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Abstract

The common storage stack as found in most operating

systems has remained unchanged for several decades. In

this stack, the RAID layer operates under the file system

layer, at the block abstraction level. We argue that this

arrangement of layers has fatal flaws. In this paper, we

highlight its main problems, and present a new storage

stack arrangement that solves these problems.

1 Introduction

The concept of RAID [13] is a landmark in the history

of storage systems. Taking advantage of the traditional

block interface used by file systems, RAID algorithms

were integrated at the block level, thus, retaining perfect

backward compatibility with existing installations. As

installations became larger, administrative tools like vol-

ume managers [20] followed suit. These tools broke the

“one file system per disk” bond and made it possible to

resize file systems on the fly. Volumes also served as a

convenient point for policy assignment (choosing RAID

levels for instance) and quota enforcement. Together, we

refer to RAID and volume management solutions as the

RAID layer.

The compatibility-driven integration of the RAID

layer at the block-level has remained unchanged despite

significant changes in the storage hardware landscape.

We believe that it is time to retire block-level RAID.

In this paper, we highlight several significant problems

associated with the traditional block-level RAID imple-

mentation (Section 2). We briefly discuss proposed so-

lutions and explain why they do not solve all the prob-

lems (Section 3). We then present Loris, a clean-slate

design of the storage stack (Section 4), and highlight how

it solves all the problems by design (Section 5).

2 Problems with block-level RAID

In this section, we will provide an in-depth look at some

of the problems that plague block-level RAID implemen-

tations.

2.1 Silent data corruption

Modern disk drives exhibit a range of partial failures [14,

6], like lost, misdirected, and torn writes. In all these

cases, the drive reports back a success, resulting in data

being silently corrupted.

Various checksumming techniques have been devel-

oped to detect data corruption [16] and they offer vary-

ing levels of reliability. One technique that is capable of

detecting all the aforementioned sources of corruption,

involves storing the checksum of a block with its par-

ent (the inode for instance). This has been referred to

as parental checksumming. Since such a technique in-

volves knowledge of block relationships, it can only be

employed by file systems.

However, parental checksumming loses its benefit

when used in combination with block level RAID. This

is due to the fact that while file system-initiated reads

undergo verification, RAID-initiated reads (a subtractive

read to recompute parity for instance) are completely un-

verified. As a result, RAID can propagate data corrup-

tion, leading to data loss [12]. For instance, if a corrupt

unverified data block is used for parity computation, the

parity block becomes corrupted. Parental checksumming

detects this problem on the next read request, but the data

cannot be recovered.

2.2 System failure

Crashes and power failures in RAID systems result in the

consistent update problem where two or more disks must

be updated in a consistent manner. A window of vul-

nerability exists between a crash and complete recovery,

during which a disk failure can result in data loss. This

has also been referred to as the “write hole” [4]. While

hardware RAID relies on NVRAM to solve this problem,

crash recovery in software RAID systems is provided by

either doing an expensive whole disk resynchronization

or using journaling. Resynchronization adversely affects

availability [7] and is impractical with disk sizes dou-

bling every few years. Using journaling in block-level

RAID on the other hand has a significant impact on per-

formance, and results in functionality being replicated in

both the file system and RAID layers [9].

2.3 Device failure

Research has revealed the benefits of a storage array that

degrades gracefully [17] when unexpected failures oc-

cur. To achieve such a property, a storage array must



(1) replicate metadata selectively to make sure that the

whole directory hierarchy remains navigable, (2) provide

fault-isolated positioning of files such that a failure of

any single disk does not render all files unavailable. An

array that is block-liveliness aware can avoid restoring

unused data blocks during recovery and thus, reduce the

data loss window before another failure occurs. It is im-

possible to provide any of these functionalities in a tra-

ditional block-level RAID implementation, because it is

unaware of both relationship between blocks and liveli-

ness of blocks [5].

2.4 Administration nightmare

Block-level volume management is a tedious process in-

volving a series of error-prone steps. A simple operation

such as adding a new disk drive requires several steps

like adding space to a volume group, expanding a logical

volume, and then expanding a file system [20].

Software-based RAID solutions expose an array of

tunable parameters for configuring a storage array based

on the expected workload. It has been shown that an

improperly configured array can render layout optimiza-

tions employed by a file system futile [18]. This is an

example of the more general “information gap” prob-

lem [8] – different layers in the storage stack performing

their own optimizations oblivious to the effect that these

optimizations might have when combined.

