
A DRM Security Architecture for Home Networks

Bogdan C. Popescu

Vrije Universiteit

Amsterdam, The Netherlands

bpopescu@cs.vu.nl

Frank L.A.J. Kamperman

Philips Research

Eindhoven, The Netherlands

frank.kamperman@philips.com

Bruno Crispo

Vrije Universiteit

Amsterdam, The Netherlands

crispo@cs.vu.nl

Andrew S. Tanenbaum

Vrije Universiteit

Amsterdam, The Netherlands

ast@cs.vu.nl

Abstract

This paper describes a security architecture al-
lowing digital rights management in home net-
works consisting of consumer electronic devices.
The idea is to allow devices to establish dynamic
groups, so called “Authorized Domains”, where
legally acquired copyrighted content can seamlessly
move from device to device. This greatly improves
the end-user experience, preserves “fair use” ex-
pectations, and enables the development of new
business models by content providers. Key to our
design is a hybrid compliance checking and group
establishment protocol, based on pre-distributed
symmetric keys, with minimal reliance on pub-
lic key cryptographic operations. Our architecture
does not require continuous network connectivity
between devices, and allows for efficient and flex-
ible key updating and revocation.

1 Introduction

In the past years there has been an increasing
interest in developing digital rights management
(DRM) systems [19, 9, 10]. The main purpose
of a DRM system is providing digital data con-
tent (mostly home entertainment-related) in a way
that protects the copyrights of content providers
(CPs) and to enable options for new business mod-
els for content distribution and access.

Consumers want to enjoy content without has-
sle and with as few as limitation as possible. They
want to network their devices and easily access any
type of content in their home environment. Expe-
rience has shown strong negative consumer reac-
tion when copyright protection mechanisms have
disrupted interoperability expectations [13]. Fur-
thermore, arbitrary restriction in using legally ac-
quired digital content may go against consumers’
legal right of “fair use”. The solution to this prob-
lem is to organize compliant devices into home
content delivery networks [20] where legally ac-
quired digital content can freely be played by any
device part of the network.

DRM systems make providers less reluctant to
publish content electronically and, in the end, give
consumers a more versatile offering of content.
DRM systems, however, are not on the consumers
feature list when buying new devices; consumers
simply do not have the motivation to spend extra
money for DRM-enabling functionality. Besides,
since in the consumer electronics (CE) business
even marginal cost reductions can lead to competi-
tive advantage, there is clear cost-cutting pressure
on DRM functionality. In this context, security
mechanisms that rely on public key cryptographic
operations are seen as a disadvantage, since they
normally require (more expensive) cryptographic
accelerator hardware in order to operate reason-
ably efficient.

This paper describes a security architecture for

1

the “Authorized Domains” framework [8] intro-
duced by the DVB consortium [1] as means to fa-
cilitate the creation of home content delivery net-
works of CE devices. The foundation of our de-
sign effort is a novel compliance checking protocol
which allows compliant devices part of a domain
to individually authenticate each other without
relying on expensive public key cryptographic op-
erations. An additional benefit of our protocol is
that it supports efficient and flexible revocation
of compromised devices.

The rest of the paper is organized as follows: in
Section 2, we elaborate more on the issue of com-
pliance checking in DRM architectures. In Sec-
tion 3, we give a quick overview of the “Autho-
rized Domains” framework. In Section 4 we de-
scribe the new security architecture, showing how
we deal with issues such as domain creation, new
device registration, secure content storage, key up-
date and device revocation. Finally, in Section 5
we talk about the performance implications of our
design, in Section 6 we review related work, and
in Section 7 we give our conclusions.

2 DRM and Compliance Checking

DRM systems rely on the fact that they op-
erate on so-called ”compliant devices”. The most
important property of such devices is the fact they
are self-policing - before performing any operation
on a piece of data content, they check that the
operation does not contradict the rules set by the
content owners for that piece of content. For ex-
ample, a compliant video recorder will never make
a copy of a piece of video marked “no copy”, al-
though it has the ability to do it.

Currently, there are two possible approaches for
doing device compliance checking: in the case of
individual authentication, this is done by means of
public key cryptography - by assigning each device
a unique public/private key pair with the public
key certified by a licensing organization through a
digital certificate. In this case, whenever two com-
pliant devices need to interact, they must first en-
gage in a mutual authentication protocol, proving
to each other they have the private keys corre-
sponding to “compliant” public keys.

The other way to do device compliance checking
is through group authentication: in this case, the
identity of a given device is un-important, as long
as the device can prove it is part of the group of
compliant devices. In practice, the most efficient
way to do group authentication is based a class
of symmetric key encryption algorithms known as
broadcast encryption [16].

The basic idea behind broadcast encryption
[11, 24, 18] is to allow a dynamic group of enti-
ties (compliant devices in the DRM scenario) to
establish a common secret, by receiving messages
broadcast by a group controller (the licensing or-
ganization in this case). Once a common group
key has been established, it can be used to pro-
tect the digital content exchanged by the compli-
ant devices part of the group.

In a broadcast encryption algorithm specifically
designed for DRM applications [18], key mate-
rial is organized in a logical binary tree, where
each node in the tree corresponds to a symmet-
ric key. The number of leaves in the tree is equal
to the maximum number of compliant devices in
the world; this may be in the order of hundreds of
million of even more in the case of very success-
ful products. Each device is assigned a leaf, and
contains all the (secret) keys that are on the path
between its assigned leaf and the root of the tree
(thus, the root key is known to all devices). At the
beginning, all devices are part of the group; the
group key is encrypted under the root key. Once
circumvented devices are identified, they are re-
voked (excluded from the group) by the licensing
organization, which generates a new group key and
encrypts it with keys in the tree that cover only
leaves corresponding to correct devices; circum-
vented devices cannot recover the new group key.
This scheme works quite well when there are few
revoked devices: in this case, a small number of
sub-trees suffice for a complete group cover. How-
ever, as more devices are revoked, more and more
small sub-trees are needed to cover only “good”
leaves, so the group key needs to be encrypted
with many keys, which leads to a large broadcast
message size.

