
From Remote Objects to Physically Distributed Objects

Arno Bakker, MaartenvanSteen,Andrew S.Tanenbaum
Vrije UniversiteitAmsterdam

Departmentof ComputerScience
Amsterdam,TheNetherlands�

arno,steen,ast� @cs.vu.nl

Abstract

Present-day object-oriented middleware provides little
support for the distribution, replication and caching of the
state of a distributed object. This makes these platforms un-
suitable for the development of large-scale distributed ap-
plications. We argue that the model of distributed objects
on which these middleware platforms are based hinders the
addition of comprehensive distribution and replication sup-
port to these platforms. We present an alternative view of
distributed objects, in which objects are not only in control
of the functional aspects of their implementation but also in
control of their nonfunctional aspects, in particular, the dis-
tribution and replication of their state. We claim that a mid-
dleware platform based on this view of distributed objects
is better suited for developing the large-scale applications
of the future.

1. Introduction

In the not-so-distantfuture the Internetwill grow to a
network connectinghundredsof millions of peopleall over
theworld, maybeevenabillion. To keepthisnetwork from
a permanentstateof congestion,network servicesandap-
plicationswill needto make heavy useof replicationand
cachingtechniques[4]. Unfortunately, currentmiddleware
platformsprovide little or no supportfor thesetechniques,
makingthemunsuitablefor thedevelopmentof large-scale
distributedapplications.

In this paperwe argue that the presentmodelsof dis-
tributedobjectson which thesemiddlewareplatformsare
basedarenotfit for dealingwith theproblemsof large-scale
systems.Weclaimthatthesemodelswill preventplatforms
from providing comprehensivesupportfor inherentlylarge
systemsthroughdistribution, replicationandcaching. We
presentanalternative way of looking at distributedobjects
andarguethat it is a betterbasisfor supportingreplication
andcachingof thestateof objects.

2. The legacy of RPCs: CORBA and DCOM

Two middleware platforms are currently popular:
CORBA [7] and DCOM [1]. A distributed object as de-
finedin CORBA is anobjectrunningon a singlemachine,
presentedto remoteclients asa local objectby meansof
proxies. An ObjectRequestBroker mediatesbetweenthe
clientsand the objectand, in particular, takescareof the
transportof requestsandrepliesfrom the client to the ob-
ject over thenetwork. CORBA currentlyhaslittle support
for thereplicationof objects.

Theimplicationof this remote-objectview is thatdistri-
bution andreplicationof a distributedobjectaremanaged
by the ObjectRequestBroker. This implies, in turn, that
the choiceof the applicationprogrammerwith respectto
thesenonfunctionalaspectsis limited by what the Object
RequestBroker (or ORB Service)offers. For example,an
ORB might offer only active replicationprotocolsandno
primary-backupsolutions.

The CORBA modeldoesnot easilyallow the introduc-
tion of object-specificreplicationanddistributionprotocols.
CORBA Interceptors, smallpiecesof softwarethatcanbe
introducedin theinvocation(andresponse)pathfrom client
to object, are an improvement,but they are currentlynot
properlyworked out [6]. We arguethat taking a different
view of distributed objectsallows object-specificpolicies
for nonfunctionalaspectsin a morecomprehensiveway.

The other popularmiddlewareplatform is DCOM [1].
DCOM is the combinationof Microsoft’s COM with re-
mote procedurecalls following the DCE standard[8], to
allow clients to interactwith COM componentson other
machines.

The choice for DCE RPCsmakes DCOM basicallya
client/singleserversystem.Thecustommarshallingfeature
of DCOM allows applicationprogrammersto write their
own proxiesandserver-sideskeletons.This featurecanbe
usedto implementobject-specificreplicationandsecurity
protocols. However, implementationis left entirely to the
applicationprogrammer.



3. A different view of distributed objects

TheGlobedistributedsystem[10] is a middlewareplat-
form specificallydesignedfor developing large-scaledis-
tributedapplications.In Globe,processescommunicateby
invoking methodson a specialkind of distributed object,
called a distributed shared object (DSO). The distributed
sharedobjectis theunifying conceptin thesystem.It pro-
videsa uniformrepresentationof bothinformationandser-
vices and implementationflexibility by decouplinginter-
faceandimplementation.

