
Programming a Distributed System Using Shared Objects

Andrew S. Tanenbaum
Henri E. Bal

Dept. of Mathematics and Computer Science, Vrije Universiteit
Amsterdam, The Netherlands

M. Frans Kaashoek

Laboratory for Computer Science, M.I.T.
Cambridge, MA

Email: ast@cs.vu.nl, bal@cs.vu.nl, kaashoek@lcs.mit.edu

Abstract
Building the hardware for a high-performance distri-
buted computer system is a lot easier than building its
software. In this paper we describe a model for program-
ming distributed systems based on abstract data types
that can be replicated on all machines that need them.
Read operations are done locally, without requiring net-
work traffic. Writes can be done using a reliable broad-
cast algorithm if the hardware supports broadcasting;
otherwise, a point-to-point protocol is used. We have
built such a system based on the Amoeba microkernel,
and implemented a language, Orca, on top of it. For
Orca applications that have a high ratio of reads to
writes, we have measured good speedups on a system
with 16 processors.

1. Introduction
As CPU prices continue to drop, more and more sys-

tems will be constructed from multiple CPUs. The tech-
niques for building the hardware for such systems are
beginning to be understood, but the software is in a more
primitive state. In this paper we will describe our model
for writing software for highly parallel computers, and
discuss some example programs and measurements.

Two kinds of multiple CPU systems exist: multipro-
cessors and multicomputers. A multiprocessor is a
machine with multiple CPUs that share a single common
virtual address space. All CPUs can read and write every
location in this address space. Multiprocessors can be
programmed using well-established techniques, but they
are difficult and expensive to build. For this reason,
many multiple CPU systems are simply a collection of
independent CPU-memory pairs, connected by a com-
munication network. Machines of this type that do not
share primary memory are called multicomputers .
Because these machines are easier to build and are likely
to dominate the highly parallel computer market in the
�����������������������������������

This work was supported in part by the Netherlands Organization
for Scientific Research as part of its Pionier program.

future, our model has been designed for this class of
machines, but our software also works on multiproces-
sors.

The usual approach to programming a multicomputer
is message passing. The operating system provides prim-
itives SEND and RECEIVE in one form or another, and
programmers can use these for interprocess communica-
tion. This makes I/O the central paradigm for multicom-
puter software, something that is unfamiliar and unnatural
for many programmers.

An alternative approach is to simulate shared memory
on multicomputers. One of the pioneering efforts in this
direction was the work of Li and Hudak [12]. In their
system, Ivy, a collection of workstations on a local area
network shared a single, paged, virtual address space.
The pages are distributed among the workstations. When
a CPU references a page that is not present locally, it gets
a page fault. The page fault handler then determines
which CPU has the needed page and sends it a request.
The CPU replies by sending the page. Although various
optimizations are possible, the performance of these sys-
tems is often inadequate.

Another approach is not to split the shared address
space up into fixed-size pages, but into programmer-
defined objects. These objects are then sharable among
multiple machines. Linda [5], for example, is based on
an abstract tuple space. A process can place a tuple in the
tuple space, and another process on a different processor
can remove it. In this way processes can communicate
with one another.

In Emerald [8] location-independent abstract data
types can be defined. Processes can perform operations
on an abstract data type no matter on which machine it is
located. It is up to the system to send the operation to the
data or the data to the requesting machine.

Both tuple-based and abstract data type-based schemes
eliminate the problem found in Ivy and similar systems of
having to move fixed-size units (e.g. 8K pages) around,
but they they have other problems. Emerald does not
replicate data, which can lead to performance problems;
Linda has fixed primitives that are low-level and inflexi-
ble.

2. Shared Data-Objects
Our design is based on the idea of doing parallel pro-

gramming on distributed systems using shared data-
objects. These objects may be replicated on multiple pro-
cessors, and are kept synchronized by system software,
the runtime system, as shown in Fig. 1 Associated with
each shared object is a set of operations that are encapsu-
lated with the object to form an abstract data type.
Objects are managed by a runtime system, as shown in
Fig. 1.

P RTS

A

B

P RTS

A

B

Network

CPU + Memory CPU + Memory

Fig. 1 An object can be replicated on each machine. P = pro-
cess, RTS = runtime system, A and B are shared data-objects.
To the user processes, A and B look like they are in physical
shared memory.

