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ABSTRACT

Many applications can profit from broadcast communication,
but few operating systems provide primitives that make broad-
cast communication available to user applications. In this paper
we introduce primitives for broadcast communication that have
been integrated with the Amoeba distributed operating system.
The semantics of the broadcast primitives are simple and easy to
understand, but are still powerful. Our primitives, for example,
guarantee global ordering of broadcast messages. The proposed
primitives are also efficient: a reliable broadcast can be done in
just slightly more than two messages, so, the performance is
comparable to a remote procedure call. In addition, the primi-
tives are flexible: user applications can, for example, trade per-
formance against fault-tolerance.

1. INTRODUCTION

Most current distributed operating systems are based on remote
procedure call (RPC) (4). For many distributed and parallel
applications, however, this sender-to-receiver-and-back com-
munication style is inappropriate. What is frequently needed is
broadcasting, in which an arbitrary one of the n user processes
sends a message to the other n — 1 processes. Although broad-
casting can always be simulated by sending 2 ~ 1 messages and
waiting for the n — 1 acknowledgements, this algorithm is slow,
inefficient, and wasteful of network bandwidth. In this paper
we describe the broadcast primitives and their protocol for the
Amoeba distributed operating system.

As an example of applications that can profit from broad-
casting are those applications that replicate data structures at
multiple sites. Parallel applications, for example, may want to
replicate data to improve performance. Other applications may
want to replicate data to enhance fault tolerance. When a pro-
cess needs to change a distributed data structure, it must update
or invalidate all other copies. Here, a reliable broadcast from
one process to all the other processes is a more appropriate
model than RPC. Many other distributed applications in which
some kind of global state is needed are also candidates for using
broadcasting.

Interestingly enough, broadcast communication is pro-
vidled by many kinds of networks, including LANs,
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geosynchronous satellites, and cellular radio systems [14].
Thus, the hardware often supports the broadcasting that the
applications need. It is the operating system that gets in the
way. Indeed, although much research has been done in broad-
cast communication (6], only a few systems make the broadcast
capability of the network available to user applications: V [7]
and ISIS [3] are the best-known examples. In these systems a
process can send a broadcast message to a group of processes.
This technique is often called group communication.

To understand the differences between these systems,
three properties of group communication are of interest: reliabil-
ity, ordering, and performance. In the V system, broadcast mes-
sages are unordered. If two processes broadcast two messages,
A and B, simultaneously, some of the members may receive A
first and others will receive B first. Reliability in the V system
means that at least one of the members must have received the
message. A more reliable primitive can be built by waiting for
a reply from all members. However, this is a very inefficient
way of doing reliable broadcasting.

In the ISIS system, messages are globally ordered, even
for groups that overlap. If, for example, processes P, and P, in
Fig. 1, simultaneously send a message, processes P; and P,
will receive both messages in the same order. Reliability in
ISIS means that either all or no members of a group will receive
a message, even in the face of processor failures. Because these
semantics are hard to implement efficiently, ISIS also provides
primitives that give weaker ordering, but better performance. It
is up to the user application to decide which primitive is
required.

In this paper, we propose a new group abstraction. Our
protocol for reliable group communication is very efficient: a
reliable broadcast requires only a fraction more than two mes-
sages on the average. As a result performance is comparable to
RPC. The semantics of the group primitives are simple and
easy to understand, but are powerful nevertheless. Our primi-
tives, for example, guarantee per group a global ordering of
broadcast messages. In addition, user applications can specify
if they also want reliable communication in the presence of pro-
cessor failures. A prototype implementation of the proposed
group communication has been built into the Amoeba operating



Fig. 1 Global ordering with overlapping groups. P belongs to
group G,. P, belongs to group G,. P; and P, are member of
both groups.

system. This prototype has been used for running parallel appli-
cations [1,2].

The outline of the rest of the paper is as follows. In Sec-
tion 2, we will give a short description of Amoeba. In Section
3, we will introduce the primitives for group communication. In
Section 4, we will describe the protocol needed to implement
these primitives. In Section 5, we will discuss our system and
compare it to other systems. In Section 6, we will draw some
conclusions.

