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Abstract—It has become well-established that software will
never become bug-free, which has spurred research in mech-
anisms to contain faults and recover from them. Since such
mechanisms deal with faults, fault injection is necessary to
evaluate their effectiveness. However, little thought has been put
into the question whether fault injection experiments faithfully
represent the fault model designed by the user. Correspondence
with the fault model is crucial to be able to draw strong and
general conclusions from experimental results. The aim of this
paper is twofold: to make a case for carefully evaluating whether
activated faults match the fault model and to gain a better
understanding of which parameters affect the deviation of the
activated faults from the fault model. To achieve the latter, we
instrumented a number of programs with our LLVM-based fault
injection framework. We investigated the biases introduced by
limited coverage, parts of the program executed more often than
others and the nature of the workload. We evaluated the key
factors that cause activated faults to deviate from the model and
from these results provide recommendations on how to reduce
such deviations.

Index Terms—fault injection; LLVM; reliability;

I. INTRODUCTION

Despite decades of advances in software engineering and
program verification tools, many software systems are still
plagued by critical software bugs. Several studies have shown
that the number of bugs is roughly linear with the program
size [1] even in mature software. Formal methods proposed to
address such bugs, such as used by seL4 [2], would require
a heroic effort. seL4’s correctness proof alone, for example,
required around 20 person years for 9,300 lines of codes. To
scale to software that is hundreds to thousands of times larger
would not currently be realistic. Furthermore, formal specifica-
tions can still contain bugs or in turn rely on the correctness of
other components (i.e., compilers, hardware, documentation,
etc.). As a result, fault containment and recovery mechanisms
still play a pivotal role in the design of highly reliable systems.

To validate such mechanisms, it is often necessary to
evaluate the behavior of a system under faults. Identifying a
sufficiently large number of real software faults is normally
not an option. Therefore, fault injection techniques have been
devised to artificially inject faults and compare the run time
behavior of the system during fault-free and faulty execution.

Several fault injection tools are described in the literature,
with injection strategies emulating simple hardware faults
(e.g., bit flips or intermittent errors) [3], faults at the compo-
nent interfaces (e.g., unexpected error conditions generated by

the libraries) [4], [5], or real-world software faults introduced
by programmers [6], [7]. Each injection strategy reflects a
particular fault scenario and serves a unique purpose in the
reliability testing process.

Although the principles outlined here are more general,
our focus is specifically on injection of realistic software
bugs. Such injections are particularly critical to evaluate the
effectiveness of fault containment mechanisms (i.e., preventing
faults in one component from affecting other components),
fault detection techniques (i.e., identifying the occurrence of
faults during execution), and fault recovery mechanisms (i.e.,
mitigating service disruption after the occurrence of faults).

To rigorously conduct fault injection experiments, an im-
portant step is to define an appropriate fault model. The fault
model specifies what kinds of faults should be tested. This
model includes at least the types of faults to be injected and the
locations selected for injection, but possibly also other factors
such as fault triggers [4]. Prior work has investigated how to
accurately construct a representative fault model, for example
by considering which fault types occur in which frequencies in
real software [7] and at which locations faults are most likely
to occur in production [8].

Nevertheless, defining a representative fault model and
configuring a fault injection tool to follow that model is not
sufficient to thoroughly assess the quality of fault injection
results. To show why, we must first understand how the fault
model is instantiated by the fault injection tool into an input
and output fault load. The input fault load consists of the faults
that the tool inserts into the code of the program. Generally, an
effort is made to configure the fault injection tool such that the
input fault load reflects the original fault model. The output
fault load consists of the subset of faults activated during
the experiment, accounting for multiple activations. Multiple
activations are important because some faults only have an
impact in particular circumstances, such as a memory leak
only affecting the results when already low on memory.