Our security architecture relies on a compli-
ance checking mechanism based on individual de-

2

vice authentication. Although this requires pub-
lic keys, through careful design it is possible, as
we will show in Section 4, to minimize the im-
pact public key cryptographic operations have
on system performance, up to the point where
use of hardware cryptographic accelerators can be
avoided. Before getting into the design details,
we will first introduce our system and trust model
and discuss the possible attack scenarios.

3 The “Authorized Domains” Frame-

work

The “Authorized Domains” framework [8] has
been first introduced by the DVB consortium [1]
as a means to facilitate the creation of secure home
networks of consumer electronic devices. Compli-
ant devices owned by one household connect to-
gether to form one authorization domain. Legally
acquired digital content can then seamlessly flow
from device to device inside the domain, but tight
controls are applied at the domain borders, in or-
der to prevent illegal content distribution. As said
previously, this balances the interests of content
owners (who want protection of their copyrights)
and content consumers (who want unrestricted use
of the content they paid for).

3.1 Design Requirements

When designing the security architecture for the
“Authorized Domains” framework, we had to con-
sider a number constraints dictated by the deploy-
ment environment (home networks) as well as by
the need to reduce the manufacturing costs. More
specifically:

• Continuous network connectivity among all
devices in one domain cannot be assumed; for
some devices, operating in disconnected mode
is the norm, rather than the exception: this
is the case of PDAs, personal music players,
car stereos, or CE devices used in vacation
homes.

• The existence of secure clocks cannot be as-
sumed. Adding tamper-resistant hardware
clocks to consumer electronic devices would

un-desirably increase the overall price of these
devices.

• Given the cost reduction constraints, devices
should not require cryptographic hardware
accelerators in order to operate efficiently.

• Based on previous experience with pirated
set-top boxes for pay-per-view TV, it can be
expected that a black market for counterfeit
devices will soon follow the introduction of
compliant devices on the consumer market.
It is therefore essential that our design al-
lows revocation of potentially large numbers
of counterfeit devices without significant per-
formance degradation.

Because we cannot rely on hardware accelera-
tors, the only option for performing cryptographic
operations is the general-purpose CPU embedded
in the device. Existing consumer electronics prod-
ucts (DVD players, TV’s, handhelds, etc.) typi-
cally use embedded (16/32 bit) RISC processors
for general-purpose operations; dedicated tasks
(e.g. video processing) is typically done on dedi-
cated hardware. The clock speed of these general-
purpose CPUs ranges from tens to hundreds of
MHz. An RSA (1024 bit) sign operation may
therefore take between tens of milliseconds to sev-
eral seconds (full load), depending on the plat-
form. Taking into account that general-purpose
CPUs are primary used for non-cryptographic pur-
poses (mostly control), and under normal device
operation they are loaded to a large extent, and
given the fact that RSA 1024 bit keys may not be
suitable for a 10 years lifespan, it is safe to assume
that, at least for mid- to low-end devices, a public
key authentication protocol may take in the order
of seconds to complete. From a consumer point
of view, latency in the order of seconds during
normal operation of CE devices is not acceptable;
therefore, one of our prime design goals is to mini-
mize the number of public key operations a device
needs to perform.

On the other hand, the lack of continuous net-
work connectivity among all devices in the do-
main makes impractical to use some of the cen-
tralized content distribution/storage mechanisms

3

employed by other DRM architectures [9]. For
instance, storing content in a central repository,
encrypted under a key shared by all devices in
the domain is not an option. Our design needs to
focus on mechanisms that allow content to seam-
lessly “float” from device to device. For example,
a user should be able to download her songs from
her personal music player to her car stereo, even
when both these devices are disconnected from the
rest of the authorized domain.

3.2 System Model

For the security architecture we describe in this
paper, we consider a high-level system model con-
sisting of the following entities:

• A number of content providers. These are
organizations/companies interested in sell-
ing digital content items (usually home-
entertainment related) to consumers. Con-
tent providers associate usage rules with the
content they deliver; associating usage rules
with content helps enforcing providers’ copy-
rights, and facilitates a variety of business
models (e.g. pay per view, subscription, etc.).

• A number of CE manufacturers that pro-
duce and sell compliant devices. These
devices render digital content for consumers,
while enforcing the usage rules set by content
providers.

• A licensing organization that certifies
compliant devices and revokes the circum-
vented ones. Usually, the licensing organi-
zation delegates the certification task to li-
cenced CE manufacturers that are contractu-
ally bound to only produce compliant devices
according the specified robustness rules.

• A number of authorized domains (ADs).
Each AD consists of compliant devices owned
by one household, and forms the authoriza-
tion unit of the system, in the sense that us-
age rules associated with content apply to one
AD as a whole.

content
DistributeManufacturers

content
Exchange

Exchange content

Devices
Certify

Devices
Certify

License

Distribute revocation information

Licensing
Authority

Distribute

Device

Device

Device

Device
Device

Compliant

CompliantCompliant

Compliant
Compliant

 device
Register

device
Register

device
Register

Authorized Domain

content

Provider
Content

Provider
Content

Manufacturer
CE

Manufacturer
CE

Content
Manager

Content
Manager

Domain
Manager

Figure 1. AD structure and interaction with
external entities

Figure 1 shows the internal structure of an AD.
As we can see, it consists of a number of compliant
devices whose main purpose is to render digital
content, which seamlessly moves from device to
device inside the domain. In addition to rendering
content, a device may play the AD Manager role,
or a Content Manager role, which are as follows:

• The AD Manager keeps track of the other de-
vices in the domain: it registers new devices,
and removes the ones leaving the domain (ei-
ther voluntarily, or because they have been
revoked by the licensing organization). There
can be only one manager per AD. If multiple
devices in the domain have this capability, the
user must select one of them as the active one.