Processes on different machines can perform opera-
tions on shared objects as though they were in physical
shared memory. Shared objects exhibit the property of
sequential consistency in that if processes simultaneously
perform operations on a shared object, the final result will
look like all the operations were performed in some
sequential order [11]. The order is chosen nondetermin-
istically, but all processes will see the same order of
events and the same final result. It is up to the runtime
system to maintain this illusion.

By encapsulating the data inside abstract data types,
we insure that processes may not access shared data
without the runtime system gaining control. Getting con-
trol is essential to make sure objects are consistent when
accessed and to guarantee that updates are propagated to
other machines in a consistent manner. These properties
are not available with a page-based distributed shared
memory in which any process can touch any virtual
address at will.

Replicating shared objects has two advantages over
systems like Ivy. First, reads to any object can be done
locally on any machine having a replica. No network
traffic is generated. (For our purposes, a read is an opera-
tion that does not change the state of its object.) Second,
more parallelism is possible on reads, since multiple
machines can be reading an object at the same time, even
if the object is writable. With page-based schemes, hav-
ing many copies of writable pages is possible only under
restricted circumstances involving weakened consistency.

Whether replication can be done efficiently in

software depends on two factors. The first is the ratio of
reads to writes. If the vast majority of accesses to shared
data are reads, then having a copy of each shared object
on each machine that needs it is a good idea. The gain
from making reads cheap generally results in a major gain
in performance. The other factor is how expensive writes
are. If writes are exceedingly expensive (in terms of
delay, bandwidth, or computing power required), even a
moderately high ratio of reads to writes may not be
enough to make replication worthwhile. We have studied
this question in detail and reported on it elsewhere [3].

3. Implementation
The idea of sharing objects on a distributed system

stands or falls with the efficiency of its implementation.
If it can be implemented efficiently, high performance
parallel systems can be built as multicomputers and pro-
grammed as multiprocessors, combining the hardware
simplicity of the former with the software simplicity of
the latter. If it cannot be implemented efficiently, the
idea is of little practical value. Our results show that
shared objects can be implemented efficiently under cer-
tain circumstances, and gives good results for a variety of
problems.

The system described in this paper consists of three
major components: The Amoeba microkernel. The
shared object runtime system. The Orca parallel pro-
gramming language. We will discuss each of these in
turn in this section.

3.1. The Amoeba microkernel
Amoeba is a distributed operating system consisting of

a microkernel and a collection of server processes [15].
Amoeba was designed for a large number of machines,
called the processor pool, called by a (broadcast) net-
work. There are also machines for handling specialized
servers, such as the file system, as well as workstations
for clients, but the real computing is done on the proces-
sor pool machines. A copy of the microkernel runs on all
these machines.

The Amoeba microkernel has four primary functions:

1. Manage processes and threads.
2. Provide low-level memory management support.
3. Handle I/O.
4. Support transparent communication.

Let us consider each of these in turn.
Like most operating systems, Amoeba supports the

concept of a process. In addition, Amoeba also supports
multiple threads of control, or just threads for short,
within a single address space. A process with one thread
is essentially the same as a process in UNIX®. Such a
process has a single address space, a set of registers, a
program counter, and a stack.

In parallel applications, processes often have multiple
threads. Threads can synchronize using semaphores and

mutexes to prevent two threads from accessing critical
regions or data simultaneously.

The second task of the microkernel is to provide low-
level memory management. Threads can allocate and
deallocate blocks of memory, called segments . These
segments can be read and written, and can be mapped
into and out of the address space of the process to which
the calling thread belongs. To provide maximum com-
munication performance, all segments are memory
resident.

The third job of the microkernel is to provide the abil-
ity for one thread to communicate transparently with
another thread, regardless of the nature or location of the
two threads. The model used here is remote procedure
call (RPC) between a client and a server [4].

All RPCs are from one thread to another. User-to-
user, user-to-kernel, and kernel-to-kernel communication
all occur. When a thread blocks awaiting the reply, other
threads in the same process that are not logically blocked
may be scheduled and run.