It should not be assumed that all faults in the output fault
load cause actual failures, as it is possible for an activated fault
not to affect any relevant state. Whether faults cause failures
is important, but strongly depends on what types of failures
one is interested in. For example, one might consider only
crashes or one might go as far as to consider even differences
in timing. In this paper we only look at distortion introduced
by nonactivation and multiple activation, which is an important



factor regardless of the exact types of failure being considered.
The output fault load may differ considerably from the input

fault load. Even if the fault model is representative of real-
world faults and the input fault load accurately instantiates
the original fault model, it is possible for the output fault
load to not represent a realistic fault model at all. We will
refer to the difference between input and output fault load as
distortion. If the distortion is biased towards particular fault
types or locations, activated faults do not faithfully reflect the
original fault model even if many experiments are carefully
run. We define fidelity as the degree to which the output
fault load reflects the original fault model with no distortion.
The introduction of the new terminology is justified by our
focus on the quality of the output fault load generated by
the fault injection tool. This is in stark contrast with prior
approaches described in the literature, which are solely focused
on representativeness and accuracy of the input fault load [7],
[8].

Our research question is: “When performing fault injection
experiments, how faithful is the output fault load observed with
respect to the specified fault model and which factors affect its
fidelity?” This question is important for a number of reasons.
First, if there is substantial distortion, the experiment is no
longer consistent with what the user intended to measure. Sup-
pose, for example, that one wants to measure the probability
of a recovery solution being able to successfully recover state.
If the output fault load is biased towards bugs that are easier
to recover from, the solution appears to be more effective than
it would be in reality. Second, fault injection experiments can
be performed more efficiently if they follow the fault model.
As the output fault load differs more from the fault model,
more injections are needed to achieve the same rigor with
regard to testing those faults specified by the model. Third, it
is harder to compare experiments when there is distortion. If
two experiments inject the same number of faults but it is not
known how faithful they are to the fault model, it is possible
that they differ greatly in their effectiveness in finding faults
even though they both inject the same number of faults. Fourth,
as fidelity is coupled with the behavior of the test workload,
a high level of distortion may indicate that the workload is
not properly designed for the experiment and may have to be
reconsidered. These issues show that it is crucial to consider
the distortion between input and output fault loads and identify
the originating factors.

The main contributions of this paper are (1) providing a def-
inition of fault injection fidelity and showing its relevance in
fault injection campaigns, (2) performing the first large-scale
evaluation of fidelity on a number of programs and workloads
to evaluate the impact of distortion problems in real-world
fault injection experiments, and (3) analyzing the key factors
that can help predict and control distortion problems in fault
injection experiments.

II. RELATED WORK

Fault injection is a popular technique to evaluate the impact
of unforeseen faults on a running software system. When com-

pared to alternative strategies that aim to uncover real software
bugs (e.g., symbolic execution [9]), fault injection is relatively
inexpensive, scales efficiently to large and complex programs,
and allows users to emulate special conditions not necessarily
present in the original program code. Fault injection is used
to benchmark the dependability of several classes of software,
such as: device drivers [10], [11], file caches [6], operating
systems [5], [12], user programs [4], [13], and distributed
systems [14]. Typical evaluation scenarios entail analyzing
the behavior of a system under faults [5], [12], conducting
high-coverage testing experiments for existing error recovery
code paths [13], [14], or evaluating the effectiveness and
containment properties of fault-tolerance techniques [10], [11].

Several possible fault models are described in the literature,
with fault injection strategies emulating (i) hardware faults [3],
(ii) software faults [6], [7], (iii) interface faults at the library
level [4] or (iv) at the system call level [5]. Injection tech-
niques range from static program mutations—using compiler-
based strategies [15] or binary rewriting [3], [6], [7]—to run
time strategies that periodically interrupt the execution—using
timers [3], [16], [17] or predetermined hardware or software
traps [3], [16], [17].

When selecting a fault model, an important question prior
work has sought to address is whether the model is repre-
sentative for the fault scenario of interest. Representativity is
important for the validity and comparability of the final results.
In particular, much research on fault model representativeness
is devoted to emulating realistic software faults found in the
field. In this context, a number of studies consider the problem
of how accurately artificially injected fault types represent
real-world fault types introduced by programmers [6], [7].
The G-SWFIT tool [7], for instance, injects fault types based
on real-world bugs found in existing software. Other studies
focus on the accuracy of the different injection strategies.
For example, Cotroneo et al. [18] consider the accuracy
problems of binary-level injection strategies when compared
to source-level program mutations. Christmansson et al. [19]
compare location-based injection strategies with timer-based
approaches. Madeira et al. [20] investigate general limitations
of traditional fault injection strategies when compared to real
faults found in the field. In another direction, Natella et al. [8]
consider the problem of fault location representativeness,
arguing that so-called residual faults are most representative of
real-world bugs that escape software testing and can be found
production systems in the field.

