
A Location Service for Worldwide Distributed Objects 1

A Location Service for Worldwide Distributed
Objects

Franz J. Hauck1, Maarten van Steen, Andrew S. Tanenbaum

Dept. of Math. and Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

Abstract

This position paper introduces the Globe object model for wide-area distribu-
ted systems and its location service. The location service pr ovides transpar-
ency of location, migration, distribution, and r eplication of distributed ob-
jects. We present the architecture of the service and briefly discuss scalability.

1 Introduction

Since the early days of the Internet worldwide distributed services are available to us-
ers. One problem with this is that their inherent distributed architecture is not trans-
parent to users. While some services in the Internet provide moderate transparency ,
such as electronic mail and the WWW, programming models for building worldwide
distributed applications that scale with respect to lar ge geographical areas and the
number of users are generally not available.

One form of transparency is location transparency. For many applications and ser-
vices, users do not care where the application or a server is located as long as it does
its job and has a reasonable response time. An example is the World Wide Web. For
object-based systems, location transparency means that objects can be named inde-
pendently of their physical location. A location is usually expressed in terms of a net-
work address of an underlying network protocol.

Another form is replication transparency. Users need not know whether and how
an object is replicated. This is closely related to the naming of objects. A single name
for a replicated object or service should be mapped to multiple (sub-)objects or to
multiple network addresses without the user being aware of this.

The DNS name service addresses location transparency of Internet hosts and mail
addresses [4]. However, the only reason it scales is, because the DNS name-to-ad-
dress bindings hardly change. This cannot be assumed in general. For example, the
World Wide Web suffers from a lack of location transparency. WWW names (URLs)
depend on DNS domain names and usually on a filename on the server’s file systems
[1]. Thus, URLs are coupled to hosts. If one WWW document, such as a user’s home
page, has to move to another WWW server or to another directory it has to get a new
URL.

1.



Franz J. Hauck, Maarten van Steen, Andrew S. Tanenbaum2

Even worse is replication transparency in today’s systems. There are mirrors for
heavily used WWW and ftp sites, but the same file or document has multiple names,
one for each replica. In CORBA, replication services have not yet been incorporated
at all. It remains to be seen if a general replication mechanism can be devised that is
applicable in all cases, and in a transparent way [6]. In Spring, replication can be
achieved by special Subcontracts which handle replication at the client side by multi-
ple invocations in different objects [2]. It is unclear to us how this will scale to wide-
area systems.

In Section 2, we introduce the Globe object model which is a uniform model for
building distributed applications. We show how state is replicated and how naming is
done. Section 3 focuses on the location service of Globe which is the second step in a
two phase naming system. We discuss the architecture of the service and its scalabil-
ity. Finally, we give our conclusions in Section 4.

2 Globe Object Model

The Globe architecture introduces distributed shared objects [9]. Objects provide
methods made available through interfaces. Objects are passive. Activity is provided
by processes that can share objects and can invoke their methods concurrently. An ob-
ject’s state can be physically distributed through local objects. A local object resides
in exactly one address spaces and communicates with other local objects to form a
distributed object. This is completely transparent to clients.

If a process wants to access an object, it first has to bind to it. To that end, the pro-
cess has to create a local object in its own address space. This local object connects to
the distributed object, and thus becomes part of it. This is different to most other ob-
ject-based models, which adopt a general client/server approach, such as DCE [7],
CORBA [6], and Spring [3]. A local object can play the role of a client stub as in
these models, but it can also be an important part of the distributed object by fully or
even partially replicating its state.

We use a two-level naming scheme for objects. The name service forms the first
level of the naming system. It maps user-defined verbose names to object handles. An
object handle is a pure name [5]: it is a fixed size bit pattern that is uniquely assigned
to every object.

The location service handles the second stage of naming by mapping object han-
dles to one or more so called contact addresses. A contact address contains the net-
work address of a contact point located in one of the local objects of the distributed
object. Additionally, it contains a protocol identifier for a initial binding protocol. For
the binding, a process creates a new local object which knows the requested binding
protocol and initializes the local object with the contact address.

Each of the local objects may provide a contact point for the distributed object.
Therefore, the local object registers or unregisters the corresponding contact address
at the location service. Migration of objects is expressed in terms of newly created



A Location Service for Worldwide Distributed Objects 3

contact points and deletion of old ones. Rather than using the term migration, we say
that a distributed object expands and shrinks.

The first part of the naming system can provide one or more user defined names
for an object. Each name is resolved to a single object handle. The second part of the
naming system, implemented by the location service, achieves transparency of loca-
tion, migration, distribution, and replication. Whether the object is distributed or mo-
bile, whether it is replicated, and how replicas are kept consistent, is completely hid-
den to the client. Having the object handle at hand, a process may bind to the object
without knowing the physical location of its local objects.