The third basic function of the microkernel is to
manage I/O devices, handle interrupts, and so on. Device
drivers run as threads within the kernel. All other func-
tionality is located in user-space servers and other
processes.

Totally-ordered broadcasting
Amoeba also provides totally-ordered, reliable broad-

casting on unreliable networks through use of a software
protocol [9]. The protocol supports reliable broadcasting,
in the sense that in the absence of processor crashes, the
protocol guarantees that all broadcast messages will be
delivered, and all machines will see all broadcasts in
exactly the same order, a property useful for guaranteeing
sequential consisting. This feature is heavily used by
higher layers of software.

When an application starts up on Amoeba, one of the
machines (which normally have identical hardware) is
elected as sequencer (like a committee electing a chair-
man). If the sequencer machine subsequently crashes, the
remaining members elect a new one. We have devised
and implemented two different reliable broadcast algo-
rithms having slightly different properties. In the first
algorithm, called PB (Point to point - Broadcast), a run-
time system needing to reliably broadcast a message (e.g.,
a new value of an object) traps to the kernel. The kernel
adds a protocol header containing a unique identifier, the
number of the last broadcast it has received, and a field
saying that this is a RequestForBroadcast message and
sends it as a point-to-point message to the sequencer.
When the sequencer gets the message it adds the lowest
unassigned sequence number, stores the message in its
history buffer, and then broadcasts it.

When such a broadcast arrives at each of the other
machines, a check is made to see if this is the next mes-
sage in sequence. If this is message 25 and the previous
message received was 23, for example, the message is

temporarily buffered and a request is sent to the
sequencer asking it for message 24 (stored in the
sequencer’s history buffer). When 24 comes in, 24 and
25 are passed to the application program in that order.
Under no circumstances are messages passed to applica-
tion programs out of order. This is the basic mechanism
by which it is guaranteed that all broadcasts are seen by
all machines, and in the same order.

The other reliable broadcast algorithm is called BB
(Broadcast - Broadcast). In this method, the user broad-
casts the message, including a unique identifier. When
the sequencer sees this, it broadcasts a special Accept
message containing the unique identifier and its newly
assigned sequence number. A broadcast is only official
when the Accept message has been sent.

These protocols are logically equivalent, but they have
different performance characteristics. In PB, each mes-
sage appears in full on the network twice: once to the
sequencer and once from the sequencer. Thus a message
of length m bytes consumes 2m bytes worth of network
bandwidth. However, only the second of these is broad-
cast, so each user machine is only interrupted once (for
the second message).

In BB, the full message only appears once on the net-
work, plus a very short Accept message from the
sequencer, so only half the bandwidth is consumed. On
the other hand, every machine is interrupted twice, once
for the message and once for the Accept. Thus PB wastes
bandwidth to reduce interrupts compared to BB. The
present implementation looks at each message and
depending on the amount of data to be sent, dynamically
chooses either PB or BB, using the former for short mes-
sages and the latter for long ones (over 1 packet).

3.2. The shared object runtime system
We have developed two runtime systems to use with

Amoeba and Orca. The first one is used on networks that
have hardware broadcasting or multicasting. The second
one is used on systems that have neither of these. Both
are described below.

3.2.1. Reliable broadcasting
When the underlying network provides unreliable

broadcasting or multicasting, the PB and BB protocols
provided by Amoeba can be used to make broadcasting
reliable and totally ordered. The runtime system in this
case is straightforward. In the initial implementation,
every object is replicated on all machines that need it (an
optimizing scheme using partial replication is under
development). Reads are then done locally. Writes are
done either by doing the operation on the machine doing
the write and then broadcasting the result, or by broad-
casting the operation code and parameters and letting
each machine run the operation itself.

The broadcast RTS has an object manager for each
machine. Reads are done directly, bypassing the object
manager. Writes are done by asking the local object

manager to do the work. Incoming broadcasts are han-
dled by the object managers, which process them in strict
FIFO (i.e., sequence number) order, thus guaranteeing
that writes are seen by all processes in the system in the
same order (necessary for enforcing sequential con-
sistency). When a broadcast packet comes in, the local
object is locked to prevent local reads during the update.

3.2.2. The point-to-point runtime system
When the network does not support broadcasting,

objects can still be replicated, but they have to be
managed using point-to-point messages and completely
different protocols. We have implemented and tested two
kinds of point-to-point protocols: invalidation and update
(the broadcast system always uses update, because it is
cheap).