Unlike fault model representativeness, research on fidelity
of fault injection to the original fault model has received much
less attention in the literature. A number of prior approaches
have considered the impact of code coverage on fault injection
experiments [21], [22], but their focus is limited to ensuring
reasonable fault activation. Unfortunately, fault activation itself
is a poor metric to evaluate how the nature of the program or
workload can degrade the quality of the final fault injection
results. Our notion of fault injection fidelity, in contrast, is
much more rigorous and able to capture the full dynamics of
both the test program and the workload. Our investigation, in



particular, provides a thorough analysis of the impact of code
coverage on fault injection experiments, while determining
how low coverage distorts the original fault model. This
analysis is particularly crucial to quantify the validity and
comparability of fault injection results.

III. FIDELITY

To research fault injection fidelity, we investigate how the
input fault load (faults injected in the program) relates to the
output fault load (faults actually executed). The factors that
influence the transformation from input fault load to output
fault load make up the dependent variable of our research.
Independent variables we investigate include program types,
program implementations, workloads, and compiler settings
(in particular, optimization level). Although more factors could
influence fidelity, we selected those that are intuitively impor-
tant and easily controlled by the researcher. To find the impact
of the program and the workload independently, we include
some programs with multiple workload generators as well as
workloads that can be used across multiple programs.

The first factor we consider is coverage, defined as the frac-
tion of the program that gets executed when the test workloads
are run. It can be measured in several units, commonly lines
of code, but alternatively in terms of machine instructions or
basic blocks. In the context of fault injection, it is particularly
important to consider which fraction of the fault candidates—
that is, program locations that are suitable to inject a fault
of a particular type—is covered. Unfortunately, coverage is
rarely reported when performing fault injection experiments in
research papers–with some notable exceptions [4], [8], [21].
In general, higher coverage is better as it allows a larger
part of the program to be tested. We address a new concern,
namely whether lack of coverage introduces bias that threatens
the fidelity of the experiment. Uncovered locations are not a
random subset of all locations but rather those that are hard to
reach, like for example code that deals with error conditions.
Not just fault locations, but also fault types may be biased as
uncovered code often performs a different role than covered
code.

The second factor is the distribution of the per-basic block
execution count. It is expected that most of the run time of
a program is spent executing only a small part of the code.
Faults injected in this part of the code get activated over and
over, whereas some other fault locations are activated only
once per run. Execution count is relevant in cases where
the impact of the fault depends on the context. A typical
example is a memory leak, which does not have a visible
impact on the initial execution. However, as it is executed
over and over again it might eventually deplete available
memory completely, resulting in a crash. Our question is to
what extent differences in execution count introduce bias,
affecting the fidelity of the experiment. Code executed multiple
times is not a random subset of the program. Most likely,
it is the functional core of the program, which has been
tested extensively. In particular, it seems likely that when
injecting residual faults [8] the locations less likely to be

triggered are also triggered less often. Assuming that activated
faults may or may not propagate depending on the context,
faults activated more often have a higher chance of causing
anomalous behavior in excess of the impact of being activated
by more of the workloads. This introduces distortion with
regard to the intended fault model.

It cannot be assumed that coverage and execution count of a
basic block are independent from the number and types of fault
candidates present in the basic block. Fault candidate types
occurring more commonly in blocks likely to be executed are
another source of bias. In the case that some fault types are
over- or underrepresented in the part of the code covered by
the workloads, it is still possible to make the output fault load
faithfully reflect the fault model. However, the effect must
be measured to allow the input fault load to be altered to
compensate for the bias introduced.

IV. APPROACH

We aim to find and explain differences between the input
and output fault loads. To gather information on the behavior
of the test program, we use compiler-based instrumentation
implemented using the LLVM compiler framework [23] (ver-
sion 3.2). Our analysis operates at the LLVM bitcode level,
which (in contrast to approaches using the binary) allows
us to preserve source-level information required for fault
type representativeness [18], [24], while supporting a broad
range of programs and platforms. For our investigation, we
chose the standard software fault types commonly used in the
literature [7], [25], [26].

