From Remote Objectsto Physically Distributed Objects

Arno Bakker, Maartenvan Steen Andrev S. Tanenbaum
Vrije UniversiteitAmsterdam
Departmenbf ComputerScience
Amsterdam;TheNetherlands
{arno,steen,as@cs.vu.nl

Abstract

Present-day object-oriented middleware provides little
support for the distribution, replication and caching of the
state of a distributed object. This makesthese platforms un-
suitable for the development of large-scale distributed ap-
plications. We argue that the model of distributed objects
on which these middleware platforms are based hindersthe
addition of comprehensive distribution and replication sup-
port to these platforms. We present an alternative view of
distributed objects, in which objects are not only in control
of the functional aspects of their implementation but also in
control of their nonfunctional aspects, in particular, thedis-
tribution and replication of their state. We claimthat a mid-
dleware platform based on this view of distributed objects
is better suited for developing the large-scale applications
of the future.

1. Introduction

In the not-so-distanfuture the Internetwill grow to a
network connectinchundredsf millions of peopleall over
theworld, maybeevenanbillion. To keepthis network from
a permanenstateof congestionnetwork servicesandap-
plicationswill needto make heary useof replicationand
cachingtechniqueg4]. Unfortunately currentmiddlewvare
platformsprovide little or no supportfor thesetechniques,
makingthemunsuitable€for the developmentof large-scale
distributedapplications.

In this paperwe argue that the presentmodelsof dis-
tributed objectson which thesemiddleware platformsare
basedarenotfit for dealingwith theproblemsof large-scale
systemsWe claimthatthesemodelswill preventplatforms
from providing comprehensie supportfor inherentlylarge
systemghroughdistribution, replicationand caching. We
presen@nalternatve way of looking at distributedobjects
andarguethatit is a betterbasisfor supportingreplication
andcachingof the stateof objects.

2. Thelegacy of RPCs. CORBA and DCOM

Two middlevare platforms are currently popular:
CORBA [7] andDCOM [1]. A distributed objectas de-
finedin CORBA is anobjectrunningon a singlemachine,
presentedo remoteclients asa local objectby meansof
proxies. An ObjectRequesBroker mediatesbetweenthe
clientsandthe objectand, in particular takes careof the
transportof requestsaindrepliesfrom the client to the ob-
jectover the network. CORBA currentlyhaslittle support
for thereplicationof objects.

Theimplicationof this remote-objectview is thatdistri-
bution andreplicationof a distributed objectare managed
by the ObjectRequesBroker. This implies, in turn, that
the choiceof the applicationprogrammeiwith respectto
thesenonfunctionalaspectds limited by what the Object
RequesBroker (or ORB Service)offers. For example,an
ORB might offer only active replicationprotocolsand no
primary-backugsolutions.

The CORBA modeldoesnot easilyallow the introduc-
tion of object-specificeplicationanddistribution protocols.
CORERBA Interceptors, small piecesof softwarethatcanbe
introducedn theinvocation(andresponsepathfrom client
to object, are an improvement,but they are currently not
properlyworked out [6]. We arguethattaking a different
view of distributed objectsallows object-specifigolicies
for nonfunctionalkspectsn a morecomprehensie way.

The other popular middlevare platform is DCOM [1].
DCOM is the combinationof Microsoft's COM with re-
mote procedurecalls following the DCE standard[8], to
allow clientsto interactwith COM componenton other
machines.

The choicefor DCE RPCsmakes DCOM basicallya
client/singlesener system.Thecustommarshallingeature
of DCOM allows applicationprogrammerdo write their
own proxiesandsener-sideskeletons.This featurecanbe
usedto implementobject-specifiaeplicationand security
protocols. However, implementationis left entirely to the
applicationprogrammer

3. A different view of distributed objects

The Globedistributedsystem[10] is a middlevareplat-
form specificallydesignedfor developing large-scaledis-
tributedapplications.In Globe,processesommunicatdy
invoking methodson a specialkind of distributed object,
called a distributed shared object (DSO). The distributed
sharedobjectis the unifying conceptin the system.It pro-
videsa uniform representatioof bothinformationandser
vices and implementationflexibility by decouplinginter-
faceandimplementation.

