
An Object-Based Approach to Programming Distributed Systems

Andrew S. Tanenbaum
Henri E. Bal

Saniya Ben Hassen

Dept. of Mathematics and Computer Science, Vrije Universiteit
Amsterdam, The Netherlands

M. Frans Kaashoek

Laboratory for Computer Science, M.I.T.
Cambridge, MA

Email: ast@cs.vu.nl, bal@cs.vu.nl, saniya@cs.vu.nl, kaashoek@lcs.mit.edu

Abstract
Two kinds of parallel computers exist: those with shared memory and those without. The former
are difficult to build but easy to program. The latter are easy to build but difficult to program.
In this paper we present a hybrid model that combines the best properties of each by simulating
a restricted object-based shared memory on machines that do not share physical memory. In
this model, objects can be replicated on multiple machines. An operation that does not change
an object can then be done locally, without any network traffic. Update operations can be done
using the reliable broadcast protocol described in the paper. We have constructed a prototype
system, designed and implemented a new programming language for it, and programmed vari-
ous applications using it. The model, algorithms, language, applications, and performance will
be discussed.

1. Introduction
Massively parallel computing is just around the corner. Applications such as climate predic-

tion, pharmaceutical design, and computers that understand human speech demand more com-
puting power than even a supercomputer can deliver. The solution to these computing needs
will have to lie in parallel processing. This paper discusses a new approach to writing the
software for these parallel systems.
� ���������������������������

This work was supported in part by the Netherlands Organization for Scientific Research as part of its
Pionier program and by the CEC Human Capital Mobility program.

- 2 -

Architecture for parallel systems falls into two rough categories:
� Multiprocessors
� Multicomputers

The first category, multiprocessors, are defined as those machines that share a common main
memory that all CPUs can read and write using direct machine instructions. Figure 1(a) depicts
a simple multiprocessor using a single bus.

CPU CPU CPU Mem

Memory bus

CPU CPU CPU
Mem Mem Mem

Network

Fig. 1. Two kinds of parallel computers. (a) A single-bus multiprocessor. (b) A single-bus multicomputer.

In contrast, multicomputers do not share any main memory. Each one has its own private
memory, as shown in Fig. 1(b). The CPUs in a multicomputer communicate by sending mes-
sages over a network.

Multiprocessors are programmed using well-known techniques. Processes on different
machines can share variables, synchronizing using semaphores, monitors, critical regions, and
other simple constructs.

Multicomputers, in contrast, are much harder to program. Typically programs use SEND and
RECEIVE primitives to exchange messages. In this way, I/O becomes a central concept in
parallel programming. Experience shows that programmers often have difficulties writing
error-free parallel programs based on I/O because the level of abstraction is low.

Researchers have been aware of this problem for years. In their pioneering work on IVY, Li
and Hudak [13] proposed a solution in which a single virtual address space is shared among a
collection of workstations on a network, effectively creating a virtual multiprocessor. Pages can
be located on any machine. When a nonlocal page is referenced, a page fault occurs, and the
page handler fetches the page from the machine currently holding it, instead of from disk, as in a
traditional virtual memory system. Various optimizations are possible, such as replicating
read-only pages, but the performance is frequently too low for practical use.

The next step in this direction is to realize that much of the inefficiency comes from tran-
sporting data over the network in fixed-size pages. This can be attacked by making software-
defined data structures the unit of sharing, rather than pages. In Linda [6], for example, the vir-
tual shared memory consists of abstract tuples. Processes on any machine can put tuples into
the tuple space or take tuples out of the tuple space. Adding or deleting a tuple only requires
transporting at most one tuple, not a whole page.

Another approach is taken by Emerald [9], in which the shared memory consists not of pages
or tuples, but of abstract data types. Processes can perform operations on abstract data types

- 3 -

without regard to where they are located. These operations can be implemented by either mov-
ing the request to the abstract data type or by moving the abstract data type to the request.

Both tuple-based and abstract data type-based schemes eliminate the problem found in Ivy
and similar systems of having to move fixed-size units (e.g. 8K pages) around, but they have
other problems. Emerald does not replicate data, which can lead to performance problems;
Linda has fixed primitives that are low-level and inflexible.

