestra: Intrusion detection using parallel execution
and monitoring of program variants in user-space. In
Proceedings of the European Conference on Computer
Systems, pages 33–46, 2009.

[57] J. Seibert, H. Okkhravi, and E. Söderström.
Information leaks without memory disclosures: Remote
side channel attacks on diversified code. In Proceedings
of the ACM SIGSAC Conference on Computer and
Communications Security, pages 54–65, 2014.

[58] L. Shalev, J. Satran, E. Borovik, and M. Ben-Yehuda.
IsoStack: Highly Efficient Network Processing on
Dedicated Cores. In Proceedings of the USENIX
Annual Technical Conference, 2010.

[59] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A.-R. Sadeghi. Just-In-Time Code
Reuse: On the Effectiveness of Fine-Grained Address
Space Layout Randomization. In Proceedings of the
IEEE Symposium on Security and Privacy, pages
574–588, 2013.

[60] R. Strong, J. Mudigonda, J. C. Mogul, N. Binkert, and
D. Tullsen. Fast Switching of Threads Between Cores.
SIGOPS Oper. Syst. Rev., 43(2):35–45, Apr. 2009.

[61] Y. Sun and T.-c. Chiueh. SIDE: Isolated and Efficient
Execution of Unmodified Device drivers. In Proceedings
of the Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pages 1–12, 2013.

[62] S. Sundararaman, S. Subramanian, A. Rajimwale, A. C.
Arpaci-Dusseau, R. H. Arpaci-Dusseau, and M. M.
Swift. Membrane: Operating System Support for
Restartable File Systems. In Proceedings of the
USENIX Conference on File and Storage Technologies,
page 21, 2010.

[63] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M.
Levy. Recovering Device Drivers. ACM Trans. Comput.
Syst., 24(4):333–360, Nov. 2006.

[64] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving
the reliability of commodity operating systems. ACM
Transactions on Computer Systems, 23(1):77–110, 2005.

[65] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez,
and J. Emer. Scheduling Heterogeneous Multi-cores
Through Performance Impact Estimation (PIE). In
Proceedings of the Annual IEEE/ACM International
Symposium on Microarchitecture, pages 213–224, 2012.

[66] D. Wentzlaff, C. Gruenwald, III, N. Beckmann,
K. Modzelewski, A. Belay, L. Youseff, J. Miller, and
A. Agarwal. An Operating System for Multicore and
Clouds: Mechanisms and Implementation. In
Proceedings of the ACM Symposium on Cloud
Computing, pages 3–14, 2010.

[67] P. Willmann, S. Rixner, and A. L. Cox. An Evaluation
of Network Stack Parallelization Strategies in Modern
Operating Systems. In Proceedings of the USENIX
Annual Technical Conference, 2006.

[68] T. Yoshimura, H. Yamada, and K. Kono. Is Linux
Kernel Oops Useful or Not? In Proceedings of the
Workshop on Hot Topics in System Dependability,
page 2, 2012.

[69] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals,
M. Harren, G. Necula, and E. Brewer. SafeDrive: Safe
and Recoverable Extensions Using Language-based
Techniques. In Proceedings of the USENIX Symposium
on Oper. Sys. Design and Impl., pages 45–60, 2006.

373

	Introduction
	Background
	Reliability
	Scalability

	A Reliable and ScalableNetwork Stack
	Overview
	Sockets
	TCP Connections
	Scaling Up and Down
	Scaling NIC Drivers
	Reliability
	Multi-component Network Stack
	Security

	Hardware Support
	Comparison with OtherUserspace Network Stacks
	Evaluation
	Linux
	Scalability
	Scalability on a 12-core AMD
	Scalability on a 8-core Xeon
	Impact of Different Configurations
	Reliability

	Conclusion
	Acknowledgement
	References