3.1. Physically distributed objects

The fundamentalidea behind the design of the dis-
tributedsharedobjectis thatit is, whatwe call, physically
distributed. Insteadof viewing a distributed objectas an
entity runningon a singlemachine possiblywith copieson
other machineswe view a distributed sharedobjectas a
conceptuabbject,distributedover multiple machineswith
its local representatives (proxiesandreplicas)cooperating
to provide the single (consistentimage. In otherwords,
a distributed sharedobjectis a wrapperencompassingull
the objects proxiesandreplicas ratherthanaremotelyac-
cessibleobjectimplementation.This view is illustratedin
Figurela.

This differentview of whata distributed objectis gives
us flexibility with respectto replication,cachingand dis-
tribution of the objects state. In this view, a distributed
sharedobjectencapsulateiss own replicationanddistribu-
tion stratgy. The local representaties of an object take
careof the replicationand distribution of the DSO’s state
andall necessargommunication.Only minimal (protocol
independentyupportis requiredfrom therun-timesystem.

The way the stateof the objectis replicatedcannow be
governedcompletelyby object-andapplication-specifice-
guirementswith respectto consisteng and nonfunctional
aspectssuchassecurity andis undemorestrictionfromthe
supportingmiddlevareplatform. However, we donotleave
everythingto the applicationprogrammerThe structureof
localrepresentaties,describedelow, separateseplication
and communicationcode. This meansthat a programmer
canwrite his or her own replicationprotocolbasedon ex-
isting communicatiorprotocols. Furthermorewe provide
the applicationprogrammeiwith implementationf fre-
guentlyusedreplicationprotocols.

3.2. Implementation of the Globe object model

A local representatie residesin a singleaddressspace
and communicatesvith local representatiesin otherad-
dressspacesEachlocal representatie is composeaf sev-

Distributed
Object
Al A2 Address
P et Tt Space
1 i Network
ZES O
Representative'>—/| | N
A3 AS A4
(@)
- - ™
1
Control
subobject

Replication
subobject

Communication
subobject

_ /

(b)

Figure 1. (a) A distrib uted shared object (DSO) dis-
trib uted over four address spaces (Al-A4). In each
address space the DSO is represented by a local
representative . Address space A5 does not cur-
rently contrib ute to the distrib uted shared object.
(b) A local representative is composed of a number
of subobjects. The exact composition depends on
the role the local representative plays in the dis-
trib uted shared object.

eralsubobjectasshovn in Figurelb. A typical composi-
tion consistof thefollowing four subobjects.

Semantics subaobject: This is a local object that im-
plements(part of) the actual semanticsof the distributed
object. As such,it encapsulateshe functionality of the
distributed object. The semanticsobject consistsof user
definedprimitive objectswrittenin programmindanguages
suchasJaa, C or C++. Theseprimitive objectscanbede-
velopedindependenbdf ary distribution or replicationis-
sues.

Communication subobject: Thisis generallyasystem-
providedsubobjec(i.e., takenfrom alibrary). It is respon-
siblefor handlingcommunicatiorbetweerpartsof the dis-
tributedobjectthatresidein differentaddresspacesusu-
ally on differentmachines.Dependingon whatis needed
from the other componentsa communicationsubobject
may offer primitives for point—to—pointcommunication,
multicastfacilities,or both.

Replication subobject: The global state of the dis-
tributed objectis madeup of the stateof semanticssub-
objectsin its local representates. A DSO may have se-
manticssubobject$n multiple local representatiesfor rea-
sonsof fault toleranceor performance.In particular the
replicationsubobjecis responsibldor keepingthe stateof
thesereplicasconsistenaccordingo some(perobject)co-
herencestratgy. Differentdistributedobjectsmayhave dif-
ferentreplicationsubobjectsusingdifferentreplicational-
gorithms. An importantobsenationis thatthe replication
subobjechasstandardnterfaces.

Control subobject: Thecontrolsubobjectakescareof
invocationsfrom client processesandcontrolsthe interac-
tion betweenthe semanticssubobjectand the replication
subobject. This subobjectis neededo bridgethe gapbe-
tweenthe userdefinedinterfacesof the semanticsubob-
ject,andthestandardnterfacesof thereplicationsubobject.

A key role, of coursejs resenedfor thereplicationsub-
object.Replicationlandcommunicationyubobjectgareun-
awareof the methodsandstateof the semanticsubobject.
Insteadpoththereplicationsubobjectndthecommunica-
tion subobjecbperateonly on opagquéanvocationmessages
in which methodidentifiersand parameterfiave beenen-
coded. This independencallows us to definestandardn-
terfacesfor all replicationand communicatiorsubobjects.
This approachis comparableto techniquesappliedin re-
flective object-orientegorogrammind?2].