Both protocols allow multiple copies of all objects to
exist, so reads can be done locally when a copy is avail-
able locally. When an invalidation protocol is being used
and an object is written, all copies except one are invali-
dated (i.e., discarded). When an update protocol is being
used and an object is written, all copies are updated to the
new value. In general, updating an object is more expen-
sive than invalidating it, since a larger message and more
complicated protocol is needed. Also, if you do multiple
consecutive writes, invalidation may require one message
whereas update may require one per write. On the other
hand, if an object is needed on a machine whose copy is
no longer valid, a new copy must be fetched, which also
has a cost associated with it.

Both our runtime system using invalidation and our
runtime system using update are based on the concept of
having a primary copy of each object from which all
other copies (secondaries) are derived. In the invalidation
scheme, when a write is done, a message is sent to the
machine holding the primary copy. The runtime system
on this machine then locks the object and sends invalida-
tion messages to all the other copies. Each of these sends
back an acknowledgement when its copy has been invali-
dated. When all the acknowledgements have been col-
lected at the primary site, the object is unlocked and made
available for reading and copying.

The runtime system using updates also has a primary
copy, but the protocol is more complicated due to the
need to make multiple simultaneous updates sequentially
consistent. A two-phase protocol is used. When a write
is done, a message is sent to the primary copy, whose
runtime system locks the object and sends an update mes-
sage to all other copies. This message contains the opera-
tion code and parameters to allow the other machines to
perform the updates. This approach requires less
bandwidth than updating the object at the primary site
and sending the result to the other sites.

When each of the secondaries receives the update mes-
sage, it locks the object, performs the operation, and
sends back an acknowledgement, keeping the object still
locked. When all the acknowledgements have arrived

back at the primary, the second phase of the protocol is
entered in which a message is sent to each copy saying
that the object can be unlocked and used again for local
reads. Reads that are attempted while an object is locked
are suspended until it is unlocked.

The decision of where to replicate each object is done
dynamically based on runtime statistics. Initially, only
one copy of each object is maintained. As accesses to
objects are made, statistics are maintained. When the
ratio of reads to writes on any machine exceeds a certain
threshold, the runtime system concludes that there are so
many reads being done and so few writes that having a
local copy is worthwhile. A message is sent to the pri-
mary to fetch a copy. Similarly, when this ratio falls
below another threshold, the runtime system concludes
that having a copy is not worth the trouble due to the
large percentage of write operations. The local copy is
then discarded.

Comparisons of update and invalidation did not show a
clear winner. Which one is better depends on the prob-
lem being solved. Our experience suggests that updating
is better more often than invalidation, but more research
is needed.

3.3. Orca
While it is possible to program directly with shared

objects, it is much more convenient to have language sup-
port for them [1]. For this reason, we have designed the
Orca parallel programming language and written a com-
piler for it. Orca is a procedural language whose sequen-
tial statements are roughly similar to languages like C or
Modula 2 but which also supports parallel processes and
shared objects.

There are four guiding principles behind the Orca
design:

� Transparency
� Semantic simplicity
� Sequential consistency
� Efficiency

By transparency we mean that programs (and pro-
grammers) should not be aware of where objects reside.
Location management should be fully automatic. Furth-
ermore, the programmer should not be aware of whether
the program is running on a machine with physical shared
memory or one with disjoint memories. The same pro-
gram should run on both, unlike nearly all other
languages for parallel programming, which are aimed at
either one or the other, but not both. (Of course one can
always simulate message passing on a multiprocessor, but
this is often less than optimal, especially if there is heavy
contention for locks and certain other locations.)

Semantic simplicity means that programmers should be
able to form a simple mental model of how the shared
memory works. Incoherent memory, in which reads to
shared data sometimes return good values and sometimes
stale (incorrect) ones, is ruled out by this principle.