2. Shared Data-Objects
Our design is based on the idea of doing parallel programming on distributed systems using

shared data-objects. These objects may be replicated on multiple processors, and are kept syn-
chronized by system software, the runtime system, as shown in Fig. 2. Associated with each
shared object is a set of operations that are encapsulated with the object to form an abstract data
type.

P RTS
A

B
P RTS

A

B

Network

CPU + Memory CPU + Memory

Fig. 2. An object can be replicated on each machine. P = process, RTS = runtime system, A and B are shared data-objects. To

the user processes, A and B look like they are in physical shared memory.

Processes on different machines can perform operations on shared objects as though they
were in physical shared memory. Shared objects exhibit the property of sequential consistency
in that if processes simultaneously perform operations on a shared object, the final result will
look like all the operations were performed in some sequential order [12]. The order is chosen
nondeterministically, but all processes will see the same order of events and the same final
result. It is up to the runtime system to maintain this illusion.

By encapsulating the data inside abstract data types, we insure that processes may not access
shared data without the runtime system gaining control. Getting control is essential to make
sure objects are consistent when accessed and to guarantee that updates are propagated to other
machines in a consistent manner. These properties are not available with a page-based distri-
buted shared memory in which any process can touch any virtual address at will.

Replicating shared objects has two advantages over systems like Ivy. First, reads to any
object can be done locally on any machine having a replica. No network traffic is generated.

- 4 -

(For our purposes, a read is an operation that does not change the state of its object.) Second,
more parallelism is possible on reads, since multiple machines can be reading an object at the
same time, even if the object is writable. With page-based schemes, having many copies of
writable pages is possible only under restricted circumstances involving weakened consistency.

Whether replication can be done efficiently in software depends on two factors. The first is
the ratio of reads to writes. If the vast majority of accesses to shared data are reads, then having
a copy of each shared object on each machine that needs it is a good idea. The gain from mak-
ing reads cheap generally results in a major gain in performance. The other factor is how
expensive writes are. If writes are exceedingly expensive (in terms of delay, bandwidth, or
computing power required), even a moderately high ratio of reads to writes may not be enough
to make replication worthwhile. We have studied this question in detail and reported on it else-
where [3, 4].

3. Implementation
The idea of sharing objects on a distributed system stands or falls with the efficiency of its

implementation. If it can be implemented efficiently, high performance parallel systems can be
built as multicomputers and programmed as multiprocessors, combining the hardware simplicity
of the former with the software simplicity of the latter. If it cannot be implemented efficiently,
the idea is of little practical value. Our results show that shared objects can be implemented
efficiently under certain circumstances, and give good results for a variety of problems.

The system described in this paper consists of three major components:

1. The Amoeba microkernel.
2. The shared object runtime system.
3. The Orca parallel programming language.

We will discuss each of these in turn in this section.

3.1. The Amoeba microkernel
Amoeba is a distributed operating system consisting of a microkernel and a collection of

server processes [17]. Amoeba was designed for a large number of machines, called the proces-
sor pool, connected by a (broadcast) network. There are also machines for handling specialized
servers, such as the file system, as well as workstations for clients, but the real computing is
done on the processor pool machines. A copy of the microkernel runs on all these machines.

The Amoeba microkernel has four primary functions:

1. Manage processes and threads.
2. Provide low-level memory management support.
3. Handle I/O.
4. Support transparent, reliable communication.

- 5 -

Let us consider each of these in turn.
Like most operating systems, Amoeba supports the concept of a process. In addition,

Amoeba also supports multiple threads of control, or just threads for short, within a single
address space. A process with one thread is essentially the same as a process in UNIX®. Such
a process has a single address space, a set of registers, a program counter, and a stack.

In parallel applications, a single process can often have multiple threads. These threads can
synchronize using semaphores and mutexes to prevent two threads from accessing critical
regions or data simultaneously.

The second task of the microkernel is to provide low-level memory management. Threads
can allocate and deallocate blocks of memory, called segments . These segments can be read
and written, and can be mapped into and out of the address space of the process to which the
calling thread belongs. To provide maximum communication performance, all segments are
memory resident.

The third basic function of the microkernel is to manage I/O devices, handle interrupts, and so
on. Device drivers run as threads within the kernel. All other functionality is located in user-
space servers and other processes.

The fourth job of the microkernel is to provide the ability for one thread to communicate tran-
sparently with another thread, regardless of the nature or location of the two threads. The model
used here is remote procedure call (RPC) between a client and a server [5].