3.3. Binding to a distributed shared object

To accesa distributedsharedbject,a clientfirst needs
to install a local representatie of the objectin its address
space.Theprocesof installingalocal representatie in an
addresspaceis calledbinding. An importantpropertyof
Globeis thateachDSOis identifiedby aworldwideunique,

location-independendbjectidentifier (OID). During bind-
ing, this OID is mappedo oneor morecontactaddresses,
describingwhere(network addressport number)andhow
(which replication and communicationprotocol) the dis-
tributed sharedobjectcanbe contacted. This information
is thenusedby thelocal run-timesystento createanew lo-
calrepresentatiein theclient's addresspaceandintegrate
thenew representati into the DSO.

We make theassumptiothatan OID never changesbut
thatanobjectscontaciaddressesiaychangeegularly. For
this reasonwe cannotmake useof traditionalnamingser
vicessuchasDNS, to look up a contactaddressAlthough
we have developedan efficient location service for track-
ing distributedsharedobjects[9], bindingto anobjectwill
always requirelooking up a contactaddressmakingit a
relatively expensve operation.

We stresshatthe performancef bindingwould not be
aproblemif contactaddressew/ould neverchangeThisis
thereasonwhy look-up operationsn the World Wide Web
performreasonablyvell. However, eventhe Web demon-
stratesthat contactaddresse$i.e., URLS), do change. In
Globe,we do not make simplifying assumptionsiboutthe
mobility of objects,as we believe that suchassumptions
have no placein the next generatiorof distributedsystems.

4. Granularity of distributed shared objects

A distributedapplicationin which cachingandreplica-
tion play an importantrole is the World Wide Weh This
makesit animportantareaof researcHor us.

Considerfor example,amoderate-siz@/ebsiteconsist-
ing of hundredof Web pagesalongwith the images ani-
mationsetc. thatgowith thesepagesLik e mostWebsites,
someWeb pageswill be popularwhile othersare hardly
everaccessed.ikewise,thissitewill containpageghatare
hardlyever changedandpageghatarechangedavery day.
ThereareseveralwaysthatsuchaWebsite canbemodeled
in Globe.

Oneapproachs to take eachpage alongwith itsimages
andsuch,andturnit into a Globedistributedsharedbject.
Thisoffersafine-grainedapproacho distribution,aswe are
ableto associate separatealistribution stratgy with each
page.For example,pageghatenjoy large popularitycould
bereplicatedusinga copy-invalidateschemereducingthe
averagedownloadtime becauseheir contentsarecloserto
theviewer. Lesspopularpagescould possiblydo without
replication. Althoughin theorythis approachworks fine,
it would alsomeanthata client (i.e., a Globe-enablediVeb
browser)would have to go throughthe entirebinding pro-
cessfor eachpage,sinceeachpagewould be a distributed
sharedbject.Giventhecurrentcostof contactaddres$ook
ups,we deemthis approaclhasyetto betoo expensve.

An alternatveis to modeltheentiresiteasasingleGlobe

distributedsharedobject. However, it is clearthatthis ap-
proachcanwork only for small sites consistingof a few
Web pages.The main problemis thathaving a singledis-
tribution stratey for all pagesof the site is not a good
idea. For example,if 90% of all accesse@volve only a
few pagesthenit doesnotmake sensdo useamasterslave
replicationstratey for all pagesOntheotherhand thead-
vantageof theapproachs thatonly a singlebinding stepis
neededo accesshesiteandall its pages Gettingaccesso
the Web ssite objectis thuscheap.

The solution, of course lies in the middle: a large site
consistingof hundredsf pagesshouldbe splitinto smaller
units, whereeachunit hasits own distribution strategy. In
principle, eachunit could be representedby a distributed
sharedobject. The problemwith this approachs thatwe
aregroupingpagesnto objectsbasedon distribution strat-
egy. As a consequencdhe objectswe createmay not be
meaningfulat the functionallevel, becausehe only thing
thatrelateshe pagesn thoseobjects,is thatthey shouldbe
distributedin the sameway.

It is possiblethat the objectswe createcorrespondo
logical relationshipge.g.,a group of pagesthatshouldbe
replicatedthe sameway might turn out to be the group of
pagesdescribinga certainproductline). However, in gen-
eral, this will not be the caseand thereforethis approach
violatesthe basicprinciplesof good(object-oriented¥oft-
wareengineeringnotablyseparatiomf functionalandnon-
functionalaspects.