Sequential consistency is an issue because in a parallel
system, many events happen simultaneously. By making
operations sequentially consistent, we guarantee that
operations on objects are indivisible (i.e., atomic), and
that the observed behavior is the same as some sequential
execution would have been. Operations on objects are
guaranteed not to be interleaved, which contributes to
semantic simplicity, as does the fact that all machines are
guaranteed to see exactly the same sequence of serial
events. Thus the programmer’s model is that the system
supports operations. These may be invoked at any
moment, but if any invocation would conflict with an
operation currently taking place, the second operation
will not begin until the first one has completed.

Finally, efficiency is also important, since we are pro-
posing a system that can actually be used for solving real
problems.

Now let us look at the principal aspects of Orca that
relate to parallelism and shared objects. Parallelism is
based on two orthogonal concepts: processes and objects .
Processes are active entities that execute programs. They
can be created and destroyed dynamically. It is possible
to read in an integer, n, then execute a loop n times, creat-
ing a new process on each iteration. Thus the number of
processes is not fixed at compile time, but is determined
during execution.

The Orca construct for creating a new process is the

fork func(param, ...)

statement, which creates a new process running the pro-
cedure func with the specified parameters. The user may
specify which processor to use, or use the standard
default case of running it on the current processor.
Objects may be passed as parameters (call by reference).
A process may fork many times, passing the same objects
to each of the children. This is how objects come to be
shared among a collection of processes. There are no
global objects in Orca.

Objects are passive. They do not contain processes or
other active elements. Each object contains some data
structures, along with definitions of one or more opera-
tions that use the data structures. The operations are
defined by Orca procedures written by the programmer.
An object has a specification part and an implementation
part, similar in this respect to Ada® packages or Modula-
2 modules. Orca is what is technically called object
based (in contrast with object oriented) in that it supports
encapsulated abstract data types, but without inheritance.

A common way of programming in Orca is the Repli-
cated Worker Paradigm [5]. In this model, the main pro-
gram starts out by creating a large number of identical
worker processes, each getting the same objects as
parameters, so they are shared among all the workers.
Once the initialization phase is completed, the system
consists of the main process, along with some number of
identical worker processes, all of which share some
objects. Processes can perform operations on any of their

objects whenever they want to, without having to worry
about all the mechanics of how many copies are stored
and where, how updates take place, and so on. As far as
the programmer is concerned, all the objects are effec-
tively located in one big shared memory somewhere, but
are protected by a kind of monitor that prevents multiple
updates to an object at the same time.

4. Applications
In this section we will discuss our experiences in

implementing various applications in Orca. For each
application, we will describe the parallel algorithm and
the shared objects used by the Orca program. In this way,
we hope to give some insight in the usefulness of shared
objects.

In addition, we will briefly consider performance
issues of the applications and give some experimental
performance results. The performance measurements
were carried out on the Amoeba-based Orca system
described in the previous section using the broadcast run-
time system. The hardware we use is a collection of
MC68030s connected by a 10 Mb/sec Ethernet.

The applications we will look at are: the Traveling
Salesman Problem, the Arc Consistency Problem, com-
puter chess, and Automatic Test Pattern Generation.
Additional Orca applications are described in [2].

4.1. The traveling salesman problem
The Traveling Salesman Problem (TSP) is our favorite

example for Orca, since it greatly benefits from object
replication. The problem is to find the shortest route for a
salesman that visits each of a number of cities exactly
once.

We solve the problem using a parallel branch-and-
bound algorithm, which is implemented in a replicated
worker style program. The problem is split up into a
large number of small jobs, each containing a partial (ini-
tial) route for the salesman. The jobs are generated by a
manager process and are stored in a JobQueue object.
Each available processor runs a worker process, which
repeatedly takes a job from the queue and executes it.
For TSP, executing a job involves searching all possible
routes starting with the partial route stored in the job
description.

The parallel program keeps track of the best solution
found so far by any worker process. This value is used as
a bound. A partial route that is already longer than the
current best route cannot lead to a better solution, so its
search can be abandoned. Significant portions of the
search space can therefore be pruned.

The bound must be accessible to all workers, so it is
stored in a shared object. This object is read very fre-
quently and is written only when a new better route has
been found. In practice, the object may be read millions
of times and written only a few times.