All RPCs are from one thread to another. User-to-user, user-to-kernel, and kernel-to-kernel
communication all occur. When a thread blocks awaiting the reply, other threads in the same
process that are not logically blocked may be scheduled and run.

Totally-ordered broadcasting
Amoeba also provides totally-ordered, reliable broadcasting on unreliable networks through

use of a software protocol [10]. The protocol supports reliable broadcasting, in the sense that in
the absence of processor crashes, the protocol guarantees that all broadcast messages will be
delivered, and all machines will see all broadcasts in exactly the same order, a property useful
for guaranteeing sequential consisting. This feature is heavily used by higher layers of software.

When an application starts up on Amoeba, one of the machines (which normally have identi-
cal hardware) is selected as sequencer (like a committee electing a chairman), as shown in Fig.
3. If the sequencer machine subsequently crashes, the remaining members elect a new one.

We have devised and implemented two different reliable broadcast algorithms having slightly
different properties. In the first algorithm, called PB (Point to point - Broadcast), a runtime sys-
tem needing to reliably broadcast a message (e.g., a new value of an object) traps to the kernel.
The kernel adds a protocol header containing a unique identifier, the number of the last broad-
cast it has received, and a field saying that this is a RequestForBroadcast message and sends it
as a point-to-point message to the sequencer. When the sequencer gets the message it adds the
lowest unassigned sequence number, stores the message in its history buffer, and then

- 6 -

Kernel Kernel Kernel

User program User program User program

S

Broadcast network

Sequencer
enabled

Sequencer
disabled

Fig. 3. System structure. Each kernel is capable of becoming the sequencer, but at any instant only one of them functions as

sequencer.

broadcasts it.
When such a broadcast arrives at each of the other machines, a check is made to see if this is

the next message in sequence. If this is message 25 and the previous message received was 23,
for example, the message is temporarily buffered and a request is sent to the sequencer asking it
for message 24 (stored in the sequencer’s history buffer). When 24 comes in, 24 and 25 are
passed to the application program in that order. Under no circumstances are messages passed to
application programs out of order. This is the basic mechanism by which it is guaranteed that
all broadcasts are seen by all machines, and in the same order.

The other reliable broadcast algorithm is called BB (Broadcast - Broadcast). In this method,
the user broadcasts the message, including a unique identifier. When the sequencer sees this, it
broadcasts a special Accept message containing the unique identifier and its newly assigned
sequence number. A broadcast is only official when the Accept message has been sent.

These protocols are logically equivalent, but they have different performance characteristics.
In PB, each message appears in full on the network twice: once to the sequencer and once from
the sequencer. Thus a message of length m bytes consumes 2m bytes worth of network
bandwidth. However, only the second of these is broadcast, so each user machine is only inter-
rupted once (for the second message).

In BB, the full message only appears once on the network, plus a very short Accept message
from the sequencer, so only half the bandwidth is consumed. On the other hand, every machine
is interrupted twice, once for the message and once for the Accept. Thus PB wastes bandwidth
to reduce interrupts compared to BB. The present implementation looks at each message and
depending on the amount of data to be sent, dynamically chooses either PB or BB, using the
former for short messages and the latter for long ones (over 1 packet).

- 7 -

Broadcasting using a point-to-point network
When the network does not support broadcasting in hardware, it must be simulated in

software. To use PB, a process would have to send the message to the sequencer, possibly over
several hops. Then the sequencer would simulate a broadcast by using a spanning tree algo-
rithm. This would generally entail sending the message over multiple links multiple times.

Using BB would be better: the processing wanting to broadcast would just do so, and the
sequencer would broadcast an acknowledgement later. However, a slight variation eliminates
the second round of broadcasts. In the actual point-to-point protocol, the process wanting to do
a broadcast first does an RPC with the sequencer to get a sequence number, then it broadcasts
the message and sequence number using a spanning tree algorithm. This algorithm is more effi-
cient than either PB or BB on point-to-point networks.

3.2. The shared object runtime system
We have developed several runtime systems for Orca over the years. Below we will describe

the one currently being tested. It is based on experience with earlier ones. The new runtime
system uses information produced by the compiler to do its job. The compiler distinguishes
read operations from write operations on shared objects. Operations that do not modify the
object are considered reads; the rest are considered writes.