3.1. Physically distributed objects

The fundamentalidea behind the design of the dis-
tributedsharedobjectis that it is, whatwe call, physically
distributed. Insteadof viewing a distributed object as an
entity runningonasinglemachine,possiblywith copieson
other machines,we view a distributed sharedobject as a
conceptualobject,distributedover multiple machineswith
its local representatives (proxiesandreplicas)cooperating
to provide the single (consistent)image. In other words,
a distributedsharedobject is a wrapperencompassingall
theobject’sproxiesandreplicas,ratherthana remotelyac-
cessibleobjectimplementation.This view is illustratedin
Figure1a.

This differentview of whata distributedobjectis gives
us flexibility with respectto replication,cachingand dis-
tribution of the object’s state. In this view, a distributed
sharedobjectencapsulatesits own replicationanddistribu-
tion strategy. The local representatives of an object take
careof the replicationanddistribution of the DSO’s state
andall necessarycommunication.Only minimal (protocol
independent)supportis requiredfrom therun-timesystem.

Theway thestateof theobjectis replicatedcannow be
governedcompletelyby object-andapplication-specificre-
quirementswith respectto consistency and nonfunctional
aspects,suchassecurity, andis undernorestrictionfromthe
supportingmiddlewareplatform.However, wedonot leave
everythingto theapplicationprogrammer. Thestructureof
local representatives,describedbelow, separatesreplication
andcommunicationcode. This meansthat a programmer
canwrite his or herown replicationprotocolbasedon ex-
isting communicationprotocols. Furthermore,we provide
the applicationprogrammerwith implementationsof fre-
quentlyusedreplicationprotocols.

3.2. Implementation of the Globe object model

A local representative residesin a singleaddressspace
and communicateswith local representatives in other ad-
dressspaces.Eachlocal representativeis composedof sev-

Network

A1 A2

A3 A4A5

Distributed
Object

Local
Representative

Address
Space

(a)

Replication
subobject

Semantics
subobject

Control
subobject

Communication
subobject

(b)

Figure 1. (a) A distrib uted shared object (DSO) dis-
trib uted over four address spaces (A1-A4). In each
address space the DSO is represented by a local
representative . Address space A5 does not cur -
rentl y contrib ute to the distrib uted shared object.
(b) A local representative is composed of a number
of subobjects. The exact composition depends on
the role the local representative plays in the dis-
trib uted shared object.



eralsubobjectsasshown in Figure1b. A typical composi-
tion consistsof thefollowing four subobjects.

Semantics subobject: This is a local object that im-
plements(part of) the actualsemanticsof the distributed
object. As such, it encapsulatesthe functionality of the
distributedobject. The semanticsobjectconsistsof user-
definedprimitiveobjectswrittenin programminglanguages
suchasJava,C or C++. Theseprimitiveobjectscanbede-
velopedindependentof any distribution or replicationis-
sues.

Communication subobject: This is generallyasystem-
providedsubobject(i.e., takenfrom a library). It is respon-
siblefor handlingcommunicationbetweenpartsof thedis-
tributedobjectthat residein differentaddressspaces,usu-
ally on differentmachines.Dependingon what is needed
from the other components,a communicationsubobject
may offer primitives for point–to–pointcommunication,
multicastfacilities,or both.

Replication subobject: The global state of the dis-
tributed object is madeup of the stateof semanticssub-
objectsin its local representatives. A DSO may have se-
manticssubobjectsin multiple local representativesfor rea-
sonsof fault toleranceor performance.In particular, the
replicationsubobjectis responsiblefor keepingthestateof
thesereplicasconsistentaccordingto some(per-object)co-
herencestrategy. Differentdistributedobjectsmayhavedif-
ferentreplicationsubobjects,usingdifferentreplicational-
gorithms. An importantobservation is that the replication
subobjecthasstandardinterfaces.

Control subobject: Thecontrolsubobjecttakescareof
invocationsfrom client processes,andcontrolsthe interac-
tion betweenthe semanticssubobjectand the replication
subobject.This subobjectis neededto bridgethe gapbe-
tweenthe user-definedinterfacesof the semanticssubob-
ject,andthestandardinterfacesof thereplicationsubobject.

A key role,of course,is reservedfor thereplicationsub-
object.Replication(andcommunication)subobjectsareun-
awareof themethodsandstateof thesemanticssubobject.
Instead,boththereplicationsubobjectandthecommunica-
tion subobjectoperateonly onopaqueinvocationmessages
in which methodidentifiersandparametershave beenen-
coded.This independenceallows us to definestandardin-
terfacesfor all replicationandcommunicationsubobjects.
This approachis comparableto techniquesappliedin re-
flectiveobject-orientedprogramming[2].