• A Content Manager brings new data content
into the domain by interacting with content
providers. Different providers may choose dif-
ferent types of devices to supply their con-
tent; as a result, there can be multiple content
providers inside a domain.

It is important to understand that a device can
play multiple roles: it can render content, as well
as being the AD manager and possibly a Content
Manager. The amount of functionality packed in

4

a given device is a manufacturer/consumer choice.
From the consumer point of view, extra func-
tionality in a device is materialized through ad-
ditional command interfaces: the AD manager
device needs a special AD management inter-
face, while the content managers need command
interfaces allowing interaction with the content
providers they support.

At manufacture time, each compliant device is
given a public/private key pair, with the private
key stored in tamper-resistant memory, and the
public key certified by the manufacturer by means
of a device certificate. Each compliant device is
identified by a unique global device Id (GDI),
also included in the device certificate. The GDI
consists of two parts - the manufacturer prefix -
a short number identifying the CE manufacturer
that produced the device, and the device serial
number which uniquely identifies the device for
that manufacturer.

Finally, we want to stress that our system model
only considers on-line digital content distribution;
we do not consider content that comes on pre-
packaged media (e.g. CDs and DVDs), which, at
least under current distribution models, is not very
well suited to support fine-grained DRM.

3.3 Attack Scenario and Trust Model

The attack scenario we consider in this paper is
realistic with respect to digital content distribu-
tion: a malicious user is attempting to gain access
to content to which she is not entitled. To ac-
complish this goal, the attacker has full control of
the intra-domain home network, and can make use
of compromised and circumvention devices (de-
vices mimicking compliant devices). However, we
assume the attacker has limited computational
resources (cannot break cryptography), and has
only limited capability of disrupting external net-
work communication (between entities outside its
home). Besides the attacker, our system includes
a number of other entities: the Licensing Orga-
nization, Content Providers, CE Manufacturers,
as well as compliant devices (possibly with ex-
tended functionality, such as AD Manager or Con-
tent Manager). We will now describe the trust re-

lationships between these entities, and how they
collaborate to prevent the attack scenario we in-
troduced.

Central to our trust model is the Licensing Or-
ganization, identified through its public key. This
public key is the root of trust in the system and is
assumed to be known by all other parties. The li-
censing organization has two main functions: cer-
tifying CE manufacturers and issuing fresh de-
vice/manufacturer revocation information. Certi-
fying CE manufacturers involves issuing a digital
certificate binding the manufacturer prefix to the
manufacturer’s public key. The manufacturer can
then use this certified key to issue device certifi-
cates. The revocation information consists of a
Global Device Revocation List (GDRL); this list
contains the GDIs of devices known to be no longer
compliant, as well as the prefixes of manufacturers
that have been revoked. The mechanisms for iden-
tifying compromised devices are beyond the scope
of this paper, but they would most likely involve
forensic examination of illegal devices sold on the
black market (illegal devices incorporating cryp-
tographic material extracted from compromised
compliant devices). The most likely cause for re-
voking a CE manufacturer would be the compro-
mise of its private key (insider theft for example).
The way a CE manufacturer would react to such
a catastrophic event is again outside the scope of
the paper (one option would be requesting the cer-
tification of a new key and prefix, followed by a
massive device recall); however, the net result of
such a revocation is that all GDIs starting with
the revoked prefix are also considered revoked.

Content Providers are only interested in the
correct delivery of the content they own, so for
this reason they do not have to trust each other.
Correct delivery means the content is only re-
ceived by compliant devices which are trusted to
enforce the usage rules. Content Providers de-
liver their content to Content Manager compliant
devices over secure communication channels (au-
thenticated and confidential). Content Providers
also periodically receive fresh revocation informa-
tion from the Licensing Organization (this is as-
sumed to happen over a secure and reliable com-
munication channel, so we do not have to worry

5

about DoS attacks). Providers then use this infor-
mation to determine whether the content manager
devices they interact with are still compliant, and
stop delivering content to compromised managers.
The same revocation information is also bundled
with the digital content supplied to content man-
agers; this ensures that the only way to obtain new
content also implies the delivery of a fresh revo-
cation list. In this way, the communication chan-
nel between the provider and the content manager
needs not to be reliable: a DoS attack aiming at
preventing the device from receiving the revoca-
tion list would render the device useless, since it
would not be capable of receiving new content.

Compliant devices are fully trusted as long as
they are authenticated and not revoked. Domain
manager devices are trusted to correctly authenti-
cate devices before accepting them in the domain,
as well as to keep up to date with the revocation
information received through content manager de-
vices, and to promptly exclude from the domain
any revoked devices already part of it. On the
other hand, it is possible that the domain man-
ager itself is compromised. To counter this threat,
content manager devices are trusted to correctly
report the identity of the manager of the domain
they are part of to content providers; a provider
will then stop delivering content to a domain man-
aged by a compromised device.

4 Proposed Security Architecture

In this section we describe a security archi-
tecture to fit the “Authorized Domains” frame-
work. The key idea is to use a hybrid public
key/symmetric key compliance checking protocol
that greatly reduces the frequency of public key
cryptographic operations needed for intra-domain
device authentication.

4.1 Authorized Domain Creation

Creating a new AD requires one compliant de-
vice with AD manager functionality. When cre-
ating the new domain, the AD manager device
first erases all information about the previous AD
it has managed (if any); following that, it gener-

ates a master device key list (a list of 128 bit AES
keys) which is stored in its tamper-resistant mem-
ory. The size of this list is equal to the maximum
number of devices allowed in the domain; this is a
manufacturer/content provider choice, but we ex-
pect it to be in order of tens. Finally, the manager
generates a domain ID, also stored in its tamper-
resistant memory. The domain ID is built as a
concatenation of the manager’s GDI and an ever-
increasing domain version number. At manufac-
ture time, the domain version number is set to
zero; whenever the AD manager is reset, the do-
main version number is incremented, which en-
sures the manager will always generate different
domain IDs.

Once both the master device key list and the
domain ID have been generated, the AD creation
process is complete, and the manager can populate
the new domain by registering new devices.