Based on information from the compiler and its own observations, the runtime system can
choose, for each object, to replicate it or to maintain a single copy. If a single copy is main-
tained, the runtime system must decide where to store it. Full replication is best when many
processes share an object that is heavily written and rarely read. Keeping only a single copy is
best when few processes use it or it is mostly written rather than read.

For each object, the compiler analyzes the source code to make an estimate of the number of
reads and writes by each process using it. This information is passed to the runtime system,
which then maintains read and write statistics for each shared object as execution proceeds.
When a new process is created, the replication algorithm is run to see if any replicated objects
should be put into single-copy mode or any single-copy mode objects should be replicated.
Running the replication algorithm only at process creation time is arbitrary, but convenient,
since process creation is broadcast to all machines. All machines run the same replication algo-
rithm so they all come to the same replication decision.

The replication algorithm minimizes the estimated number of messages. It first computes the
estimated number of messages that will be needed if the object is replicated, taking into account
whether or not broadcasting is done in hardware (using the totally-ordered broadcast protocols
described above) or simulated in software. It then computes the machine making the most total
references to the object and computes the number of messages that will be needed if only one
copy is maintained, but on the machine making the most references. All other machines must
then access the object using RPC. Whichever computation gives the lowest number of mes-
sages is chosen. Since all machines run the same algorithm with the same input data, they all

- 8 -

come to the same conclusion concerning replication or not, and if not, where the object should
be located. This calculation is then repeated for every object.

3.3. Orca
While it is possible to program directly with shared objects, it is much more convenient to

have language support for them [1]. For this reason, we have designed the Orca parallel pro-
gramming language and written a compiler for it. Orca is a procedural language whose sequen-
tial statements are roughly similar to languages like C or Modula 2 but which also supports
parallel processes and shared objects.

There are four guiding principles behind the Orca design:
� Transparency
� Semantic simplicity
� Sequential consistency
� Efficiency

By transparency we mean that programs (and programmers) should not be aware of where
objects reside. Location management should be fully automatic. Furthermore, the programmer
should not be aware of whether the program is running on a machine with physical shared
memory or one with disjoint memories. The same program should run on both, unlike nearly all
other languages for parallel programming, which are aimed at either one or the other, but not
both. (Of course one can always simulate message passing on a multiprocessor, but this is often
less than optimal, especially if there is heavy contention for locks and certain other locations.)

Semantic simplicity means that programmers should be able to form a simple mental model of
how the shared memory works. Incoherent memory, in which reads to shared data sometimes
return good values and sometimes stale (incorrect) ones, is ruled out by this principle.

Sequential consistency is an issue because in a parallel system, many events happen simul-
taneously. By making operations sequentially consistent, we guarantee that operations on
objects are indivisible (i.e., atomic), and that the observed behavior is the same as some sequen-
tial execution would have been. Operations on objects are guaranteed not to be interleaved,
which contributes to semantic simplicity, as does the fact that all machines are guaranteed to see
exactly the same sequence of serial events. Thus the programmer’s model is that the system
supports operations. These may be invoked at any moment, but if any invocation would conflict
with an operation currently taking place, one operation will not begin until the other one has
completed.

Finally, efficiency is also important, since we are proposing a system that can actually be used
for solving real problems.

Now let us look at the principal aspects of Orca that relate to parallelism and shared objects.
Parallelism is based on two orthogonal concepts: processes and objects . Processes are active
entities that execute programs. They can be created and destroyed dynamically. It is possible to

- 9 -

read in an integer, n, then execute a loop n times, creating a new process on each iteration. Thus
the number of processes is not fixed at compile time, but is determined during execution.

The Orca construct for creating a new process is the

fork procname(param, ...)

statement, which creates a new process running the process procname with the specified param-
eters. The user may specify which processor to use, or use the standard default case of running
it on the current processor. Objects may be passed as parameters (call by reference). A process
may fork many times, passing the same objects to each of the children. This is how objects
come to be shared among a collection of processes. There are no global objects in Orca.

Objects are passive. They do not contain processes or other active elements. Each object
contains some data structures, along with definitions of one or more operations that use the data
structures. The operations are defined by Orca procedures written by the programmer. These
operations may contain guards that prevent an operation from starting until certain conditions
are met. An object has a specification part and an implementation part, similar in this respect to
Ada® packages or Modula-2 modules. Orca is what is technically called object based (in con-
trast with object oriented) in that it supports encapsulated abstract data types, but without inheri-
tance.