3 Location Service

The first part of the naming system is subject of ongoing research. It can be designed
without looking at replication or location of objects. As mentioned above, the second
part, the location service, maps object handles to one or more contact addresses. We
have devised a location service that scales worldwide and that can support trillions of
objects.

The location service is structured using a search tree of directory nodes. Each
node represents a geographical, topographical, or administrative region of the world-
wide communication system. The region of an intermediate node is the union of all
the regions in its subtree. Finally, the root node of the tree represents the entire world.
Fig. 3–1 illustrates a search tree and its regions.

1.1 Operations

When an object registers a contact address at the location service it is usually stored in
the directory node of the smallest enclosing region in which the address is located, a
leaf node of the search tree. For each object, a path of forwarding pointers is estab-
lished starting from the root node of the tree to each place where a contact address is

Fig. 3–1 An example of a search tree of the location service and its regions.



Franz J. Hauck, Maarten van Steen, Andrew S. Tanenbaum4

stored. Fig. 3–2 shows a search tree and the stored data for one object with two con-
tact points in different regions.

A client starts searching in the region where it is located. If it does not find contact ad-
dresses or a forwarding pointer, it successively goes up the tree expanding the search
area. In the worst case it will find a forwarding pointer in the root node. Once a for-
warding pointer is found it is followed until a contact address is reached. This scheme
prefers contact addresses that are located near a client and thus reduces the search
path.

To reduce the length of a search path as much as possible, we apply a number of
optimizations. First, we cache pointers to nodes storing contact addresses. Whenever
we find a contact address, all nodes on the return path of a lookup request update their
caches. Cached pointers are preferred on search operations and reduce the search path
to a length of two in the best case. Cache entries are invalidated on time-outs and
when an attempt to follow a cache pointer fails.

Second, we collect stability information on contact addresses. A directory node
does not hand out cachable pointers if the stored contact addresses are likely to be
withdrawn by the object. This instability is derived from the insert and delete history
in the corresponding region. Third, instable addresses are stored in higher level direc-
tory nodes to get better stability measurements and to increase the probability of sta-
bleness.

Fig. 3–2 A search tree with two contact addresses for one object.

Fig. 3–3 The partitioning of directory nodes into subnodes.



A Location Service for Worldwide Distributed Objects 5

2.2 Implementation and Scalability

The search tree is implemented by partitioning each directory node into a number of
servers called subnodes. Each subnode serves a dif ferent part of the object handle
space essentially by using hashing techniques. In Fig. 3–3 we use the first two bits of
an object handle for selecting the root subnode, and only the first bit for selecting a
child subnode1. The partitioning introduces scalability. The root node of the tree has
to know about every object in the system, but we can show, that each subnode of the
root will have to store only about 10 gigabytes of data if the root is partitioned in one
subnode per 108 objects. More details about scalability can be found in [8].

4 Conclusion

We introduced the Globe object model and its location service which provides trans-
parency of location, migration, distribution, and replication. We can show that the
service scales to a huge number of objects. Finally, we developed sophisticated insert,
delete, and lookup algorithms which can handle concurrent invocations and fault tol-
erance. Without going into the details, the algorithm can handle network partitions
and node failures without loss of data by exploiting RPC semantics. Current work is
being done on prototype implementations and simulations. Further research is consid-
ering failure resilience and security.

References

1. T. Berners-Lee, L. Masinter, M. McCahill. “Uniform Resource Locators (URL).” RFC 1738,
Dec. 1994.

2. G. Hamilton, M. Powell, J. Mitchell. “Subcontract: A flexible base for distributed program-
ming.” In Proc. 14th Symp. on Operating Sys. Principles, Asheville, NC, Dec. 1993. ACM.

3. J. Mitchell et al. “An overview of the Spring system.” In Proc. Compcon Spring 1994. IEEE,
Feb. 1994

4. P. Mockapetris. “Domain names – concepts and facilities.” RFC 1034, Nov. 1987

5. R. M. Needham. “Names.” In S. Mullender, (ed.), Distributed Systems, pp. 315–327. Addison-
Wesley, Wokingham, 2nd edition, 1993.

6. Object Management Group. “The Common Object Request Broker: Architecture and specifica-
tion, Revision 2.0.” Techn. Report 96-03-04, OMG, July 1995.

7. W. Rosenberry, D. Kenney, G. Fisher. Understanding DCE. O’Reilly, Sebastopol, Calif., 1992.

8. M. van Steen, F. J. Hauck, A. S. Tanenbaum. “A model for worldwide tracking of distributed ob-
jects.” In Proc. TINA ‘96 Conference, VDE, Berlin, 1996.

9. M. van Steen et. al. “Towards object-based wide area distributed systems.” In L.-F. Cabrera and
M. Theimer, (eds.), Proc. 4th IWOOOS, pp. 224–227, Lund Sweden, Aug. 1995. IEEE.

1. To achieve a reasonable load balance between subnodes, we have to assume here
that the first bits are randomly distributed.