4.2 Device Registration

A device that enters the AD needs to be
registered with the AD manager. The registration
phase consists of two steps: compliance checking,
and authorization. The complete registration
protocol between the AD manager (M) and a
device A is the following:

Notation

certE entity E′s public key certificate.
YE/xE entity E′s public/private key pair.
NE a random nonce generated by entity E.
{data}K data encrypted with the symmetric/asymmetric

key K; public key signing is represented as
encryption with a private key.

[data]K data transmitted over a secure channel protected
(integrity&confidentiality) by a symmetric key K.

Protocol

(1) A −→ M: certA, {NA,GDIM}xA

(2) M −→ A: certM , {NM , GDIA, NA, {ks}YA
}xM

(3) A −→ M: {NM ,GDIM}xA

(4) M −→ A: [LDIA,KA, credentialsSetA]ks

4.2.1 Compliance Checking

Compliance checking is done in steps (1) to (3)
of the registration protocol, and is based on the

6

X.509 strong authentication protocol [17]. The
two devices exchange their device certificates and
authenticate each other. Because we cannot use
secure clocks, the authentication protocol is based
on random nonces. At the end of step (3), each
device is assured the other party has access to a
private key corresponding to a public key certified
as compliant by the licensing organization. The
two parties also agree on a symmetric session key
ks (a 128 bit AES key) which is used by the man-
ager to protect the authorization information sent
to the device in step (4).

After completing step (3) of the protocol, the
AD manager selects the next un-used key in its
master key list. This key becomes A′s master key,
and the index of this key in M ′s master key list
becomes A′s local device Id (LDI) in the domain
(these are denoted as KA and LDIA in step (4) of
the protocol). At this point M also needs to up-
date its internal records, to keep track that LDIA

has been associated with GDIA.

The first three steps in the registration protocol
require public key cryptographic operations. In
most cases, these operations need to be performed
in software, on general-purpose CPUs, since it
cannot be assumed that all devices are equipped
with hardware cryptographic accelerators. As a
result, registration is likely to be a slow proce-
dure; however, since this is a relatively rare event
(it happens only when the user buys a new device),
the delay introduced should be acceptable.

4.2.2 Device Authorization

Accepting a device in an AD implies authorizing
the device to interact with other devices in the AD
in order to obtain content items. In the authoriza-
tion step, the manager issues the new device an
authentication credentials set, which is sent to the
new device in step (4) of the registration protocol,
together with its LDI and device master key. The
authentication credentials set consists of a num-
ber of (authentication key, authentication ticket)
pairs.

Authentication keys are symmetric keys shared
between two devices part of the same AD. Each
device is given authentication keys for every other

device already part of the domain as well as for
all potential devices that may join the AD in the
future (thus, the number of authentication keys
given to each device is equal to the size of the
master key list generated by the manager when
creating the AD). In this way, when new devices
join the AD, existing devices need not be updated,
which allows the AD to operate even without as-
suming continuous network connectivity among all
devices.

There is an authentication ticket associated
with each authentication key. The (authentication
key, authentication ticket) pair allowing device
A to authenticate to a device B has the form
(KAB , {KAB , IDDomain, GDIA, LDIA, LDIB}KB

),
where KAB is a 128 bit AES key, and KB is the
master device key for B. The authentication can
be used by A to prove to B that it is a compliant
device part of the same domain. Since the ticket
is encrypted with a key shared only between B

and the manager, B is assured only the manager
could have created it, which in turn (given the
manager is a compliant device following the
protocol) implies the manager has verified the
compliance of A.

Once a device is part of the domain, it can be
used to process the content items it acquires from
other devices in the domain. Before exchanging
content items, two devices authenticate each other
in order to prove they are part of the same domain.
The authentication protocol between two compli-
ant devices part of the same AD is shown in Fig-
ure 1. The protocol has been first introduced in
[7] and is based on a variation [5] of the classical
Kerberos authentication protocol [14]. It relies on
the security property of keyed hash functions used
as a basic primitive to generate fresh session keys,
and works as follows:

(1) A −→ B: LDIA, NA

(2) B −→ A: LDIB ,NB , authenticationT icketBA

(3) A −→ B: {NB}K , authenticationT icketAB

(4) B −→ A: {NA}K

Table 1. Device-to-device authentication pro-
tocol

7

In the above protocol, K = SHA-
1(KAB ,KBA, NA, NB), where SHA-1 is the
secure hash function described in [2]. We assume
that initially A and B are complete strangers
(they do not know each other’s LDIs). At the end
of the protocol K is the shared secret between
A and B and can be used for securing the data
traffic between the two devices.

During the authentication protocol, before ac-
cepting the other party’s ticket, a device needs to
do the following checks:

• The IDDomain in the ticket corresponds to the
authorized domain the device is part of.

• The second LDI value in the ticket is equal
to its own LDI.

• The SHA-1 hash of the device description sent
by the other device matches the hash in the
ticket.

• The other device has not been revoked (we
will show later how revocation checks are per-
formed)

4.3 Device Removal

There are three cases a device is removed from
a domain: when the device is moved to another
domain (voluntary leave), when the device is no
longer functional (damaged/stolen devices), and
finally when the device is known to be no longer
compliant (device revocation).

4.3.1 Voluntary Leave

In this case we assume a connection between the
device and the domain manager. The two devices
authenticate each other, and following that, the
the manager obtains the GDI of the departing de-
vice. This GDI is then added to the domain’s local
revocation list which will be described later.

4.3.2 Damaged/Stolen Devices

In this case, we cannot assume a connection be-
tween the device and the domain manager. In
order to remove a device, the domain manager

should provide a user interface allowing the do-
main owner to identify the device to be removed
(this can be a display showing the list of all devices
in the domain, with some input mechanism that
allows the owner to select from the list). Once
the domain owner has identified the device to be
removed, the manager adds that device’s GDI to
the local revocation list.