A common way of programming in Orca is the Replicated Worker Paradigm [6]. In this
model, the main program starts out by creating a large number of identical worker processes,
each getting the same objects as parameters, so they are shared among all the workers. Once the
initialization phase is completed, the system consists of the main process, along with some
number of identical worker processes, all of which share some objects. Processes can perform
operations on any of their objects whenever they want to, without having to worry about all the
mechanics of how many copies are stored and where, how updates take place, and so on. As far
as the programmer is concerned, all the objects are effectively located in one big shared memory
somewhere, but are protected by a kind of monitor that prevents multiple updates to an object at
the same time.

4. Applications
In this section we will discuss our experiences in implementing various applications in Orca.

For each application, we will describe the parallel algorithm and the shared objects used by the
Orca program. In this way, we hope to give some insight in the usefulness of shared objects.

In addition, we will briefly consider performance issues of the applications and give some
experimental performance results. The performance measurements were carried out on the
Amoeba-based Orca system described in the previous section using a slightly earlier version of
the broadcast runtime system and full replication only. The hardware we use is a collection of
MC68030s connected by a 10 Mb/sec Ethernet.

- 10 -

The applications we will look at are: training neural networks, the arc consistency problem,
computer chess, and automatic test pattern generation. Additional Orca applications are
described in [3].

4.1. Training Neural Networks
A neural network crudely approximates the operation of the human brain. It has neurons and

weighted connections between any two neurons (modeling synapses). There are three types of
neurons: input, output, and hidden neurons. The connections can be inhibitory (negative
weight) or excitatory (positive weight). All connections are unidirectional.

A neuron has two possibles states: off and on, sometimes denoted by 0 and 1, respectively.
The activation of a neuron is the weighted sum of the state of the neurons it is connected to. If
the activation is above a certain threshold, the neuron is turned on. Otherwise, it is turned off.
Each input neuron is externally forced into one of its two states. The others then repeatedly
compute their activation until all neuron states are stable. The result is read on the output neu-
rons.

Neurons can be connected in many ways. For instance, a feedforward network consists of at
least two layers: an input layer (layer 0), to which the input patterns are applied, and an output
layer (layer L). Between the input and the output layers, there may be an arbitrary number of
hidden layers. There are connections from each neuron in layer l to all neurons in layer l +1.
Neurons within the same layer are not connected to each other, and there are no connections
from neurons in a layer to neurons in the preceding layer.

A feedforward network can be trained to recognize an arbitrary set of input-output patterns by
modifying the weights on the connections using the backpropagation learning algorithm [16].
Briefly, the learning algorithm works as follows. Start with a random set of weights. For each
input pattern, apply the pattern to the network and compute the difference between the desired
output and the actual output. Propagate the difference between these two back to the preceding
layer and compute the amount with which the connections between layers L and L - 1 should be
updated using the algorithm given in [16]. Repeat for layer L - 1, L - 2, and so on, until layer 0 is
reached. Now update the weights. This process is repeated for every pattern. The entire set of
patterns is applied as many times as necessary, until the network is trained to recognize them.

We have written a parallel implementation in Orca for a slight variation of the algorithm.
Instead of updating the weights after each pattern is applied to the network, the update is
delayed until all patterns are applied once to the network. The parallelization of the learning
process is then very simple: the patterns can be taught in parallel to the network.

Our implementation uses a network object, which stores the weights, and two synchronization
objects. The patterns are divided into distinct subsets and a subset is assigned to one teacher pro-
cess. Thus, there are at most as many teacher processes as input-output pairs. An outline of the
teacher process is shown below:

while "the network is not trained" do

- 11 -

phase 1:
compute the differences for a subset of the patterns;

wait for the other teachers to finish phase 1;

phase 2:
update the weights;
wait for the other teachers to finish phase 2;

od;

Operation UpdateWeights(WeightDifferences) of the Network object updates the network
atomically. The weight changes computed by one process are reliably broadcast to all other
teacher processes. Because the addition is a commutative operation, the updates for one itera-
tion, from different teacher processes, can be done in any order. Furthermore, this works fine for
any number of teacher processes. However, the updates from two different iterations must be
serialized. The synchronization objects implement barriers to synchronize the teachers at the
end of each phase. At the end of phase 2, the teacher processes must also agree on whether all
the patterns are then known by the network or not.