While compiling each program, we identify all fault can-
didates and register in which basic block they occur. Without
injecting any actual faults, we apply our instrumentation to
measure execution counts for each basic block while running
one or more workload generator scripts for each test program.
This allows us to efficiently compute the output fault load
for any input fault load. The main disadvantage is that it is
not possible to consider interactions between faults. However,
it should be noted that it is not possible to draw general
conclusions about the impact of interactions between faults
regardless because the interactions depend not just on the
fault types and locations but also on the context. Interactions
may introduce additional distortions, such as faults activated
early being more likely to occur than faults activated late.
However, these distortions are mostly a problem if many faults
are injected per run, which is quite unrealistic to begin with.
Our approach allows us to use a few real runs (multiple to cap-
ture random workload variations) for each program/workload
generator and use the statistics collected to efficiently consider
all possible single injections. Interactions would however be a
good topic for future research.

Our analysis is largely qualitative. Our aim is to show that
distortion occurs in commonly used fault injection settings and
under which circumstances distortion may be an issue. For this
purpose, we do not need a quantitative measure of distortion.
Nevertheless, future work constructing such a measure would
certainly be valuable.



V. PROGRAMS AND WORKLOADS

We selected a number of programs that is reasonably
diverse, while also containing several sets of programs that
are functionally similar. The latter can be used to compare
different programs running the same workload. We preferen-
tially chose programs that offer their own regression test suite
to have a ‘neutral’ workload, but wrote our own workload
generators for programs that do not offer regression tests. We
selected three compression programs (bzip2, gzip and xz),
two implementations of sort (GNU Coreutils and Busybox)
and two implementations of od (same sources). Busybox is
normally compiled into a single binary containing all tools,
but we configured it to provide each tool as a separate binary.
In addition we selected the bash shell because it does a
lot of parsing and hence may encounter error conditions in
the input, gnuchess because the control flow of its AI is
expected to be relatively complex and the vim editor to have an
interactive program that has a good regression test. Because we
also wanted to have a systems-related program, we included
ntfs-3g, which is a user-space implementation of the NTFS
file system.

Having a good workload with high coverage is desirable for
fault injection experiments. For this reason, regression tests are
generally more suitable than performance benchmarks and we
have used these wherever they were available. We have not
attempted to increase the coverage in these cases as our aim
is not to perform the best fault injection experiments possible,
but rather get an impression of the biases present in commonly
performed experiments. However, we did randomly select a
subset of the tests to ensure some variation. We ran enough
runs to prevent this from negatively impacting coverage.

Where a regression test was not available or where we
wanted comparability between different programs with the
same benchmark, we generated workloads that randomly
combine the available commands and options as specified by
the documentation. Input files are randomly generated where
needed, using a Markov chain approach. The transition matrix
determining the type of file is picked randomly from several
possibilities, including binaries as well as text in several
languages. Some erroneous inputs are also generated, but no
attempt is made to test all anomalous conditions so as to keep
the results comparable with other experiments.

VI. RESULTS

The results section has been split in sub-sections, each
representing a part of the experiment. Threats to validity are
different for each part, so they are not considered in a separate
section but rather considered while drawing conclusions.

A. Coverage

Coverage is a major concern for fidelity because parts of
the code that are never executed when a test workload is
run can never activate any faults. Any fault model in which
these particular locations are important requires substantial
effort to maximize coverage if any degree of fidelity is to
be achieved. For this research, the goal is not to maximize

Fig. 1. Coverage per program and workload generator

coverage but rather to evaluate a range of coverage levels that
might realistically occur in fault injection research.

Whenever the workload contains a degree of randomness,
coverage increases as more runs are tested. Each input has
some chance to trigger some code paths not previously
reached. However, there are diminishing returns here. As more
runs are performed the coverage eventually reaches the max-
imum for that particular workload generator. Our tests show
that for all our workload generator scripts, 50 runs are easily
enough to get a good impression of the maximum coverage
that can be achieved. Due to our approach of counting basic
block executions rather than injecting real faults, reaching
the number of runs where coverage no longer increases is
sufficient. There is no need for separate runs for each fault
candidate to reach corner cases.