3.3. Binding to a distributed shared object

To accessa distributedsharedobject,a client first needs
to install a local representative of the object in its address
space.Theprocessof installinga local representative in an
addressspaceis calledbinding. An importantpropertyof
Globeis thateachDSOis identifiedby aworldwideunique,

location-independentobjectidentifier (OID). During bind-
ing, this OID is mappedto oneor morecontactaddresses,
describingwhere(network address,port number)andhow
(which replication and communicationprotocol) the dis-
tributedsharedobjectcanbe contacted.This information
is thenusedby thelocalrun-timesystemto createanew lo-
cal representativein theclient’saddressspaceandintegrate
thenew representativeinto theDSO.

We maketheassumptionthatanOID neverchanges,but
thatanobject’scontactaddressesmaychangeregularly. For
this reason,we cannotmake useof traditionalnamingser-
vicessuchasDNS, to look up a contactaddress.Although
we have developedan efficient location service for track-
ing distributedsharedobjects[9], bindingto anobjectwill
always requirelooking up a contactaddress,making it a
relatively expensiveoperation.

We stressthat theperformanceof bindingwould not be
a problemif contactaddresseswouldneverchange.This is
thereasonwhy look-upoperationsin theWorld Wide Web
performreasonablywell. However, even the Web demon-
stratesthat contactaddresses(i.e., URLs), do change. In
Globe,we do not make simplifying assumptionsaboutthe
mobility of objects,as we believe that suchassumptions
havenoplacein thenext generationof distributedsystems.

4. Granularity of distributed shared objects

A distributedapplicationin which cachingandreplica-
tion play an importantrole is the World Wide Web. This
makesit animportantareaof researchfor us.

Consider, for example,amoderate-sizeWebsiteconsist-
ing of hundredsof Webpages,alongwith the images,ani-
mations,etc.thatgowith thesepages.LikemostWebsites,
someWeb pageswill be popularwhile othersare hardly
everaccessed.Likewise,thissitewill containpagesthatare
hardlyeverchanged,andpagesthatarechangedeveryday.
ThereareseveralwaysthatsuchaWebsitecanbemodeled
in Globe.

Oneapproachis to takeeachpage,alongwith its images
andsuch,andturn it into a Globedistributedsharedobject.
Thisoffersafine-grainedapproachto distribution,asweare
ableto associatea separatedistribution strategy with each
page.For example,pagesthatenjoy largepopularitycould
bereplicatedusinga copy-invalidatescheme,reducingthe
averagedownloadtime becausetheir contentsarecloserto
the viewer. Lesspopularpagescould possiblydo without
replication. Although in theory this approachworks fine,
it would alsomeanthata client (i.e., a Globe-enabledWeb
browser)would have to go throughtheentirebindingpro-
cessfor eachpage,sinceeachpagewould bea distributed
sharedobject.Giventhecurrentcostof contactaddresslook
ups,wedeemthisapproachasyet to betooexpensive.

An alternativeis tomodeltheentiresiteasasingleGlobe



distributedsharedobject. However, it is clearthat this ap-
proachcan work only for small sitesconsistingof a few
Web pages.Themainproblemis thathaving a singledis-
tribution strategy for all pagesof the site is not a good
idea. For example,if 90% of all accessesinvolve only a
few pages,thenit doesnotmakesenseto useamaster-slave
replicationstrategy for all pages.Ontheotherhand,thead-
vantageof theapproachis thatonly a singlebindingstepis
neededto accessthesiteandall its pages.Gettingaccessto
theWebsiteobjectis thuscheap.

The solution,of course,lies in the middle: a large site
consistingof hundredsof pagesshouldbesplit into smaller
units,whereeachunit hasits own distribution strategy. In
principle, eachunit could be representedby a distributed
sharedobject. The problemwith this approachis that we
aregroupingpagesinto objectsbasedon distribution strat-
egy. As a consequence,the objectswe createmay not be
meaningfulat the functional level, becausethe only thing
thatrelatesthepagesin thoseobjects,is thatthey shouldbe
distributedin thesameway.

It is possiblethat the objectswe createcorrespondto
logical relationships(e.g.,a groupof pagesthatshouldbe
replicatedthe sameway might turn out to be the groupof
pagesdescribinga certainproductline). However, in gen-
eral, this will not be the caseand thereforethis approach
violatesthebasicprinciplesof good(object-oriented)soft-
wareengineering,notablyseparationof functionalandnon-
functionalaspects.