Different files have different levels of importance and

need different levels of protection. However, policies

like the RAID level to use, encryption, and compression,

are only available on a per-volume basis rather than on

a per-file basis. We argue that an ideal storage system

should be flexible enough to support policy assignment

on a per-file, per-directory, or a per-volume basis.

2.5 Heterogeneity issues

New devices are emerging with different data access

granularities and new storage interfaces. Integrating

these devices into the storage stack has been done in two

ways. The first approach involves building file systems

that are aware of device-specific abstractions [10]. How-

ever, the traditional block-based RAID layer is incompat-

ible with devices that offer an abstraction different from

the block abstraction (like byte-granular flash devices).

As a result, device-specific file systems cannot be posi-

tioned on top of the traditional RAID layer.

The other approach involves adding a layer that trans-

lates block requests to match device-specific abstrac-

tions [10]. Such a translation layer could then be posi-

tioned below the RAID layer. Not only does this cause

duplication of functionality, but it also widens the infor-

mation gap. The only way to avoid this duplication is by

redesigning the storage stack from scratch [10, 2].

3 Proposed solutions

There are several approaches to solving the problems

mentioned in the previous section. We outline the most

important ones here, namely, (1) inferring semantic in-

formation, (2) sharing semantic information, (3) merg-

ing file system and RAID layers, and (4) stackable fil-

ing. However, as we will show, none of these approaches

tackle all the problems.

Internal information of one layer can be inferred by

another layer. Semantically smart disks [5, 17] infer file

system specific information to improve reliability and

performance at the RAID level. This approach requires

the RAID layer to know or guess the file system layout,

making it nonportable and error-prone.

Instead of inferring information, one can share layer-

internal information between these layers. For exam-

ple, ExRAID [8] exposes size and performance charac-

teristics about individual RAID disks to the file system.

While sharing information can be used to make informed

decisions [8], it does not provide a new division of labor

among cooperating layers. As a result, the reliability and

heterogeneity problems cannot be solved.

A few projects have refactored the traditional file sys-

tem/RAID layering. For example, the ZFS [4] proposes

a new stack made up of three layers. The lowest layer,

called the Storage Pool Allocator (SPA), provides both

block allocation and RAID support. However, because

the SPA exposes a block interface, its algorithms suffer

from the same heterogeneity problems as the traditional

RAID layer.

RAIF [11] is a stackable file system that introduces

RAID policies on a per-file basis, without changing the

underlying file systems. While this provides more flex-

ibility, it does not solve the reliability or heterogeneity

problems.

4 The Loris storage stack

In this section, we discuss the design of Loris, our new

storage stack. Loris is made up of four layers as shown in

Figure 1. The interface of each layer to the layer above

(its client) is a standardized file interface that supports

operations such as create, delete, read, write, and trun-

cate. In addition to file manipulation operations, the in-

terface also has operations for setting and retrieving at-

tributes. The use of attributes in Loris is to (1) share in-

formation between layers, and (2) store out-of-band data

on a per-file basis, as will become clear when we describe

the internals of each layer.

We now detail the division of labor between layers

in a bottom-up fashion. Just like the network protocol

stack, each layer in Loris has well-defined functionali-

ties. Similar to networking protocols, different protocols

can be used within each of these layers to provide dif-
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Figure 1: The figure depicts (a) the arrangement of layers

in the traditional stack, and (b) the new layering in Loris.

Only the layers above the dotted line are file-aware.

ferent functionalities. For each layer, we first provide an

abstract description of its responsibilities. We then de-

scribe the protocol we implemented for that layer, in our

prototype, to make things more concrete. Our prototype

has been implemented on MINIX 3 [19]. Our protocols

attempt to mirror the MINIX 3 file system’s algorithms,

so that we can make a fair evaluation of any overheads

introduced by Loris.

4.1 Physical layer

The physical layer provides device specific layout

schemes to store files and attributes, exposing a physical

file abstraction to its clients. By working with physical

files, the clients are abstracted away from device specific

protocols employed by the physical layer. All physical

layer protocols are also required to implement parental

checksumming.

Our prototype physical layer protocol provides a mod-

ified MINIX 3 file system layout scheme for block de-

vices. Each file is represented on disk by an inode. Like

the traditional UNIX inode, our inode stores direct and

indirect block pointers. Each block pointer is accompa-

nied in the inode by a CRC32 checksum for the block it

points to. We refer to this block pointer - checksum pair

as a “safe block pointer.” The indirect blocks similarly

store sets of safe block pointers. In addition to these safe

pointers, the inode has a fixed amount of space available

for storing attribute data.