Fig. 1 shows the level of coverage we reached for each
program using 50 runs. There is quite some diversity even
for workloads generated in similar ways. For example,
bzip2-man and gzip-man both test all combinations of flags
described in their manual pages and introduce the same types
of corruption, but the former reaches 74.1% coverage while
the latter only gets 43.0%. The regression tests included by
the authors of these programs show a similar difference. This
suggests that program organization can have a large impact
on coverage. We investigated gzip’s poor coverage and found
that much of the uncovered code is in re-implementations of
functions normally imported from libc such as printf. Many
features of these functions are never used, resulting in code
that the compiler does not know is unreachable. Unreachable
code makes it harder to get meaningful information about cov-
erage. Ideally, such code should be removed by the authors or
disabled by the researcher before performing any experiments.

Fig. 1 also shows that the way coverage is measured can
make a substantial difference. Often (but not always), coverage
is higher in terms of fault candidates than in basic blocks.
Though not shown in the graph, coverage in lines of code
is generally slightly higher than in basic blocks. Coverage in



instructions is generally slightly lower than coverage in fault
candidates. The difference supports our idea that uncovered
code is not representative of all code. Hence, not testing this
part of the code introduces a bias that makes the output fault
load a more distorted view of the input fault load and hence
the fault model.

The differences between the various definitions of coverage
also mean that care must be taken in measuring coverage
in the right way. A clear example can be seen with the
sort utility. Even though the programs implement the same
specification, the same workload is used and coverage in
terms of basic blocks and lines of code is very similar,
coverage of fault candidates is 39% higher for the Busybox
implementation. Therefore, fault injection experiments using
Busybox are expected to be more faithful to the fault model.
Care must be taken to report statistics in the most appropriate
units, which in case of coverage in fault injection experiments
we believe to be the percentage of fault candidates covered.

In addition to the comparison between programs and work-
loads, we have investigated the impact of optimization level
on coverage. Although optimization allows for the elimination
of more dead code, it may also increase code size due to
inlining. Therefore, it is a priori unclear whether optimization
should have an impact on coverage. Our results (omitted
for brevity) show the optimization option tends to slightly
increase coverage. For example, -O4 on average results in
just over one percent-point higher coverage in terms of fault
candidates compared to -O0. In LLVM 3.2, -O4 is the highest
level of optimization possible, combining maximal compiler
optimization (-O3) with link-time optimization (-flto). gzip
is most affected, with coverage going up from 49.7% to 53.8%.
This is mostly due to re-implemented libc functions with poor
coverage being optimized more aggressively than the rest of
the code. When ignoring gzip, the impact of optimization
is even smaller. We recommend using the same compiler
settings as in production settings, as the coverage advantage
of changing them is negligible.

The claims that low coverage is caused in part by un-
reachable code and that error handling code has different
characteristics than other code need to be verified. To check
whether these are the plausible we analyzed bzip2 program,
classifying each basic block. This program has high coverage
compared to the others (74.1% of basic blocks) so it should
give a good impression of the nature of the hard-to-reach parts.
Also, its control flow is relatively simple, making mistakes less
likely. It should not be taken as a representative sample, but
rather as a proof of concept that our ideas are plausible.

We classified basic blocks in the optimized (-O4) bzip2
program based on the circumstances under which they are
invoked. We then made 600 runs to determine coverage for
each class of block. The result is shown in Table I. Basic
blocks that are reachable without error conditions are classified
as ‘normal execution.’ ‘Data errors’ refers to code dealing
with corrupted input files. ‘User errors’ refers to code run
due to invalid user input. The ‘OS errors’ class deals with
unexpected OS error conditions. ‘Unreachable’ code can never

TABLE I
CLASSIFICATION OF BASIC BLOCKS IN BZIP2

Basic block type % of Total % of LoC Lines/bb Coverage
Normal execution 78.1% 83.0% 1.7 83.7%
Data errors 5.6% 4.2% 1.2 34.0%
User errors 1.8% 2.6% 2.3 15.2%
OS errors 3.2% 2.4% 1.2 0.0%
Unreachable 4.2% 4.9% 1.8 0.0%
Panic 4.2% 2.9% 1.1 0.0%
No line info 2.9% 0.0% 0.0 90.8%
Total 100.0% 100.0% 1.6 70.1%

be executed. In bzip2, most unreachable code consists of
functions in a library that may be used from other programs
but that bzip2 itself does not use. The ‘panic’ category refers
to error conditions that should never occur, such as assertion
failures. A few basic blocks did not include line number
information, so we could not classify them.