4.3.3 Device Revocation

Devices known to be no longer compliant are re-
voked by the licensing organization by having their
GDIs listed on the global device revocation list
(GDRL). Since it cannot be assumed all compli-
ant devices incorporate secure clocks, device revo-
cation lists are distributed by content providers to-
gether with the data content items; thus there are
no “freshness” requirements regarding revocation
information, except that the only way to obtain
new content automatically updates the GDRL.

Revocation lists can grow very large, since they
contain information regarding all compromised
devices in the world (if we have one billion com-
pliant devices, out of which only 1% are compro-
mised, the size of the revocation list would be
in the order of 40MB). Because of this, we can-
not assume that all devices have enough mem-
ory/computational power to process the global re-
vocation list.

4.4 Revocation Mechanisms

As discussed in Section 3.3, it is content man-
ager devices that bring fresh revocation informa-
tion in the domain (this revocation information is
bundled with the digital content supplied by con-
tent providers). Content managers also report the
identity of the domain manager to the provider,
which, before supplying any new content, ensure
that the AD manager has not been revoked. Once
a content manager device receives a new GDRL,
it does the following:

• The content manager attempts to connect to
the AD manager.

• If the AD manager is reachable, the content
manager forwards it the GDRL; the AD man-

8

ager processes the GDRL, and returns a Local
Revocation List (LRL), which is then bundled
with the data content (in this case, the con-
tent is dubbed lightweight).

• If the AD manager is not reachable, the con-
tent manager keeps the original GDRL at-
tached to the data content (in this case the
content is dubbed heavyweight).

It is important to understand that a LRL is
only meaningful for devices part of the domain
whose manager has issued that LRL. Should a
piece of data content have to be exported to other
domains, it should be the GDRL and not the LRL
that is attached to that content.

4.4.1 The Local Revocation List

The AD manager is responsible with generating
the local revocation list. This list consists of the
GDIs of domain devices that have been either re-
voked (they are present in the GDRL) or have
been removed from the domain. Since the total
number of devices in a domain is at most in the
order of hundreds, and adding/removing devices
from a domain are rare events, we expect the LRL
to be much smaller than the GDRL.

It should be possible for every device in the do-
main to authenticate a LRL as produced by the
AD manager. To accomplish this, the AD man-
ager creates one LRL authentication code for each
device (and potential device) in the domain. For
a device with LDI I the LRL authentication code
is the HMAC-SHA-1 [15] of the LRL using the
master key KI . The LRL then consists of the ac-
tual list of revoked devices plus the authentication
codes for all keys in the master key list. A device
can check the authenticity of the LRL by first find-
ing the LRL authentication code corresponding to
the device’s LDI, and then verifying that the au-
thentication code is identical to the HMAC of the
list (HMAC computed using its own device master
key).

4.4.2 Restricting Content Distribution

It is important that revoked devices cannot re-
ceive new digital content, so they eventually be-

come useless. In order to ensure this, a compliant
device is allowed to re-distribute content to other
devices in the domain only if it is capable of inter-
preting the revocation information bundled with
the content. In the case of lightweight content,
this is always the case; for heavyweight content,
we expect that only a limited number of powerful
devices will be able to process the GDRL. How-
ever, even if a device is not capable to process the
GDRL attached to a content item, it can still ren-
der the item; the only limitation is that it cannot
further distribute the content to other devices in
the domain.

Compliant devices may attempt to convert
heavyweight content to lightweight by contacting
the AD manager in order to obtain the LRL for
that content item. Once the conversion succeeds,
any device in the domain is allowed to participate
in the distribution of that item.

We can now see the clear advantage of our revo-
cation scheme: with traditional revocation mech-
anisms (global revocation lists, or the broadcast
encryption schemes), the amount of information
that needs to be transmitted and processed by
all devices grows linearly with the total number
of revoked devices. On the other hand, our two-
level revocation list scheme only requires a small
fraction of powerful devices to retrieve and pro-
cess global revocation information. The majority
of compliant devices only have to deal with lo-
cal revocation lists, which are orders of magnitude
smaller than the global ones.

4.5 Key Update

If too many devices are removed from the do-
main, the domain manager may eventually run out
of master keys to assign to new devices. One so-
lution to this problem is to terminate the domain
and re-start with a new master device key list.
However, this is not exactly user-friendly.

A more acceptable option is to re-use the LDIs
of removed devices. Consider a device A, with
LDIA = I. When A is removed from the domain,
its GDI is added to the domain’s LRL, and A′s

device master key is replaced with a fresh key in
the manager’s master key list; this new key is then

9

assigned to the next device joining the domain
(assume this is B). In this way, B is now assigned
the LDI previously assigned to A (LDIB = I).
This does not interfere with device revocation,
since it is the GDI, and not the LDI that is added
to the LRL. As in the normal device registration
protocol, the manager gives B an authentication
credentials set for all the other master keys in
its master key list. The problem now is that
all the other devices in the domain have tickets
encrypted with A′s old master key instead of
B′s key, and they need to be updated. However,
this update is done by B itself in an incremental
manner, the first time it needs to interact with
other devices already part of the domain. For
this, during registration, the AD gives B the
new (authenticationKey, authenticationT icket)
pairs for all devices already part of the domain,
each pair encrypted under the master key of
the respective device. The new authentication
protocol between B and another device C already
part of the domain becomes then:

(1) B −→ C: LDIB ,NB

(2) C −→ B: LDIC ,NC , authenticationT icketCA

(3) B −→ C: {KCB , authenticationT icketCB}KC
,

authenticationT icketBC

(4) C −→ B: {NB}K , authenticationT icketCB

(5) B −→ C: {NC}K

In step (2) of the protocol, device C forwards B

its old credentials (for A), since B is reusing A′s

LDI. B attempts to decrypt and (authenticate)
the ticket, but since the ticket is encrypted with
A′s old master key, the operation fails. B recog-
nizes that C has not been updated, and forwards it
the update ({KCB , authenticationT icketCB}KC

)
which it has obtained from the domain man-
ager (and is encrypted with C ′s master key).
In step (3), C decrypts and authenticates the
update using its master key, and replaces the
corresponding entry in its credentials set with
the data in the update packet. Following
this, C uses the (updated) key KCB , together
with the key KBC retrieved after decrypting
authenticationT icketBC to compute the shared
key K =SHA-1(KBC ,KCB , NB , NC), which is
then used to encrypt B ′s challenge. Finally, in
step (5), B has all the information needed to com-

pute K, which it uses to encrypt C ′s challenge,
and complete the protocol. Before accepting the
other party’s ticket, both B and C also need to
perform the checks described in Section 4.2.2, in
order to make sure the ticket has been issued for
the right domain, and the device has not been re-
voked. In addition to these checks, the device re-
ceiving the new credentials should also check at
step (3) of the protocol that the credentials it has
received have not been revoked.