In order to make it possible to checksum metadata

blocks, there are three special files on the disk: the inode

bitmap file, the block bitmap file, and the “root file.” The

bitmap files contain checksums for the bitmap blocks.

The root file forms the root of the parental hierarchy. Its

data blocks contain pairs of inode numbers and corre-

sponding checksums. Each inode on the disk is check-

summed individually, in contrast to the bitmaps which

are checksummed on a per-block basis. The root file’s

checksum is stored in the superblock. In order to pre-

vent each individual block write from triggering cascad-

ing checksum updates all the way to the root, we use a

small metadata cache to delay the checksum computation

of metadata blocks until they are written out.

We run multiple instances of this layout protocol, one

per disk drive, as separate processes, in our prototype

stack. Each disk is assigned a global device identifier

when it is added to Loris. Each layout instance regis-

ters itself to the logical layer using this identifier during

system startup.

4.2 Logical layer

The logical layer combines multiple physical files to pro-

vide a virtualized, logical file abstraction. Clients of the

logical layer perceive the logical file to be a single, flat

file. The logical layer abstracts away the details of how

many physical files there are, and where they are stored,

which may differ on a per-file basis. Protocols in the

logical layer provide the traditional RAID and volume

management functionalities.

Our prototype logical layer protocol provides support

for RAID levels 0, 1, 4, and 5. The central data structure

in our protocol is the mapping file. The mapping file is

array of entries, one per logical file. Each entry contains:

(1) the file identifier used by clients to identify the file,

(2) the RAID level for this file, (3) stripe size used for

this file and (4) device identifiers - inode number pairs,

to identify the physical files that make up this logical file.

Thus, a crucial difference between our implementation

and any traditional block-level RAID implementation is

the fact that RAID levels are assigned on a per-file basis.

We will describe how these entries are created when we

describe the naming layer. Since the mapping file is a

crucial piece of metadata, it is mirrored on all devices.

Once an entry has been made in the mapping, process-

ing a request involves looking up the entry corresponding

to the file identifier received, and forwarding the call to

the right physical instances. Let us consider a read re-

quest for a logical file. Let us assume that the mapping

entry for this file looks like <F, 0, 4096, PF1=<D1, I1>,

PF2=<D2, I2>>. It maps file identifier F to RAID level

0, stripe size 4096, and two physical files, PF1, the file

on device D1 with inode number I1, and PF2, the file on

device D2 with inode number I2. When the logical layer

receives a request to read, say, 40960 bytes, from off-

set 0, it determines that the logical byte ranges 0-4096,

8192-12288 and so on, map onto the byte range 0-20480

in physical file PF1 and the logical byte ranges 4096-

8192, 12288-16384 map onto the byte range 0-20480 in

physical file PF2. The logical layer now forwards the



read request to the physical instances that handle PF1

and PF2, for the aforementioned byte ranges, to satisfy

the read request. Once the read results come back, they

are combined into a properly-ordered flat result.

The logical layer also provides on-the-fly failure re-

covery on a per-file basis. For instance, if one of the

physical instances responds back with a checksum error

for a read request, the logical layer tries to recover the

corrupt data, if possible, by recomputing valid data from

redundant information, and restoring it onto the physical

instance that failed.

4.3 Cache layer

The cache layer provide the in-core file abstraction to the

naming layer. Cache layer protocols are responsible for

providing file data caching in collaboration with the vir-

tual memory subsystem. In systems that provide a uni-

fied page cache at the VFS level, the naming layer could

communicate directly with the logical layer.

Our prototype uses a static file cache to buffer user

data, as MINIX 3 does not have a unified page cache.

4.4 Naming layer

The naming layer provides support for naming, organiz-

ing and searching files. For example, a naming layer

protocol could support POSIX style naming while an-

other could support a more search-friendly, attribute-

based naming.

Our prototype naming protocol provides a POSIX

front-end. On file creation, the naming layer picks a file

identifier and stores the name/identifier mapping as a di-

rectory entry. It is important to note here that directories

are also stored as regular files–below the naming layer,

there are no directories, only files. All POSIX attributes,

like file mode and access time, are stored as Loris at-

tributes. The naming layer uses the setattribute call to

pass down the attribute data. The physical layer pro-

cesses the setattribute call by storing the attribute data

in the inode.

The naming layer also uses attributes to mirror direc-

tories on all disks for providing graceful degradation.

When a directory is created, the naming layer sends a

create call to the cache layer. In addition to passing the

file identifier for this directory, the naming layer also

passes the RAID level (RAID 1) as an attribute. The

cache forwards the create call to the logical layer, which

then uses the attribute to construct a new entry for this

file in the mapping, and forwards the create call to all of

the physical instances.