Table I provides some interesting insights. For bzip2,
10.6% of the basic blocks can only be reached by triggering
error conditions in the workload while 8.4% cannot or should
not be reached at all. It is important when constructing high-
coverage workloads as well regression tests that triggering
error conditions is essential and also that 100% coverage
is not realistic. In addition, it is shown that code structure
differs between the classes identified. Code handling data
and OS errors consists of small basic blocks. This part is
underrepresented when coverage is expressed in terms of lines
of code, understating its importance in testing. The opposite is
seen with user errors, because more verbose output is provided
in these cases. Although we do not claim these results are
representative of other programs, it is clearly shown that these
factors should not be ignored when evaluating coverage.

B. Execution count

The degree to which some parts of the code execute more
often than others is rarely considered in fault injection experi-
ments. Given that the impact of an activated fault may depend
on the context, it is reasonable to expect that a fault being
activated over and over again is more likely to have an impact
than a fault activated only once each run. A typical example
of such a bug is a memory leak. Therefore, it is prudent to
consider whether repeated activation could introduce bias in
fault injection experiments.

Which parts of a program are executed often is mostly
determined by the control flow. Loops and recursion allow
sections of the code to be executed arbitrary numbers of
times. However, the workload often determines the bounds
of loop counters and the depth of recursion. We aim to
determine whether the distribution of execution counts is
affected mostly by the program or mostly by other factors
such as the workload. In the former case there is no difference
between fault injection experiments and production, so no bias
is introduced. In the latter case this factor must be carefully
considered.

To investigate the distribution of execution counts, we have
plotted histograms showing the number of basic blocks with



Fig. 2. Log-log histograms of execution count per basic block

particular execution counts. For brevity, we include only four
programs which show all distinct shapes. These graphs are
shown in Fig. 2. Both axes are logarithmic because of the
extreme ranges of values they take. bash shows a more-
or-less linear decline in frequencies as the execution count
goes up. Of the programs not shown, vim has a very similar
shape. This shape in a log-log histogram is typical of power
law distributions [27], where the probability of each value
x is proportional to x−α. gzip with our own workload
generator results in a graph that increases, reaches a peak
and then decreases linearly. The same applies to bzip2 and
xz with similar workloads, gnuchess and ntfs-3g. These
are still good candidates for a power law-like distribution
as the tail (higher values) is most important. The regression
test for gzip is almost flat at the tail. The same applies to
the bzip2 regression test. These are power law distributions
where the α parameter is very low. The graph is truncated
because the workload was not run long enough for it to visibly
decline. Finally, both implementations of sort and od have
distributions with two peaks. Such a graph suggests that part
of the program is independent of input size, whereas another
part runs a number of times for each byte/line of input. This
graph does not fit any commonly used probability distribution,
but the behavior of the tail is still similar to a power law
distribution.

Power law distributions are known to have fat tails, meaning
that the differences in execution counts between basic blocks
are huge. This effect can readily be seen from the ranges of
values in Fig. 2. Faults injected in the most executed locations
get activated incomparably more often than those injected in
other places.

Our aim is to find which factors influence this behavior.
To compare the distributions, we estimate their exponents.
Higher values indicate that the frequencies decrease with count
faster, the tail is less fat and the distortion introduced less
extreme. We estimate the exponent by performing a maximum
likelihood fit [27].