The fundamentaproblemto be solved hereis that we
want to differentiatebetweendata elementsaccordingto
nonfunctionalrequirementgi.e., apply different distribu-
tion stratgjiesto differentdataelementsht low cost,with-
out creatingrelationshipsbetweenthose elementsat the
functional level (i.e., group logically unrelateddata ele-
mentsinto the sameobject). To illustrate this point, con-
siderthe exampleof a compary’s Web site wherethe most
popularpagesarethe productandsupportpages.For per
formancereasonst would make senseto put the product
andsupportpagesn asingleDSOwith anoptimizedrepli-
cationstrateyy. However, logically productsaandsupportare
differententitiesandshouldbekeptseparate.

We describehow this problemcan be solved usingthe
distributed sharedobjectconceptin the next section. The
approachn which logically relatedpagesaregroupedinto
distributedsharedobjects thatis, wherethe DSOsarelog-
ical units, is currentlybeinginvestigatedor feasibility by
our projectteam[11].

5. Containersand clusters

Our solutionis to usea clusteringmechanism. Clus-
tering has traditionally been applied to object-oriented
databaseto physicallygrouprelatedobjectsclosetogether

so that they may be efficiently retrieved [3]. In our case,
we useclustersto groupelementsaccordingto a common
distribution stratgy. An importantaspectof our solution

is thatelementsare no longeronly piecesof data,but are

turnedinto objectsencapsulatintheirownimplementation.
This both facilitatesthe implementationof our clustering
mechanismand addsexpressienesdo the system. In our

Web example anelementwould bea Web pagewith all its

HTML text, imagesgtc.,modeledasanobjectcontaininga

setof fileswith methodgo add,retrieve, updateandremove

thesefiles.

In ournew model,elementsareheldin acontainer. Each
elementhasa worldwide uniqueidentifier An elementcan
be held in only one container Within the containey ele-
mentsaregroupednto clusterswhereeachclustersupports
asingledistribution stratgy. As aninitial approachwe do
not allow an elementto be moved from oneclusterto an-
otherwithout changingits (object)identifier As before,a
clientis first requiredto bind to anelementyesultingin the
installationof a speciallocal representatie supportingthe
elements methodsn the client’s addresspaceanalogous
to bindingin our original objectmodel.

Bindingto anelemenibbjectis notasexpensve ashind-
ing to a distributed sharedobject, however. To bind to an
elementwe only needto look up a contactaddressof the
clusterit belonggo in theworldwidelocationservice.Con-
sequentlywhena clientbindsto anelementin aclusterC,
it needonly look up a contactaddressf it is notyetbound
to anotherlemenin C. In thisway, we avoid mary expen-
sive look-up operationswhile allowing multiple distribu-
tion stratgieswithin a large distributedsharedobject(i.e.,
acontainer).

The underlyingassumptioris, of course,that a cluster
containgmorethanoneelementlf eachclustercontaingex-
actlyoneelement((i.e., eachelementasits own replication
strat@y), this approachs asexpensve,in termsof number
of look-upoperationontheworldwidelocationservice as
turningeachelemenbbjectinto adistributedsharedbject.
In all othercasegherewill belessloadonthelocationser
vice.

However, we are not requiredto usethe worldwide lo-
cationservicefor finding a clusters contactaddresseslhe
fundamentaideaof Globeis that a distributed objecthas
completecontrol over all aspectsof its implementation,
over its functionalaspectsand,in particular over its non-
functional aspects. This idea enablesus employ object-
specificsolutionsfor eachpart of a distributed sharedob-
ject’s implementation. This appliesto finding the contact
addressesf clustersasfollows.

Clusterscanbe viewed aspartof theimplementatiorof
a containerDSO. As a consequenceahe problemof find-
ing the contactaddressesf a clusterthatis partof a certain
containerobjectis an aspecif theimplementatiorof that

containeDSO. We shouldthereforebe free to useobject-
specificsolutionsfor this problemif this resultsin a more
efficientimplementation.n otherwords,it shouldbe pos-
sible to put the containerDSO in chage of keepingtrack
of whereits clusterscanbe contactedif thecontaineDSO
cando this moreefficiently thanthe (external)locationser
vice.

For example,if the contactaddresse®f a containers
clustershardly ever change(i.e., eachclusteris always
replicatedon the sameset of machines)theseaddresses
couldjustaswell bereplicatedat eachof thecontainerslo-
cal representaties, avoiding expensie look-up operations
all together This idea and how it can be actually im-
plementedin Globe is currently underinvestigation. At
presentwe chooseto usethe worldwide location service
for discoveringa clusters contactaddresses.