The fundamentalproblemto be solved hereis that we
want to differentiatebetweendataelementsaccordingto
nonfunctionalrequirements(i.e., apply different distribu-
tion strategiesto differentdataelements)at low cost,with-
out creatingrelationshipsbetweenthoseelementsat the
functional level (i.e., group logically unrelateddata ele-
mentsinto the sameobject). To illustrate this point, con-
sidertheexampleof a company’sWebsitewherethemost
popularpagesaretheproductandsupportpages.For per-
formancereasonsit would make senseto put the product
andsupportpagesin a singleDSOwith anoptimizedrepli-
cationstrategy. However, logicallyproductsandsupportare
differententitiesandshouldbekeptseparate.

We describehow this problemcanbe solved usingthe
distributedsharedobjectconceptin the next section. The
approachin which logically relatedpagesaregroupedinto
distributedsharedobjects,that is, wheretheDSOsarelog-
ical units, is currentlybeinginvestigatedfor feasibility by
ourprojectteam[11].

5. Containers and clusters

Our solution is to usea clusteringmechanism. Clus-
tering has traditionally been applied to object-oriented
databasesto physicallygrouprelatedobjectsclosetogether

so that they may be efficiently retrieved [3]. In our case,
we useclustersto groupelementsaccordingto a common
distribution strategy. An importantaspectof our solution
is that elementsareno longeronly piecesof data,but are
turnedinto objectsencapsulatingtheirown implementation.
This both facilitatesthe implementationof our clustering
mechanismandaddsexpressivenessto the system.In our
Webexample,anelementwouldbea Webpagewith all its
HTML text, images,etc.,modeledasanobjectcontaininga
setof fileswith methodsto add,retrieve,updateandremove
thesefiles.

In ournew model,elementsareheldin acontainer. Each
elementhasa worldwideuniqueidentifier. An elementcan
be held in only one container. Within the container, ele-
mentsaregroupedinto clusters,whereeachclustersupports
a singledistributionstrategy. As aninitial approach,we do
not allow an elementto be moved from oneclusterto an-
otherwithout changingits (object)identifier. As before,a
client is first requiredto bind to anelement,resultingin the
installationof a speciallocal representative supportingthe
element’s methodsin theclient’s addressspace,analogous
to bindingin ouroriginalobjectmodel.

Bindingto anelementobjectis notasexpensiveasbind-
ing to a distributedsharedobject,however. To bind to an
elementwe only needto look up a contactaddressof the
clusterit belongsto in theworldwidelocationservice.Con-
sequently, whena clientbindsto anelementin a cluster � ,
it needonly look up a contactaddressif it is not yet bound
to anotherelementin � . In thisway, weavoid many expen-
sive look-up operations,while allowing multiple distribu-
tion strategieswithin a largedistributedsharedobject(i.e.,
acontainer).

The underlyingassumptionis, of course,that a cluster
containsmorethanoneelement.If eachclustercontainsex-
actlyoneelement(i.e.,eachelementhasits own replication
strategy), thisapproachis asexpensive,in termsof number
of look-upoperationson theworldwidelocationservice,as
turningeachelementobjectinto adistributedsharedobject.
In all othercasestherewill belessloadon thelocationser-
vice.

However, we arenot requiredto usethe worldwide lo-
cationservicefor findinga cluster’s contactaddresses.The
fundamentalideaof Globe is that a distributedobjecthas
completecontrol over all aspectsof its implementation,
over its functionalaspectsand,in particular, over its non-
functional aspects. This idea enablesus employ object-
specificsolutionsfor eachpart of a distributedsharedob-
ject’s implementation.This appliesto finding the contact
addressesof clustersasfollows.

Clusterscanbeviewedaspartof theimplementationof
a containerDSO.As a consequence,the problemof find-
ing thecontactaddressesof aclusterthatis partof acertain
containerobjectis anaspectof the implementationof that



containerDSO.We shouldthereforebe free to useobject-
specificsolutionsfor this problemif this resultsin a more
efficient implementation.In otherwords,it shouldbepos-
sible to put the containerDSO in charge of keepingtrack
of whereits clusterscanbecontacted,if thecontainerDSO
cando thismoreefficiently thanthe(external)locationser-
vice.

For example, if the contactaddressesof a container’s
clustershardly ever change(i.e., eachcluster is always
replicatedon the sameset of machines),theseaddresses
couldjustaswell bereplicatedateachof thecontainer’slo-
cal representatives,avoiding expensive look-up operations
all together. This idea and how it can be actually im-
plementedin Globe is currently under investigation. At
present,we chooseto usethe worldwide locationservice
for discoveringacluster’s contactaddresses.