The average estimated exponents (over 50 experiments) and

TABLE II
ESTIMATION OF THE DISTRIBUTION EXPONENT

Program/workload Exp. S.D. Program/workload Exp. S.D.
bash-rtest-random 1.18 0.01 gnuchess 1.10 0.00
busybox-od-posix 1.27 0.02 gzip-common-man 1.11 0.00
busybox-sort-posix 1.09 0.00 gzip-rtest 1.17 0.00
bzip2-common-man 1.11 0.00 ntfs-3g-posix 1.10 0.00
bzip2-rtest 1.17 0.00 vim73-rtest-random 1.18 0.01
coreutils-od-posix 1.09 0.00 xz-common-man 1.15 0.00
coreutils-sort-posix 1.18 0.06

the standard deviations are shown in Table II. The standard de-
viations are low, so the estimated parameter does not strongly
depend on the random seed. All exponents are close to one,
which is the minimum. This suggests that the distributions are
very fat-tailed and extreme execution counts are common.

The table shows the impact of implementation and work-
load. The exponents for the two implementations of od and
sort are not even close to each other, even though they run
exactly the same workloads. The bzip2 and gzip programs
show that the workload also has a large impact. Although
the difference is smaller than between programs, it is much
higher than the standard deviation. This is consistent with the
different shapes in Fig. 2. It is clear that both different imple-
mentations of the same functionality and different workloads
on the same program can result in different distributions.

Our findings show that execution counts are affected by
workload and have a large potential introducing distortion.
High-fidelity fault injection requires execution counts similar
to those in the production environment. Since the number of
iterations of loops in the program is an important factor, care
should be taken to select a realistic distribution of input sizes.

C. Relationship between execution count and coverage

Residual faults are activated only by a small fraction of the
tests [8]. This definition is based on the idea that such faults
are likely to elude testing and are therefore more representative
of real-world faults than other faults. To evaluate the impact
of selection of residual faults on distortion, it is important to
know whether residual fault locations are repeatedly executed
to a similar degree as other locations.

Fig. 3 classifies basic blocks based on the fraction of runs
triggering them (coverage) and shows geometric means of
the maximum execution counts for the basic blocks in each
coverage group. We use the maximum rather than the mean
or median for each basic block to prevent the zero execution
counts from automatically introducing the effect of lower
execution counts for residual locations. We use the geometric
mean because we do not want to ignore extreme values (as
the median would do) but we also do not want them to
dominate all other values (as the arithmetic mean would do).
Nevertheless, using either of these other measures the pattern
is still the same. Standard errors are not directly applicable
to geometric means, but we computed the standard error of
the mean of the natural logarithm for each data point. This
is at most 0.745, corresponding with a factor of 2.106. This
shows that the effects shown are far larger than the errors. The



Fig. 3. Geometric mean of maximum execution count per basic block
depending on coverage

programs and workloads not shown have too few basic blocks
that are executed only in some of the runs to give meaningful
results.

Fig. 3 shows that basic blocks where residual faults would
be injected execute far less often than other blocks, even in
the workloads that activate them. Therefore, activated residual
faults are expected to cause less damage compared to other
activated faults. Therefore, fault models that include both types
are at risk of underestimating the impact of the residual faults.
If the impact of such faults is expected to be important in
production systems, they should be tested separately.

D. Relationship between faults and execution

We already considered impact of coverage and execution
count on fault locations, but we have not considered the
fault types yet. If particular fault types are more likely to
execute, bias is introduced in the activated faults, which should
be compensated by adjusting the input fault load for the
experiment to be consistent with the fault model.

Our question is whether some fault types are more likely
to execute than others. For each basic block and each fault
type, we compute the fraction of faults in the block that is of
that type. For each program, we compute the mean of these
fractions for covered blocks and for uncovered blocks. To find
the bias introduced by incomplete coverage, we compare these
means and perform a t-test to determine whether the difference
is statistically significant.

There are large differences in the frequency with which fault
candidate types occur depending on the program, the question
whether a basic block is covered by the workloads and
sometimes also the level of optimization. However, programs
performing a similar task (the compression utilities as well as
the implementations of od and sort) tend to be similar with
regard to the distribution of fault types. It is also remarkable
that the workload matters relatively little in this regard.