In summary, the TSP program uses two important

objects: a global bound and a job queue. The global
bound is replicated on all worker processors. Since it has
a very high read/write ratio, most operations (i.e., the
reads) are done locally, without requiring any communi-
cation. Write operations, which occur far less often, are
broadcast. If one worker discovers a better value for the
bound, all other workers are informed instantly, and can
immediately use the new value for pruning parts of their
search space. The indivisible operation that updates the
object first checks if the new value actually is less than
the current value, to prevent race conditions.

The job queue mainly has write operations, since both
adding and deleting jobs changes the queue’s internal
data. The RTS described in this paper (the original one),
replicates it on all machines, although keeping a single
copy would be better. Despite the global replication of
both objects, the speedup is still excellent, as can be seen
from the figure.

Number of processors

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

Speedup

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .

. Perfect speedup

Fig. 2 Speedup for the Traveling Salesman Problem using a
14-city problem.

4.2. The arc consistency problem
The Arc Consistency Problem (ACP) is an important

AI problem [14]. The input to the problem is a set of
variables Vi, each of which can take a value from a
domain Di, and a list of constraints. Each constraint
involves two variables and puts a restriction on the values
these variables can have, for example A < B. The goal of
ACP is to determine the maximal set of values each vari-
able can take, such that all constraints are satisfied.

A straightforward sequential algorithm for solving
ACP is as follows. Assign a set of possible values to

each variable Vi; initially, the set for Vi contains all
values in its domain Di. Next, repeatedly restrict the sets
using the constraints, until no more changes can be made.
An obvious improvement is to keep a list of variables
whose sets have been changed, and then only recheck
constraints involving such variables.

For example, assume the current set for A is
{1,10,100} and the set for B is {2,3,20}. The constraint A
< B can be used to delete the value 100 from A’s set.
Now, all other constraints involving A have to be checked
again.

A parallel implementation of the above algorithm is
described by Conrad [6], using a message passing pro-
gram that runs on an iPSC/2 hypercube. The parallel
algorithm statically partitions the variables among the
available processors. Each processor takes care of deter-
mining the value sets for the variables assigned to it.

We have implemented a similar program in Orca, but
now using shared objects, and running on the Ethernet-
based Amoeba system. The Orca program uses several
shared objects. The sets associated with the variables are
stored in a shared object, called domain. This object thus
contains an array of sets, one for each variable. Opera-
tions exist for initializing the object, deleting an element
from one of the sets, and set membership tests. The
object is shared among all processes, since they all need
to have this information.

Another object, called work, is used to keep track of
which variables have to be rechecked. This object con-
tains an array of Booleans, one per variable. If the value
set of a variable A has been checked the entry for A is set
to false. In addition, for all other variables X for which a
constraint exists involving both A and X, the correspond-
ing entry is also set to true if A was reduced.

The most complicated issue in parallel ACP is how to
terminate the algorithm correctly. The algorithm should
terminate if none of the variables need to be rechecked.
Since the variables are distributed among the processors,
however, testing this condition requires careful synchron-
ization.

For this purpose, we use two shared objects. One
object contains a Boolean variable that is set to true if a
process discovers that no solution to the input problem
exists, because one of its variables now has an empty set
of values. Each process reads the object before doing
new work, and quits if the value is true.

A second and more complicated object, called result,
contains an array of Booleans, one per process. A pro-
cess sets its entry to true if it is willing to terminate
because it has no more work to do. The program can ter-
minate if two conditions are satisfied: (1) all entries in the
work object are false, and (2) all entries in the result
object are true. In this case, no more work exists and nei-
ther will any process generate such work, so the program
can safely terminate. The work and result objects have
indivisible operations for testing these two conditions.

The speedups for ACP are shown in Fig. 3. The

program uses at least two processors, since the master
process that distributes the work runs on a separate pro-
cessor.

Number of processors

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

Speedup

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .

. Perfect speedup

Fig. 3 Speedup for the Arc Consistency Problem using an input
problem with 64 variables.

Although the program obtains significant speedups,
the speedups are less than those reported for the original
hypercube program. The objects used in the program are
replicated on all processors, so there is a lot of CPU over-
head in handling incoming update messages for these
objects. We should also point out, however, that our pro-
gram uses many operations to handle termination
correctly, as explained above. The hypercube program
uses a cheaper but far less elegant method to handle ter-
mination, based on time-outs.