With this implementation, we have obtained reasonable speedups. As an example we have
experimented with a network of three layers, with 10 neurons in each layer. The network was
taught 120 input-output pairs. The number of processors was chosen to be a whole fraction of
the number of patterns. The results are shown in Fig. 4.

4.2. The arc consistency problem
The Arc Consistency Problem (ACP) is an important AI problem [15]. The input to the prob-

lem is a set of variables Vi, each of which can take a value from a domain Di, and a list of con-
straints. Each constraint involves two variables and puts a restriction on the values these vari-
ables can have, for example A < B. The goal of ACP is to determine the maximal set of values
each variable can take, such that all constraints are satisfied.

A straightforward sequential algorithm for solving ACP is as follows. Assign a set of possi-
ble values to each variable Vi; initially, the set for Vi contains all values in its domain Di. Next,
repeatedly restrict the sets using the constraints, until no more changes can be made. An obvi-
ous improvement is to keep a list of variables whose sets have been changed, and then only
recheck constraints involving such variables.

For example, assume the current set for A is {1,10,100} and the set for B is {2,3,20}. The
constraint A < B can be used to delete the value 100 from A’s set. Now, all other constraints
involving A have to be checked again.

A parallel implementation of the above algorithm is described by Conrad [7], using a message
passing program that runs on an iPSC/2 hypercube. The parallel algorithm statically partitions
the variables among the available processors. Each processor takes care of determining the
value sets for the variables assigned to it.

- 12 -

Number of processors

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

Speedup

..
..

..
...

..
...

...
..

..
...

..
...

...
..

..
...

..
..

..
..

...
..

...
..

..
...

...
.

. Perfect speedup

Fig. 4. Speedup for the parallel training of a neural network.

We have implemented a similar program in Orca, but now using shared objects, and running
on the Ethernet-based Amoeba system. The Orca program uses several shared objects. The sets
associated with the variables are stored in a shared object, called domain. This object thus con-
tains an array of sets, one for each variable. Operations exist for initializing the object, deleting
an element from one of the sets, and set membership tests. The object is shared among all
processes, since they all need to have this information.

Another object, called work, is used to keep track of which variables have to be rechecked.
This object contains an array of Booleans, one per variable. If the value set of a variable A has
been checked the entry for A is set to false. In addition, for all other variables X for which a
constraint exists involving both A and X, the corresponding entry is also set to true if A was
reduced.

The most complicated issue in parallel ACP is how to terminate the algorithm correctly. The
algorithm should terminate if none of the variables need to be rechecked. Since the variables
are distributed among the processors, however, testing this condition requires careful synchroni-
zation.

For this purpose, we use two shared objects. One object contains a Boolean variable that is
set to true if a process discovers that no solution to the input problem exists, because one of its
variables now has an empty set of values. Each process reads the object before doing new work,

- 13 -

and quits if the value is true.
A second and more complicated object, called result, contains an array of Booleans, one per

process. A process sets its entry to true if it is willing to terminate because it has no more work
to do. The program can terminate if two conditions are satisfied: (1) all entries in the work
object are false, and (2) all entries in the result object are true. In this case, no more work exists
and neither will any process generate such work, so the program can safely terminate. The work
and result objects have indivisible operations for testing these two conditions.

The speedups for ACP are shown in Fig. 5 The program uses at least two processors, since
the master process that distributes the work runs on a separate processor.

Number of processors

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

Speedup

..
..

..
...

..
...

...
..

..
...

..
...

...
..

..
...

..
..

..
..

...
..

...
..

..
...

...
.

. Perfect speedup

Fig. 5. Speedup for the Arc Consistency Problem using an input problem with 64 variables. One processor was dedicated to work distribution.

Although the program obtains significant speedups, the speedups are less than those reported
for the original hypercube program. The objects used in the program are replicated on all pro-
cessors, so there is a lot of CPU overhead in handling incoming update messages for these
objects. We should also point out, however, that our program uses many operations to handle
termination correctly, as explained above. The hypercube program uses a less expensive but
also less elegant method to handle termination, based on time-outs.

- 14 -

4.3. Computer chess
Oracol is a chess problem solver written in Orca. It can be asked to look for “mate-in-N-

moves” or for tactical combinations that win material. It does not consider positional charac-
teristics.