4.6 Secure Content Storage

Data content items are brought in the domain
by the content manager devices. They bring
this content by interacting with external content
providers. Data items are stored in un-encrypted
form only in tamper resistant memory. Given
the fact that tamper-resistant memory is consid-
erably more expensive than un-trusted storage,
we employ a two level scheme: once a content
manager obtains a piece of data content, it gen-
erates a random content key (a 128b AES key),
and encrypts the content with that key. Following
that, it encrypts the content key with its mas-
ter key. The (encryptedContent, encryptedCon-
tentKey) tuple can then be safely stored on in-
secure storage. Whenever the device needs the
content, it can read the (encryptedContent, en-
cryptedContentKey) tuple in its tamper resistant
memory, use its master device key to decrypt the
content key, and use the content key to decrypt
the actual content.

The same optimization can be used to improve
the performance of content transfer between de-
vices. Assuming two devices A and B part of the
same domain, the protocol for securely transfer-
ring content from A to B is as follows:

• A and B authenticate each other as part of
the same domain and establish a secure com-
munication channel.

• A transfers the encrypted content to B over
an insecure channel (this is safe since the con-
tent is encrypted with the content key).

• A decrypts the content key with its master

10

key, and transfers the content key to B over
the secure channel.

• B encrypts the content key with its mas-
ter key, and stores it (together with the en-
crypted content) on its insecure storage for
later use.

5 Discussion

The great advantage of the security architecture
described in this paper is that public key opera-
tions are only infrequently required. In fact, for a
non-manager device, the only time it needs to per-
form public key operations is during the registra-
tion phase, for authentication to the domain man-
ager. Following that, all authentication between
devices part of the same domain is done by means
of (fast) symmetric key operations. The price we
pay for this is additional storage requirements in
every device; however, assuming authorized do-
mains only contain a limited number of devices
(in the order of tens), these storage requirements
are not excessive. Furthermore, devices only need
tamper-resistant memory for storing their device
master key. All the other data can be stored in
un-trusted memory, encrypted under the master
key.

Table 2 lists the memory requirements for
domain devices. We assume 128 bit AES keys are
used, global device identifiers are 64 bit long (this
allows for more than a trillion devices), domain
version numbers are 16 bit long (a device manager
can create 65536 domains during its lifetime),
and local device identifiers are 8 bit long (up to
256 devices per domain). For these numbers, the
size of the domain Id is 64b+16b = 80b, while the
size of an authentication ticket authT icketAB =
{KAB , IDDomain, GDIA, LDIA, LDIB}KB

is
128b + 80b + 64b + 8b + 8b = 288b. Based on this,
we calculate the following storage requirements:

We instantiate these generic number for three
particular cases: small domains (up to 20 devices
with at most 10 removed/revoked devices), large
domains (up to 100 devices with at most 50 re-
moved/revoked devices) and large domains with

Max. no. devices: N
No. of revoked devices: R
Master key list size: N ∗ 128b
Auth. ticket size: 288b
Auth. cred. set size: N ∗ (288b + 128b) = N ∗ 416b
Ticket revocation list size: N ∗ 160b + R ∗ 64b

Table 2. Memory requirements - generic case

frequent device removal (up to 100 devices with
at most 500 removed/revoked devices). The num-
bers we obtain are shown in Table 3:

Max. no. devices 20 100 100
No. revoked devices 10 50 500
Master key list 320B 1600B 1600B
Auth. ticket 288b 288b 288b
Auth. cred. set 1040B 5200B 5200B
LRL size 480B 2400B 6000B

Table 3. Memory requirements - specific sce-
narios

The only limitation of our architecture is that a
public key authentication protocol is still required
for device registration. However, since registration
is a rare event, we believe it is acceptable from the
user’s point of view to have a rather slow device
registration process, as long as all further device
interactions (once the device is part of the domain)
are lightweight and fast.

6 Related Work

The concept of Authorized Domain (AD) has
originated from work on content protection in the
home environment [19, 9, 12]. Early content pro-
tection mechanisms did little to address issues
such as consumer convenience and “fair use”; they
could also support only a limited number of busi-
ness models. Home content delivery networks were
meant to fix these problems: the idea was to allow
content sharing among devices owned by the same
household without restrictions (or at least with
as few restrictions as possible), but to carefully
control content sharing between different house-
holds. The Digital Video Broadcasting (DVB) [1]

11

standardization body later called this the “Autho-
rized Domain” concept [8]; based on this concept,
a number of home content delivery architectures
have been proposed [4, 3, 23, 21].

The SmartRight system [4] has been proposed
by Thompson Electronic, and relies on smart cards
modules incorporated into CE devices. Their se-
curity architecture shares a number of features
with ours, in the sense that basic compliance
checking also relies on public key certificates is-
sued by a licensing organization. Once devices are
accepted in one domain, they all share the same
symmetric domain key which is used to encrypt
the protected content. This is not well suited when
continuous network connectivity among all devices
in the domain cannot be assumed. Another draw-
back of this approach is that revoking devices part
of the domain requires changing the domain key,
which affects all devices.