4.5 Legacy support in Loris

The new division of labor among layers in Loris makes

it incompatible with the traditional file system design.

The naming, cache and physical layers in Loris together

perform the role of the traditional file system layer. The

logical layer in Loris corresponds to the RAID layer in

the traditional stack. This essentially means that one can-

not integrate a traditional file system with the new stack.

However, because Loris runs under VFS, one could run

legacy file systems unmodified next to it.

5 Solving problems the Loris way

In this section, we describe how Loris solves the prob-

lems we mentioned in Section 2.

5.1 Data corruption

As a result of repositioning the RAID layer, the phys-

ical layer serves requests originating from the logical

layer just like application-issued requests. Thus, a phys-

ical layer that implements parental checksumming acts

as a single point of data verification. Therefore, by re-

quiring all layout schemes in the physical layer to im-

plement parental checksumming, we convert fail-partial

failures [14] into fail-stop failures. The logical layer can

then work on fail-stop devices to protect against data loss

without worrying about spreading data corruption.

5.2 Crash recovery

While traditional crash recovery techniques guarantee

that the storage array or the file system is brought back

to a consistent state, none of them guarantee atomic up-

dates of user data. Data journaling is one way to provide

such atomicity but is generally considered too expensive

since it involves writing all data twice. With a highly

flexible policy selection in place, we have an infrastruc-

ture where users are free to specify policies like RAID

level on a per-file basis. An approach to crash recovery

that we are investigating makes use of this fact to provide

“metadata replay.”

Metadata replay is based on the counterintuitive idea

that it is user data that must be protected and atomically

updated, not the system metadata. To make this possible,

we intend to (1) provide support for write-ahead logging

for selective user data, and (2) add support for main-

taining metadata consistency using a technique similar

to doublefs [1]. With this infrastructure, when a crash

occurs, the logical layer coordinates the recovery of all

physical layers to the last globally consistent state. The

write-ahead log can now be replayed to atomically up-

date user data and, as a side effect, regenerate system

metadata.

5.3 Graceful failure and file-aware rebuild

Our new design is a natural fit for implementing grace-

ful degradation: (1) the availability of per-file policy se-

lection makes it possible to provide selective metadata



replication, and (2) since the physical layers expose files

rather than blocks, the logical layer can choose to store

whole files in a single device, thereby providing fault-

isolated positioning. In addition, since the RAID algo-

rithms are file-aware, no unused data blocks need to be

recovered thereby reducing the reconstruction time.

5.4 Simplified administration

By positioning RAID and associated functionalities in

the logical layer, the new stack provides direct support

for (1) Storage pool [4] style device management, and

(2) AFS-style volume management [15].

When a new device is added to Loris, it will be as-

signed a new device identifier. A new physical instance

will be started for this device and it registers itself with

the logical layer as a source of physical files. From here

on, the logical layer can use this physical instance to cre-

ate new files or migrate existing files.

By using AFS-style volume management, volumes

can be created on a per-user or per-project basis, for in-

stance. These would serve as units of administration and

quota enforcement. The logical layer would support op-

erations for creating and deleting these volumes. All vol-

umes would share the storage space, since files belonging

to any volume can be located on any physical instance.

We are working on implementing such a volume man-

ager for Loris.

In addition to these advantages, the new stack pro-

vides a policy/mechanism split. While the mechanism

to provide RAID algorithms is in the logical layer, the

policy that assigns RAID levels to files can be enforced

by any layer. For instance, the naming layer can spec-

ify the policy on a per-file basis similar to RAIF [11].

For instance, cherished photographs could be replicated

on multiple devices while compiler-temporary files are

not. Thus, policies can be applied at several granulari-

ties – per-file, per-directory, per-volume or even globally,

across all files.

5.5 Embracing heterogeneity

By providing the traditional volume management tech-

niques at the file level, Loris makes these functionali-

ties device-independent. Thus, Loris can support het-

erogeneous installations where block-based disks coex-

ist with byte-granular flash devices and object-granular

OSDs [3]. Functionalities like RAID and snapshotting

would apply across these device types without requiring

any modification. In addition, as physical layer protocols

work on devices directly, they can exploit device-specific

properties to improve reliability and performance.

6 Conclusion

The integration of RAID algorithms at the block level

has remained the same over several decades. We investi-

gated the compatibility-driven block-level integration of

RAID and presented several problems inherent to this in-

tegration. We proposed Loris, a clean-slate design of the

storage stack that solves all these problems by design.

The new layering in Loris opens up several interesting

questions for future research.
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