An importantpropertyof our clusteringmechanismis
thatclustersarevisibleonly to thepeopleandservicesman-
agingthenonfunctionalaspectsof thecontainerobjectand
its elements.A developercanmodelhis distributedappli-
cationin termsof containerobjectscontainingelementob-
jects. The partitioningof elementsinto clustersdoesnot
play a partat this stage,andcanbedealtwith at theappro-
priatetime.

The conceptof clustersis new to the Globedistributed
system.Until now, a distributedsharedobjectwasnot only
theunit of functionalitybut alsotheunit by whichnonfunc-
tionalaspectscouldbechanged.Theclusteringmechanism
now allowslargedistributedsharedobjectsto replicateparts
of their stateaccordingto differentstrategies. Or, takinga
differentviewpoint, thisclusteringmechanismintroducesa
form of compositedistributedobjectswherethecomponent
objects(i.e., theelementobjects)aremorelightweightthan
regular distributed sharedobjects,becausethey are repli-
catedin clusters,but arealmostequallypowerful.

6. Implementing clusters

We describetheimplementationof ourclusteringmech-
anismin Globeby looking at the internalstructureof a lo-
cal representativefor aclusterof elements.We alsodiscuss
how elementsandclustersareaddedto andremovedfrom
acontainerDSO.

A local representative for a clusterconsistingof two el-
ementsis shown in Figure 2. It can be divided into two
parts:thecluster-specificpartandtheelement-specificpart.
The element-specificpart consistsof a setof control sub-
objects,one for eachelement,supportingthe methodsof
theelementsandpossiblysemanticssubobjects.Semantics
subobjectsareloadedonly whenthelocal representative is
actingasa replicafor theclusterof elements.Whetheror
not a local representative shouldact as a replica is deter-
minedby thereplicationstrategy of thecluster. If it should

MuxDemux

Communication

Cluster

Element 1 Element 1
Replication Semantics

Element 2 Element 2
Replication Semantics

Cluster

Control
Element 2

Control
Element 1

Figure 2. A local representative for a cluster of el-
ement objects, Element 1 and Element 2. There is
no single replication subobject for the cluster , in-
stead each element has its own replication subob-
ject. The replication subobjects access the com-
munication subobject for the cluster thr ough a new
subobject, called the multiple xer/dem ultiple xer
subobject (abbre viated MuxDem ux), whic h mul-
tiple xes and demultiple xes the comm unication
streams to the replication subobjects.

act asa replica therearesemanticssubobjectsfor all ele-
ments,as is the casein Figure2. Otherwise,thereareno
semanticssubobjectsin thelocal representative.

Furthermore,thereisareplicationsubobjectfor eachele-
mentin thecluster. Thereplicationprotocol(implementing
the replicationstrategy) is, of course,thesamefor all ele-
mentsin thecluster, suggestingthatthereshouldbeasingle
replicationsubobject.However, we chooseto give eachel-
ementa separatereplicationsubobject.Themostimportant
reasonfor this implementationdecisionis thatwe want to
maintainsomeindependencebetweentheelementswith re-
spectto replication.For example,in acopy-invalidaterepli-
cationprotocolwe want to be ableto invalidatestateon a
per-elementbasis,not percluster. Furthermore,we wantto
reusereplicationsubobjectswritten for distributed shared
objectsasmuchaspossible. Rewriting a replicationsub-
object to handlea clusterof objectsrequiresconsiderable
modifications,whichcanbeavoidedby lettingeachelement
objecthave its own replicationsubobject.

Thecluster-specificpartof the local representative con-
sists of a communicationsubobjectand a new subob-
ject, called the multiplexer/demultiplexer subobject. The



communicationsubobjectis a regularcommunicationsub-
object, providing the communicationfacilities required
by the replication protocol of the cluster. The multi-
plexer/demultiplexer subobjectis introducedto deal with
thefactthatwehavemultiplereplicationsubobjectsinstead
of one.

The mechanismsthat Globe usesto constructand in-
stall local representativesof distributedsharedobjectsin a
client’s addressspacecan alsobe usedto constructthese
clusterrepresentatives. Only minor additionsto the run-
timesystemarenecessary. Wedo,of course,needto record
someadditionalinformation,suchasthemappingfrom el-
ementidentifier to clusteridentifier. We usethe container
DSO for this. A containerDSO is a regular distributed
sharedobjectthathasa setof specialmethods,in addition
to its application-definedmethods.Thissetof specialmeth-
ods is usedto retrieve and maintainthe additional infor-
mationregardingelementsandclusters(themappingfrom
clusteridentifier to contactaddressesis, of course,main-
tainedby thelocationservice).Theimplementationof this
set of methodsis provided by the systemin the form of
a semanticssubobjectandis automaticallycombinedwith
the implementationof the container’s application-specific
methods.