An importantpropertyof our clusteringmechanismis
thatclustersarevisible only to thepeopleandservicesnan-
agingthe nonfunctionalaspect®f the containerobjectand
its elements.A developercanmodelhis distributed appli-
cationin termsof containerobjectscontainingelementob-
jects. The partitioning of elementsinto clustersdoesnot
play a partat this stageandcanbe dealtwith atthe appro-
priatetime.

The conceptof clustersis new to the Globedistributed
system.Until now, a distributedsharedbjectwasnot only
theunit of functionalitybut alsotheunit by which nonfunc-
tionalaspectgouldbechangedTheclusteringmechanism
now allowslargedistributedsharedbjectgto replicateparts
of their stateaccordingto differentstrateies. Or, takinga
differentviewpoint, this clusteringmechanisnintroducesa
form of compositedistributedobjectswherethecomponent
objects(i.e.,theelementbjects)aremorelightweightthan
regular distributed sharedobjects,becausehey arerepli-
catedin clusters put arealmostequallypowerful.

6. Implementing clusters

We describeheimplementatiorof our clusteringmech-
anismin Globeby looking at theinternalstructureof a lo-
calrepresentatie for a clusterof elementsWe alsodiscuss
how elementsandclustersareaddedto andremovedfrom
acontaineDSO.

A local representatie for a clusterconsistingof two el-
ementsis shavn in Figure 2. It canbe divided into two
parts:theclusterspecificpartandthe element-specifipart.
The element-specifipart consistsof a setof control sub-
objects,one for eachelement,supportingthe methodsof
theelementsandpossiblysemanticsubobjectsSemantics
subobjectareloadedonly whenthe local representatie is
actingasa replicafor the clusterof elements.Whetheror
not a local representatie shouldact asa replicais deter
minedby thereplicationstratey of the cluster If it should

Element 2

Control
1
Element 2
Replication
[T

4

Cluster
MuxDemux

Element 1

Control
Element 1
Replication

Figure 2. A local representative for a cluster of el-
ement objects, Element 1 and Element 2. There is
no single replication subobject for the cluster, in-
stead each element has its own replication subob-
ject. The replication subobjects access the com-
munication subobject for the cluster through anew
subobject, called the multiple xer/demultiple xer
subobject (abbreviated MuxDemux), which mul-
tiple xes and demultiple xes the comm unication
streams to the replication subobjects.

actasa replicathereare semanticssubobjectgor all ele-
ments,asis the casein Figure2. Otherwisethereareno
semanticsubobjectsn thelocal representati.

Furthermorethereis areplicationsubobjecfor eachele-
mentin thecluster Thereplicationprotocol(implementing
the replicationstratay) is, of course the samefor all ele-
mentsin thecluster suggestinghatthereshouldbeasingle
replicationsubobject However, we chooseto give eachel-
ementa separateeplicationsubobjectThe mostimportant
reasorfor this implementatiordecisionis thatwe wantto
maintainsomeindependencbetweertheelementwwith re-
specto replication.For example,in acopy-invalidaterepli-
cationprotocolwe wantto be ableto invalidatestateon a
perelementbasis,not percluster Furthermoreywe wantto
reusereplicationsubobjectswritten for distributed shared
objectsas much as possible. Rewriting a replicationsub-
objectto handlea clusterof objectsrequiresconsiderable
modificationswhichcanbeavoidedby lettingeachelement
objecthaveits own replicationsubobject.

The clusterspecificpart of the local representatie con-
sists of a communicationsubobjectand a new subob-
ject, called the multiplexer/demultiplexer subobject. The

communicatiorsubobjecis a regularcommunicatiorsub-
object, providing the communicationfacilities required
by the replication protocol of the cluster The multi-
plexer/demultiplecer subobjectis introducedto deal with
thefactthatwe have multiple replicationsubobjecténstead
of one.

The mechanismghat Globe usesto constructand in-
stall local representatiesof distributedsharedobjectsin a
client's addressspacecan also be usedto constructthese
clusterrepresentaties. Only minor additionsto the run-
time systemarenecessaryWe do, of courseneedto record
someadditionalinformation,suchasthe mappingfrom el-
ementidentifier to clusteridentifier We usethe container
DSO for this. A containerDSO is a regular distributed
sharedobjectthathasa setof specialmethodsjn addition
toits application-definedhethods This setof speciaimeth-
odsis usedto retrieve and maintainthe additionalinfor-
mationregardingelementsandclusters(the mappingfrom
clusteridentifier to contactaddressess, of course,main-
tainedby thelocationservice). Theimplementatiorof this
set of methodsis provided by the systemin the form of
a semanticsubobjectandis automaticallycombinedwith
the implementationof the containers application-specific
methods.