The full table of fault types per program is much too large
to present here, instead we summarize by discussing on a
number of cases where differences are large in both absolute
and relative terms. The bzip2 and gzip programs stand out
for having a different fault candidate type distribution than
most other programs. Regardless of the workload used, fault
types related with integer arithmetic and memory loads are
more common while branch-related types are less common.
In addition, the common fault types are also more likely to

actually get activated for these programs. When looking per
fault type rather than per program, array index errors and load
errors tend to be more common in executed code while stores
and point arithmetic are less likely to get execute. Fault types
related to loads and stores are clearly more common when
optimization is disabled.

The fault candidate type distribution differs between types
of programs, but it seems reasonable to assume that more fault
candidates would also lead to more real bugs. The implication
for fault injection is that either the type of program should
be considered when specifying a fault model or the fault
model should be specified in such a way that the frequency
of fault types being injected is proportional to the frequencies
of fault candidates of that type. This approach would favor a
specification such as ‘inject a fault for 1% of the candidates for
a missing load fault’ over the alternative ‘10% of the injected
faults should be of the type missing load.’

It has been made plausible that indeed some fault types are
more likely than others to get activated, introducing a bias in
the output fault load. This should be dealt with by considering
the distortion introduced and adjusting the input fault load
accordingly to compensate for the overrepresentation.

VII. CONCLUSION

In this paper, we defined the concept of fidelity of a
fault injection experiment to mean that the activated faults
faithfully represent the fault model. We listed a number of
factors that might be expected to introduce bias during fault
injection experiments and investigated their impact. We found
several factors that do indeed introduce bias and used them to
provide a number of recommendations that should allow one
to increase the fidelity of fault injection experiments and be
more aware of biases that cannot easily be eliminated.

Regarding coverage, we found that the regression tests in-
cluded with some programs performed less well than our own
tests based on the manual pages, most likely because our tests
also introduce some errors in the input data. It is important
to test not just correct input, but also incorrect input because
error handling code is a typical place for residual errors to
hide. Although this recommendation should be well-known,
regression tests included with common open source programs
show that such test cases are often omitted in practice. It is
also recommended to avoid or remove unreachable code where
possible because it makes the results harder to interpret. What
is also very important is to use the most suitable definition of
coverage and be explicit about which was chosen, because
we have shown that there can be a substantial difference
between them. In the context of fault injection, measuring
coverage in terms of fault candidates is recommended. In
particular, definitions based on lines of code tend to downplay
the importance of error-handling code, which has relatively
few lines of code per basic block but is a particularly likely
place to encounter real-world faults. Another important finding
is the fact that coverage is not independent from fault types.
Therefore, to achieve fidelity, fault injection tools should be



configured to make the output fault load rather than the input
fault load match the fault model.

In addition to these findings regarding coverage, we also
investigated the distribution of basic block execution counts.
The main conclusion is that this distribution has a fat tail,
which means that extreme execution counts are relatively
common. Since we have shown that the distribution is strongly
influenced by the workload, it is important to select workloads
with a similar input size distribution as would be found in a
production environment. Another important consideration is
the fact that execution counts tend to be higher in code that is
executed by many runs of the workloads. As a consequence,
experiments that inject both residual faults [8] and non-residual
faults will most likely execute the non-residual fault more
often, causing them to be overrepresented in the output fault
load.

Regarding model specification, it is important to note that
different types of programs differ in the distribution of fault
candidate types. Assuming that each time a programmer writes
code that could be subject to one of the fault types, there
is a small chance that he/she indeed makes such a mistake.
Therefore, the distribution of real faults can be expected to also
be affected. To deal with this elegantly, it is recommended to
specify the fault model in terms of the percentage of fault
candidates that will be injected rather than a percentage of the
total.

We also investigated the impact of compiler flags, in
particular optimization levels. We showed that these have a
non-negligible impact on the availability of fault candidates.
Therefore it is recommended that compiler flags are set as they
are in a production environment, rather than compiling code
in debug mode for testing.

In this paper, we defined the new concept of ‘fidelity’
of fault injection, which is important to ensure that the
activated faults correspond with what was specified by the fault
model. We have shown that careless fault injection experiments
threaten fidelity and may not measure what the user intended,
may be less efficient, less comparable and that problems with
workload construction may remain hidden if fidelity is not
considered. We performed a large-scale empirical evaluation
of fidelity, resulting in advice on how to improve fidelity and
raising awareness of the problem of fault load distortion.
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