4.3. Computer chess
Oracol is a chess problem solver written in Orca. It

can be asked to look for “mate-in-N-moves” or for tacti-
cal combinations that win material. It does not consider
positional characteristics.

Oracol’s search algorithm is based on alpha-beta with
iterative deepening and the quiescence search heuristic.
Parallelism is obtained by dynamically partitioning the
search tree among the different processors, using simple
run-time heuristics. The program uses several shared
objects (e.g., a job queue). We will only discuss two
objects here, which are of particular interest.

The two objects implement a killer table and a tran-
sposition table. The killer table contains moves that turn
out to cause many cutoffs in the alpha-beta algorithm.
Killer moves are always considered first. The idea is that
if, say, White threatens to capture a rook by playing

“Queen to a8”, then Black needs to do something against
this threat. Any move by Black that does not prevent
White from capturing the rook can immediately be
refuted by the “Qa8” move, thus saving the trouble of
much further analysis.

A transposition table is a table containing positions
that have already been analyzed earlier during the search.
The same board position can be encountered multiple
times during the search, because different sequences of
moves can result in the same position. The transposition
table thus remembers positions and their evaluation
values. Before a position is analyzed, the program first
looks in its transposition table (using a hashing function),
to determine if it has seen the position before.

Both the killer table and the transposition table can be
implemented as local data structures or as shared objects.
If used locally, no communication is needed, but
processes cannot benefit from each other’s tables. For
example, a process may evaluate a position that has been
evaluated before by another process. If the tables are
shared, this will generally not happen, but now communi-
cation overhead is introduced for managing the shared
tables.

In Orca, it is particularly easy to implement both ver-
sions and see which one is best. The tables are imple-
mented using abstract data types (objects types). In the
local version, each process declares its own instance of
this type. In the shared version, only the main process
declares a table object and passes it as a shared parameter
to all other processes. The two versions differ in only a
few lines of code. For Oracol, we have determined that,
especially for the killer table, shared tables are most effi-
cient.

The speedups obtained for the program are not very
high, because alpha-beta is hard to parallelize efficiently.
On 10 CPUs, we have measured speedups between 4.5
and 5.5. Almost all of the overhead is search overhead,
which means that the parallel program searches far more
nodes than a sequential program does.

4.4. Automatic test pattern generation
The largest program implemented in Orca so far

(nearly 4000 lines) is for Automatic Test Pattern Genera-
tion (ATPG). ATPG is an important problem from
electrical engineering. It generates test patterns for com-
binatorial circuits. Such a circuit consists of several input
and output lines, and several internal gates (e.g., AND
gates, OR gates). The output of a given circuit is com-
pletely determined by the input.

To test if a specific gate works correctly, the input
lines must be set to certain values, such that the correct
functioning of the gate can be determined from the output
of the circuit. In other words, at least one of the output
lines must be different for a correct and an incorrect gate.
The problem is how to determine which inputs to use. In
general, all gates of the circuit must be tested, so the
problem becomes that of generating a set of input patterns

that together test the whole circuit. This problem is
called the ATPG problem. The problem is NP complete,
so in practice an ATPG program tries to cover as many
gates as possible within the time limit imposed on it.

Many ATPG algorithms exist, and several parallel
algorithms have been designed and implemented [10].
The Orca ATPG program is based on the PODEM algo-
rithm [7]. The algorithm considers each gate in turn. It
assigns values to certain input lines (determined by
heuristic rules), and propagates these values through the
circuit. If it discovers that the current assignment cannot
lead to a test of the gate, it backtracks and tries alternative
assignments.

The Orca program parallelizes ATPG by statically
partitioning the fault set among the processors. Each pro-
cessor is given a fixed number of gates, for which it com-
putes the test patterns. Using this basic algorithm, the
program achieves good speedups (close to linear) on cir-
cuits of reasonably large size.

An important optimization that can be applied to both
the sequential and parallel ATPG algorithms is fault
simulation. If a test pattern has been computed for a cer-
tain gate, this pattern will probably test other gates in the
circuit as well. Fault simulation determines such gates
and removes them from the list of gates for which pat-
terns still have to be computed.