The xCP architecture [3] has been proposed by
IBM, and is based on broadcast encryption. This
is the only DRM architecture solely based on sym-
metric key cryptographic algorithms, which is a
great advantage from an economical point of view.
However, as we showed earlier in the paper, broad-
cast encryption has its own limitations, most sig-
nificantly the rather expensive revocation mecan-
isms.

The system model we introduce in this paper is
based on the specification in [23]. However, [23]
only lists a number of functional requirements and
possible design options, without going into details
about protocols and security mechanisms.

Finally, [21] describes an architecture support-
ing delegation of authorization to personal elec-
tronic devices used for electronic transactions. Al-
though this is not directly related to content de-
livery for home networks, some of the delegation
protocols described in [21] can be incorporated in
“Authorized Domains” architectures.

7 Conclusion

We have described a security architecture for
the “Authorized Domains” framework. Central to
our design effort is a novel compliance checking
protocol which allows individual device authen-

tication in a loosely connected network environ-
ment, with minimal reliance on public key crypto-
graphic operations. In addition to this, our archi-
tecture supports efficient and flexible revocation of
compromised devices: revoking one compromised
device in the domain, does not require performing
a key update for all devices in the domain.

8 Appendix

In this section we examine the security of the
device to device authentication protocol we intro-
duced in Section 4.2.2. For our analysis we use
the BAN [6] logic that has been extended as sug-
gested by Wright and Stubblebine in [22] in or-
der to formalize revocation and dealing with keyed
hash functions. Both concepts are not present in
the original BAN logic. We assume the reader is
familiar with this logic.

We had to extend the original BAN logic with a
new formula and two new postulates. The formula
expresses the statement saying that a principal A
checked the revocation list issued by S about key
K and the key is not present in the list (thus K is
valid)

Revocation

¬(A |≡ ¬(S |≡ X))

Concerning the postulates, the first extend once
said in belief if the statement has not been revoked
after it has been uttered. The second states that
assuming f a keyed hash function over any num-
ber of input, the key obtained by applying such a
function on these inputs is trusted as long as one
of the input is a trusted secret and one is a fresh
nonce.

Revocation-check postulate

A|≡S|∼X,¬(A|≡¬(S|≡X))
A|≡S|≡X

We start our analysis from the idealized version
of the protocol, as required by the logic, recalling
that the messages and parts of messages in clear-
text are omitted, since they do not contribute to

12

Key-derivation postulate

A|≡A
K
←→B,A|≡#(N)

A|≡A
f(..,K,N,·)
←→ B

the logical properties of the protocol. The ide-
alized protocol is shown in Figure 2, where S

stands for the AD manager. IDdomain, GDIdevice,

and LDIdevice are omitted because their purpose
is to identify the sender and receiver of the mes-
sage, and this indication is already captured by
the specification of the principals (A and B) in

the other constructs (i.e. A
KBA
⇀↽ B).

(2) B −→ A: {A
KBA
⇀↽ B}KAS

(3) A −→ B: {A
KAB
⇀↽ B}KBS

, {Nb, A
K
←→ B}K

(4) B −→ A: {Na, A
K
←→ B}K

Figure 2. Idealized device-to-device authenti-
cation protocol

The analysis consists of starting from assump-
tions that represent the beliefs of the parties when
the run of the protocol starts and by applying
the postulates of the logic verifying if the goal of
authentication is achieved. This goal can be ex-
pressed in term of beliefs of the two parties. Thus
we might deem that authentication is complete be-
tween A and B if there is a K such that: A |≡

A
K
←→ B, B |≡ A

K
←→ B, A |≡ B |≡ A

K
←→ B,

and B |≡ A |≡ A
K
←→ B.

The assumptions of the protocol are the
following ones:

The first four assumptions are about the shared
keys between devices and the AD manager. The
next four concern A’s and B’s authentication keys
generated and assigned to them by the AD man-
ager. The fact that the keys are unidirectional is
represented by the fact that each device believes,
directly, only its own directional key. The next two
assumptions capture the belief of the client in the
other party’s directional authentication key via
the AD manager, that has jurisdiction over these

Assumptions

A |≡ A
KAS←→ S B |≡ B

KBS←→ S

S |≡ A
KAS←→ S S |≡ B

KBS←→ S

A |≡ A
KAB
⇀↽ B B |≡ A

KBA
⇀↽ B

S |≡ A
KAB
⇀↽ B S |≡ A

KBA
⇀↽ B

A |≡ (S |⇒ A
KBA
⇀↽ B) B |≡ (S |⇒ A

KAB
⇀↽ B)

A |≡ (S |⇒ (B |∼ X)) B |≡ (S |⇒ (A |∼ X))
A |≡ #(Na) B |≡ #(Nb)

keys since he generates and assigns them. The
next two assumptions indicates that devices trust
the AD manager to forward a message from the
other device honestly. This trust is used since the
AD manager distributes the authentication keys
and the fact that this is done off-line or on-line is
not relevant. The last two assumptions show that
two nonces are used and who considers them to be
fresh.

Starting from the assumptions we can now pro-
ceed with the analysis. A receives message 2, so

A/{A
KBA
⇀↽ B}KAS

. A can decrypt the message be-
cause she knows and trusts KAS thus, by applying
the message-meaning, revocation check and juris-
diction postulates, we have:

A|≡A
KAS
←→S,A/{A

KBA
⇀↽ B}KAS

A|≡S|∼A
KBA
⇀↽ B

A|≡S|∼A
KBA
⇀↽ B,¬(A|≡¬(S|≡A

KBA
⇀↽ B)

A|≡S|≡A
KBA
⇀↽ B

A|≡(S|⇒A
KBA
⇀↽ B),A|≡S|≡A

KBA
⇀↽ B

A|≡A
KBA
⇀↽ B

Then B receive message 3 and he seees: B /

{A
KAB
⇀↽ B}KBS

, {Nb, A
K
←→ B}K .