Eachclusterhasoneor moreassociatedelement man-
agers. Elementmanagersareusedto addelementobjects
to thecluster, thatis, createnew elementobjectsthatfollow
thecluster’s replicationstrategy. Theirmostimportanttask
is to addcontrol andsemanticssubobjectsto all the clus-
ter’s local representatives that shouldfunction as replicas
accordingthecluster’s replicationstrategy, andto initialize
thesereplicaswith the elementobject’s initial state. The
exact implementationof elementmanagersis outsidethe
scopeof this paper, but basicallythey arespecialelement
objectsthatareawareof thereplicationstrategy of theclus-
ter they areassociatedwith. Creatinganew clusterconsists
primarily of creatingelementmanagersandregisteringthe
new clusterand its associatedelementmanagerswith the
containerDSO.

Removing elementsfrom a containermeansdestroying
the element,becausein our model elementscannotexist
without a container. Destroying an elementis similar to
destroying adistributedsharedobject,andrequiresnoaddi-
tional mechanisms.Onceall elementsthat follow theclus-
ter’s replicationstrategy have beenlogically removedfor a
container, andnoneareexpectedto beadded,a clustercan
be destroyed. This basicallyconsistsof deregisteringthe
clusterand its elementmanagersat the containerandde-
stroying theelementmanagers.

7. Conclusions

Currentmiddlewareplatformsarebasedon theremote-
objectview of distributedobjects.Replicationandcaching
support,necessarilyfor developing large-scaledistributed
applications,canandis beingaddedto theseplatforms[5].
However, we argue that adoptinga differentview of dis-
tributed objects,notably viewing them as physically dis-
tributed entities, results in more comprehensive support.
Thedistributedsharedobjectmodelasimplementedin the
Globe systemmakes replicationand cachingsupportnot
only morecomprehensive, but alsoresultsin a moreflex-
ible middlewareplatform. In particular, we can addnew
formsof replicationsupportthroughdistributedcontainers,
withoutchangingthearchitectureof Globe.

References

[1] G.EddonandH. Eddon.Inside Distributed COM. Microsoft
Press,Redmond,WA, 1998.

[2] G. Kiczales,J. Rivières,and D. Bobrow. The Art of the
Metaobject Protocol. MIT Press,Cambridge,MA, 1991.

[3] W. Kim. Introduction to Object-Oriented Databases. MIT
Press,Cambridge,MA., 1990.

[4] B. C. Neuman.Scalein DistributedSystems.In T. Casavant
andM. Singhal,editors,Readings in Distributed Computing
Systems. IEEE ComputerSocietyPress,Los Alamitos,CA,
1994.

[5] ObjectManagementGroup. Fault tolerantCORBA Using
Entity Redundancy: RequestForProposal.OMG Document
orbos/98-04-01,ObjectManagementGroup,Framingham,
MA, Apr. 1998.

[6] ObjectManagementGroup.PortableInterceptorsRFP:Re-
questFor Proposal.OMG Documentorbos/98-09-11,Ob-
jectManagementGroup,Framingham,MA, Sept.1998.

[7] ObjectManagementGroup. TheCommonObjectRequest
Broker: ArchitectureandSpecification.Revision2.2. OMG
Document formal/98-07-01,Object ManagementGroup,
Framingham,MA, Feb. 1998.

[8] W. Rosenberry, D. Kenney, andG. Fisher. Understanding
DCE. O’Reilly andAssociates,Sebastopol,CA, 1992.

[9] M. van Steen,F. Hauck,P. Homburg, andA. Tanenbaum.
LocatingObjectsin Wide-AreaSystems.IEEE Communi-
cations Magazine, 36(1):104–109,Jan.1998.

[10] M. van Steen,P. Homburg, and A. Tanenbaum. Globe:
A Wide-Area Distributed System. IEEE Concurrency,
7(1):70–78,Jan.–Mar. 1999.

[11] M. van Steen,A. Tanenbaum,I. Kuz, and H. Sips. A
ScalableMiddleware Solution for Advanced Wide-Area
Web Services. Distributed Systems Engineering, 6(1):34–
42,Mar. 1999.