Eachclusterhasone or more associateadement man-
agers. Elementmanagersre usedto addelementobjects
to thecluster thatis, createnew elemenbbjectsthatfollow
theclusters replicationstratgy. Their mostimportanttask
is to add control and semanticssubobjectdo all the clus-
ter's local representaties that shouldfunction asreplicas
accordinghe clusters replicationstrat@y, andto initialize
thesereplicaswith the elementobjects initial state. The
exact implementationof elementmanagerss outsidethe
scopeof this paper but basicallythey are specialelement
objectsthatareawareof thereplicationstratgy of theclus-
terthey areassociateavith. Creatinga new clusterconsists
primarily of creatingelementmanagersndregisteringthe
new clusterandits associatecglementmanagerswith the
containeiDSO.

Remawing elementdrom a containemeansdestrying
the element,becausdén our model elementscannotexist
without a container Destrg/ing an elementis similar to
destrging adistributedsharedbject,andrequiresno addi-
tional mechanismsOnceall elementghatfollow the clus-
ter’s replicationstratgy have beenlogically removedfor a
containerandnoneareexpectedio be addeda clustercan
be destryed. This basicallyconsistsof dereagisteringthe
clusterandits elementmanagerst the containerand de-
stroying theelementmanagers.

7. Conclusions

Currentmiddlewvare platformsare basedon the remote-
objectview of distributedobjects.Replicationandcaching
support,necessatrilffor developinglarge-scaledistributed
applicationscanandis beingaddedo theseplatforms[5].
However, we argue that adoptinga differentview of dis-
tributed objects, notably viewing them as physically dis-
tributed entities, resultsin more comprehensie support.
Thedistributedsharedobjectmodelasimplementedn the
Globe systemmalkes replicationand cachingsupportnot
only more comprehensie, but alsoresultsin a more flex-
ible middleware platform. In particular we canadd new
formsof replicationsupporthroughdistributedcontainers,
withoutchanginghearchitectureof Globe.

References

[1] G.EddonandH. Eddon.Inside Distributed COM. Microsoft
PressRedmond\WA, 1998.

[2] G. Kiczales,J. Rivieres,andD. Bobron. The Art of the
Metaobject Protocol. MIT PressCambridgeMA, 1991.

[3] W. Kim. Introduction to Object-Oriented Databases. MIT
PressCambridgeMA., 1990.

[4] B.C.Neuman.Scalein DistributedSystemsin T. Casaant
andM. Singhal,editors,Readingsin Distributed Computing
Systems. IEEE ComputerSocietyPress)] os Alamitos, CA,
1994.

[5] ObjectManagemenGroup. Fault tolerantCORBA Using
Entity Redundang RequesFor Proposal OMG Document
orbos/98-04-010bject ManagemenGroup, Framingham,
MA, Apr. 1998.

[6] ObjectManagemenGroup. PortableinterceptordlRFP:Re-
questFor Proposal. OMG Documentorbos/98-09-110b-
jectManagemenGroup,FraminghamMA, Sept.1998.

[7] ObjectManagemenGroup. The CommonObjectRequest
Broker: ArchitectureandSpecificationRevision2.2. OMG
Documentformal/98-07-01, Object ManagementGroup,
FraminghamMA, Feh 1998.

[8] W. RosenberryD. Kenng, andG. Fisher Understanding
DCE. O'Reilly andAssociatesSebastopolCA, 1992.

[9] M. van Steen,F. Hauck, P. Homhkurg, and A. Tanenbaum.
LocatingObjectsin Wide-AreaSystems.|EEE Communi-
cations Magazine, 36(1):104—-109Jan.1998.

[10] M. van Steen,P. Homlurg, and A. Tanenbaum. Globe:
A Wide-Area Distributed System. [EEE Concurrency,
7(1):70-78Jan.—Mar1999.

[11] M. van Steen,A. Tanenbaum). Kuz, and H. Sips. A
Scalable Middleware Solution for Advanced Wide-Area
Web Services. Distributed Systems Engineering, 6(1):34—
42,Mar. 1999.