For the first part of the message we can apply
the same rule we just applied for A, thus by ap-
plying the message-meaning, revocation check and
jurisdiction postulates on the fist part of the mes-
sage B sees, we have:

Now we can apply the key derivation postulate,

13

B |≡ A
KAB
⇀↽ B

and we get the follwing:

B|≡A
KAB
⇀↽ B,B|≡#(Nb)

B|≡A
K
↔B

where K = f(KAB,KBA, Nb, Na).
By applying the message meaning and nonce-

verification postulate on the second message re-
ceived by B, we obtain:

B|≡A
K
↔B,B/{Nb,A

K
←→B}K

B|≡A|∼(Nb,A
K
←→B)

B|≡#(Nb),B|≡A|∼(Nb,A
K
←→B)

B|≡A|≡A
K
←→B

The protocol continues with B sending mes-

sage 4 to A such that: A / {Na, A
K
←→ B}K .

The analysis of this message is the same as the
analysis of the second message received by B in
step 3 of the protocol. Thus, by also applying
the key-derivation, message-meaning and nonce-
verification postulates we obtain:

A |≡ B |≡ A
K
←→ B

We can conclude that the authentication goals
are satisfied, since from the initial assumptions,
the two participants reach the state where both
of them believe they share a key they both trust.
Additionally, each of participants believe the other
party believes the same thing (strong authentica-
tion).

Since the limits of the BAN logic are well
known, we recognize that a more challenging secu-
rity analysis is also necessary. At the time of writ-
ing, we are working on a security analysis that use
a more powerful model than the one assumed by
the BAN logic (i.e. Dolev&Yao) for attacks and
intruders and different tools (i.e. model checkers).
However, due to space constraints, we will provide
the full details of such analysis in a future paper.

References

[1] DVB - The Digital Video Broadcasting Con-
sortium. http://www.dvb.org/.

[2] Secure Hash Standard. FIPS 180-1, Secure
Hash Standard, NIST, US Dept. of Com-
merce, Washington D. C. April 1995.

[3] xCP Cluster Protocol.
http://www.almaden.ibm.com/software/ds/
ContentAssurance/ papers/xCP DVB.pdf.

[4] Smartright technical white paper.
http://www.smartright.org/images/SMR/
content/SmartRight
tech whitepaper jan28.pdf, Jan. 2003.

[5] C. Boyd. A Class of Flexible and Efficient
Key Management Protocols. In Proc. 9th
IEEE Computer Security Foundation Work-
shop, 1996.

[6] Michael Burrows, Martn Abadi, and
Roger M. Needham. A logic of authentica-
tion. ACM Trans. Comput. Syst., 8(1):18–36,
1990.

[7] B. Crispo, B.C. Popescu, and A.S. Tanen-
baum. Symmetric key authentication services
revisited. In Proc. 9th Australasian Confer-
ence on Information Security and Privacy,
July 2004.

[8] Call for proposals for content protection &
copy management technologies, July 2001.

[9] A.M. Eskicioglu and E.J. Delp. An overview
of multimedia content protection in consumer
electronic devices. Signal Processing: Image
Communication, 16(5):681–699, April 2001.

[10] A.M. Eskicioglu, J. Town, and E.J. Delp. Se-
curity of Digital Entertainment Content from
Creation to Consumption. Signal Processing:
Image Communication, 18(4):237–262, April
2003.

[11] A. Fiat and M. Naor. Broadcast Encryption.
In Advances in Cryptology - CRYPTO ’93,
pages 480–491, 1993.

14

[12] F.L.A.J.Kamperman and S.A.F.A.van den
Heuvel and M.H.Verberkt. Digital Rights
Management in Home Networks. In Proc.
IBC 2001, pages 70–77, Sept. 2001.

[13] J. A. Halderman. Evaluating New Copy-
Prevention Techniques for Audio CDs. In
Proc. 2002 ACM Workshop on Digital Rights
Management, 2002.

[14] J.T. Kohl and B.C. Neuman. The Ker-
beros Network Authentication Service (Ver-
sion 5). Technical report, IETF Network
Working Group, 1993. Internet Request for
Comments RFC-1510.

[15] H. Krawczyk, M. Bellare, and R. Canetti.
RFC 2104 - HMAC: Keyed-Hashing for Mes-
sage Authentication. Internet RFC 2104, Feb.
1997.

[16] J. B. Lotspiech, S. Nusser, and F. Pestoni.
Broadcast encryption’s bright future. IEEE
Computer, 35(1), 2002.

[17] A. Menezes, P. van Oorschot, and S. Van-
stone. Handbook of Applied Cryptography.
CRC Press, 1996.

[18] D. Naor, M. Naor, and J. Lotspiech. Re-
vocation and Tracing Schemes for State-
less Receivers. In Advances in Cryptology -
CRYPTO ’01, pages 41–62, 2001.

[19] M. Ripley, C.B.S. Traw, S. Balogh, and
M. Reed. Content Protection in the Digital
Home. Intel Technology Journal, 6(9):49–56,
2002.

[20] B. Rosenblatt, B. Trippe, and S. Mooney.
Digital Rights Management, Business and
Technology. M&T Books, 2002.

[21] S. Sovio, N. Asokan, and K. Nyberg. Defin-
ing Authorization Domains Using Virtual De-
vices. In SAINT Workshops 2003, pages 331–
336, 2003.

[22] Stuart G. Stubblebine and Rebbeca N.
Wright. An Authentication Logic with For-
mal Semantics Supporting Synchronization,

Revocation, and Recency. IEEE Trans.
Softw. Eng., 28(3):256–285, 2002.

[23] S.A.F.A. van den Heuvel, W. Jonker,
F.L.A.J. Kamperman, and P.J. Lenoir. Se-
cure Content Management in Authorized Do-
mains. In Proc. IBC 2002, pages 467–474,
Sept. 2002.

[24] C.K. Wong, M.G. Gouda, and S.S. Lam.
Secure Group Communications Using Key
Graphs. In Proc. of the ACM SIGCOMM,
pages 68–79, 1998.

15