This optimization was easy to add to the Orca pro-
gram. All processes share an object containing the gates
for which test patterns have been generated. If a process
adds an element to this set, all other processes also use it
to determine which gates they can delete from their set.
The Orca program using this optimization is faster in
absolute speed (by about a factor of 3), but it obtains infe-
rior speedups. This is partly due to the communication
overhead, and partly to the fact that the static partitioning
of work may now lead to a load balancing problem. We
intend to use a more dynamic work distribution strategy
in the future.

5. Summary
Shared objects offer the possibility of programming

certain parallel applications on systems lacking physical
shared memory. They offer a model comparable to what
programmers of multiprocessors get to see. We believe
that the shared object model allows systems to be built
that have the ease of construction of multicomputers,
combined with the ease of use of multiprocessors. For
this reason, we see this model as a promising area for
future research.

Acknowledgements
The Orca programs for ACP, computer chess, and

ATPG, have been written by Irina Athanasiu, Robert-Jan
Elias, and Klaas Brink, respectively. Jack Jansen wrote
the point-to-point runtime system.

References
[1] Bal, H.E.: Programming Distributed Systems , Pren-

tice Hall Int’l, Hemel Hempstead, UK, 1991.

[2] Bal, H.E., Kaashoek, M.F., and Tanenbaum, A.S.:
‘‘Orca: A language for Parallel Programming of Dis-
tributed Systems,’’ IEEE Transaction on Software
Engineering vol. 18, pp. 190-205, March 1992.

[3] Bal, H.E., Kaashoek, M.F., Tanenbaum, A.S., and
Jansen, J.: ‘‘Replication Techniques for Speeding up
Parallel Appl. on Distr. Systems,’’ Concurrency
Prac. & Exp. , vol. 4, pp. 337-355, Aug. 1992.

[4] Birrell, A.D. and Nelson, B.J.: ‘‘Implementing
Remote Procedure Calls,’’ ACM Trans. Computer
Systems , vol. 2, pp. 39-59, Feb. 1984.

[5] Carriero, N. and Gelernter, D.: ‘‘Linda in Context,’’
Commun. ACM , vol 32, pp. 444-458, April 1989.

[6] Conrad, J.M, and Agrawal, D.P.: ‘‘A Graph
Partitioning-Based Load Balancing Strategy for a
Distributed Memory Machine,’’ Proc. 1992 Int.
Conf. Parallel Processing (Vol. II) , pp. 74-81, 1992.

[7] Goel, P.: ‘‘An Implicit Enumeration Algorithm to
Generate Tests for Combinational IC Circuits,’’
IEEE Trans. Computers , vol. C-30, pp. 215-222,
March 1981.

[8] Jul, E., Levy, H., Hutchinson, N., and Black, A.:
‘‘Fine-Grained Mobility in the Emerald System,’’
ACM Trans. Computer Syst. , vol 6, pp. 109-133, Feb.
1988.

[9] Kaashoek, M.F. ‘‘Group Communication in Distri-
buted Computer Systems,’’ Ph.D Thesis, Vrije
Universiteit, Amsterdam, 1992.

[10] Klenke, R.H., Williams, R.D., and Aylor, J.H.:
‘‘Parallel-Processing Techniques for Automatic Test
Pattern Generation,’’ IEEE Computer , vol. 25, pp.
71-84, Jan. 1992.

[11] Lamport, L. ‘‘How to Make a Multiprocessor that
Correctly Executes Multiprocess Programs,’’ IEEE
Trans. on Comp. , vol. C-28, pp. 690-691, Sept. 1979.

[12] Li, K. and Hudak, P.: ‘‘Memory Coherence in
Shared Virtual Memory Systems,’’ ACM Trans.
Computer Systems , vol 7., pp. 321-359, Nov. 1989.

[13] Marsland, T.A., and Campbell, M.: ‘‘Parallel
Search of Strongly Ordered Game Trees,’’ Comput-
ing Surveys , vol. 14, pp. 533-551, December 1982.

[14] Mackworth, A.K.: ‘‘Consistency in Networks of
Relations,’’ Artificial Intelligence , vol. 8, pp. 99-118,
Feb. 1977.

[15] Tanenbaum, A.S. et al., ‘‘Experiences with the
Amoeba Distributed Operating System,’’ Commun.
of the ACM vol. 33, pp. 46-63, Dec. 1990.