Oracol’s search algorithm is based on alpha-beta with iterative deepening and the quiescence
search heuristic. Parallelism is obtained by dynamically partitioning the search tree among the
different processors, using simple run-time heuristics. The program uses several shared objects
(e.g., a job queue). We will only discuss two objects here, which are of particular interest.

The two objects implement a killer table and a transposition table. The killer table contains
moves that turn out to cause many cutoffs in the alpha-beta algorithm. Killer moves are always
considered first. The idea is that if, say, White threatens to capture a rook by playing “Queen to
a8”, then Black needs to do something against this threat. Any move by Black that does not
prevent White from capturing the rook can immediately be refuted by the “Qa8” move, thus
saving the trouble of much further analysis.

A transposition table is a table containing positions that have already been analyzed earlier
during the search. The same board position can be encountered multiple times during the
search, because different sequences of moves can result in the same position. The transposition
table thus remembers positions and their evaluation values. Before a position is analyzed, the
program first looks in its transposition table (using a hashing function), to determine if it has
seen the position before.

Both the killer table and the transposition table can be implemented as local data structures or
as shared objects. If used locally, no communication is needed, but processes cannot benefit
from each other’s tables. For example, a process may evaluate a position that has been
evaluated before by another process. If the tables are shared, this will generally not happen, but
now communication overhead is introduced for managing the shared tables.

In Orca, it is particularly easy to implement both versions and see which one is best. The
tables are implemented using abstract data types (objects types). In the local version, each pro-
cess declares its own instance of this type. In the shared version, only the main process declares
a table object and passes it as a shared parameter to all other processes. The two versions differ
in only a few lines of code. For Oracol, we have determined that, especially for the killer table,
shared tables are most efficient.

The speedups obtained for the program are not very high, because alpha-beta is hard to paral-
lelize efficiently. On 10 CPUs, we have measured speedups between 4.5 and 5.5. Almost all of
the overhead is search overhead, which means that the parallel program searches far more nodes
than a sequential program does.

- 15 -

4.4. Automatic test pattern generation
The largest program implemented in Orca so far (nearly 4000 lines) is for Automatic Test

Pattern Generation (ATPG). ATPG is an important problem from electrical engineering. It
generates test patterns for combinatorial circuits. Such a circuit consists of several input and
output lines, and several internal gates (e.g., AND gates, OR gates). The output of a given cir-
cuit is completely determined by the input.

To test if a specific gate works correctly, the input lines must be set to certain values, such
that the correct functioning of the gate can be determined from the output of the circuit. In other
words, at least one of the output lines must be different for a correct and an incorrect gate. The
problem is how to determine which inputs to use. In general, all gates of the circuit must be
tested, so the problem becomes that of generating a set of input patterns that together test the
whole circuit. This problem is called the ATPG problem. The problem is NP complete, so in
practice an ATPG program tries to cover as many gates as possible within the time limit
imposed on it.

Many ATPG algorithms exist, and several parallel algorithms have been designed and imple-
mented [11]. The Orca ATPG program is based on the PODEM algorithm [8]. The algorithm
considers each gate in turn. It assigns values to certain input lines (determined by heuristic
rules), and propagates these values through the circuit. If it discovers that the current assign-
ment cannot lead to a test of the gate, it backtracks and tries alternative assignments.

The Orca program parallelizes ATPG by statically partitioning the fault set among the proces-
sors. Each processor is given a fixed number of gates, for which it computes the test patterns.
Using this basic algorithm, the program achieves good speedups (close to linear) on circuits of
reasonably large size.

An important optimization that can be applied to both the sequential and parallel ATPG algo-
rithms is fault simulation. If a test pattern has been computed for a certain gate, this pattern will
probably test other gates in the circuit as well. Fault simulation determines such gates and
removes them from the list of gates for which patterns still have to be computed.

This optimization was easy to add to the Orca program. All processes share an object con-
taining the gates for which test patterns have been generated. If a process adds an element to
this set, all other processes also use it to determine which gates they can delete from their set.
The Orca program using this optimization is faster in absolute speed (by about a factor of 3), but
it obtains inferior speedups. This is partly due to the communication overhead, and partly to the
fact that the static partitioning of work may now lead to a load balancing problem. We intend to
use a more dynamic work distribution strategy in the future.

- 16 -

5. Summary
Shared objects offer the possibility of programming certain parallel applications on systems

lacking physical shared memory. They offer a model comparable to what programmers of mul-
tiprocessors get to see. We believe that the shared object model allows systems to be built that
have the ease of construction of multicomputers, combined with the ease of use of multiproces-
sors. For this reason, we see this model as a promising area for future research.

Acknowledgements
The Orca programs for ACP, computer chess, and ATPG, have been written by Irina

Athanasiu, Robert-Jan Elias, and Klaas Brink, respectively. We thank Dr. Wojtek Kowalczyk
for the discussions on the Neural Network application.

References
[1] Bal, H.E.: Programming Distributed Systems , Prentice Hall Int’l, Hemel Hempstead, UK,

1991.

[2] Bal, H.E., and Kaashoek, M.F.: ‘‘Object Distribution in Orca using Compile-Time and
Run-Time Techniques,’’ Proc. 8th Ann. Conf. on Object-Oriented Programming, Systems,
Languages, and Applications , ACM, pp. 162-177.

[3] Bal, H.E., Kaashoek, M.F., and Tanenbaum, A.S.: ‘‘Orca: A language for Parallel Program-
ming of Distributed Systems,’’ IEEE Transaction on Software Engineering vol. 18, pp.
190-205, March 1992.

[4] Bal, H.E., Kaashoek, M.F., Tanenbaum, A.S., and Jansen, J.: ‘‘Replication Techniques for
Speeding up Parallel Appl. on Distr. Systems,’’ Concurrency Prac. & Exp. , vol. 4, pp. 337-
355, Aug. 1992.

[5] Birrell, A.D. and Nelson, B.J.: ‘‘Implementing Remote Procedure Calls,’’ ACM Trans.
Computer Systems , vol. 2, pp. 39-59, Feb. 1984.

[6] Carriero, N. and Gelernter, D.: ‘‘Linda in Context,’’ Commun. ACM , vol 32, pp. 444-458,
April 1989.

[7] Conrad, J.M, and Agrawal, D.P.: ‘‘A Graph Partitioning-Based Load Balancing Strategy for
a Distributed Memory Machine,’’ Proc. 1992 Int. Conf. Parallel Processing (Vol. II) , pp.
74-81, 1992.

[8] Goel, P.: ‘‘An Implicit Enumeration Algorithm to Generate Tests for Combinational IC Cir-
cuits,’’ IEEE Trans. Computers , vol. C-30, pp. 215-222, March 1981.

[9] Jul, E., Levy, H., Hutchinson, N., and Black, A.: ‘‘Fine-Grained Mobility in the Emerald

- 17 -

System,’’ ACM Trans. Computer Syst. , vol 6, pp. 109-133, Feb. 1988.

[10] Kaashoek, M.F. ‘‘Group Communication in Distributed Computer Systems,’’ Ph.D
Thesis, Vrije Universiteit, Amsterdam, 1992.

[11] Klenke, R.H., Williams, R.D., and Aylor, J.H.: ‘‘Parallel-Processing Techniques for
Automatic Test Pattern Generation,’’ IEEE Computer , vol. 25, pp. 71-84, Jan. 1992.

[12] Lamport, L. ‘‘How to Make a Multiprocessor that Correctly Executes Multiprocess Pro-
grams,’’ IEEE Trans. on Comp. , vol. C-28, pp. 690-691, Sept. 1979.

[13] Li, K. and Hudak, P.: ‘‘Memory Coherence in Shared Virtual Memory Systems,’’ ACM
Trans. Computer Systems , vol 7., pp. 321-359, Nov. 1989.

[14] Marsland, T.A., and Campbell, M.: ‘‘Parallel Search of Strongly Ordered Game Trees,’’
Computing Surveys , vol. 14, pp. 533-551, December 1982.

[15] Mackworth, A.K.: ‘‘Consistency in Networks of Relations,’’ Artificial Intelligence , vol. 8,
pp. 99-118, Feb. 1977.

[16] Rumelhart, D.E. and McClelland, J.L.: ‘‘Parallel Distributed Processing: Explorations in
the Microstructure of Cognition,’’ MIT press, 1986.

[17] Tanenbaum, A.S. et al., ‘‘Experiences with the Amoeba Distributed Operating System,’’
Commun. of the ACM vol. 33, pp. 46-63, Dec. 1990.