2. AMOEBA

Amoeba is an operating system specially designed for loosely-
coupled computing systems [12, 16]. The system can be viewed
as a collection of objects on each of which a set of operations
can be performed. The list of allowed operations is defined by
the person who designs the object and who writes the code to
implement it. Both hardware and software objects exist.

Associated with each object is a capability, a kind of
ticket or key that allows the holder of the capability to perform
some (not necessarily all) operations on that object. Capabili-
ties are protected cryptographically to prevent users from
tampering with them.

This object model visible to the users is implemented
using remote procedure call. Associated with each object type
is a server process that manages the object. When a client
wants to perform an operation on an object, it sends a request
message to the server that manages the object. The server is
addressed by a port that is part of the capability [15]. The mes-
sage contains the capability for the objéct, a specification of the
operation to be performed, and any parameters the operation
requires. The client then blocks. After the server has per-
formed the operation, it sends back a reply that unblocks the
client.

The combination of a request from a client to a server
and a reply from a server to a client is a remote operation. Both
the request and reply messages consist of a header and a buffer.
Headers are 32 bytes, and buffers can be up to 30000 bytes. A
request header contains the capability of the object to be
operated on, the operation code, and a limited area (8 bytes) for
parameters of the operation. For example, in a write operation
on a file, the capability identifies the file, the operation code is
write, and the parameters could specify the size of the data to be
written, and the offset in the file. The request buffer contains
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the data to be written. A reply header contains an error code, a
limited area (8 bytes) for the result of the operation, and a field
that can be used to return a capability (e.g., the capability of a
file to be looked up in a directory). The implementation of
remote operations guarantees that they are executed at most
once.

Although remote operations form a useful abstraction for
communication between a client and a server, some applications
consist of more than one process and have a need for a different
type of communication. For example, a directory service may
very well consist of a number of replicated servers to increase
the availability and reliability. These servers need to communi-
cate among each other to keep the copies of directories con-
sistent. What is needed here is some kind of broadcast com-
munication. In the rest of the paper we describe how this is
done in Amoeba.

3. GROUP COMMUNICATION

A group consists of one or more processes, called members,
typically running on different processors and cooperating to
provide some service or carry out some application program.
Processes may be a member of more than one group. Groups
are closed, which means that only group members can send a
broadcast message to the group. Processes which are not a
member and which wish to communicate with a group can use
remote operations (or can join the group). A process need not
be aware whether a service consists of multiple servers which
perhaps broadcast messages to communicate with one another,
or a single server. Also, a service should not have to know if
the client consists of a single process or a group of processes.
This design decision is in the spirit of the object model that
Amoeba provides: clients know what operations are allowed,
but should not know how these operations are implemented by
the service. The primitives to manage groups and to communi-
cate within a group are given in Fig. 2. We now discuss each
primitive in turn.

A group is created by calling CreateGroup. The first
parameter is a port identifying the group. The second parameter
is the number of member crashes the group must survive (0 if
no fault tolerance is required). This is called the resilience
degree of a group. The other parameters of CreateGroup
specify information that eases the implementation of a group:
the maximum number of members, the number of buffers to
use, and the maximum size of a message. Using this information
the kernel allocates memory for buffering messages and for
member information. If not enough memory is available,
CreateGroup fails. Otherwise, it succeeds and returns a small
integer, called a group descriptor, gd, which can be used as a
quick entry point for subsequent group calls. A group descrip-
tor is similar to a UNIXT file descriptor. Although these param-
eters could easily be replaced by default values, we decided
against this for the sake of flexibility.

+ UNIX is a Registered Trademark of AT&T Bell Laboratories.



CreateGroup(port, resilience, max_group_size, nr_buf, max_msg_size) — gd

Create a group. A process specifies how
many members failures must be tolerated
without loss of any message.

JoinGroup(hdr, max_group_size, nr_buf, max_msg_size) — gd

Make a process member.

LeaveGroup(gd, hdr)

Leave a group. The last member leaving
causes the group to vanish.

SendToGroup(gd, hdr, buf, bufsize)

Atomically send a message to all the
members of the group. All messages are glo-
bally ordered.

ReceiveFromGroup(gd, &hdr, &buf, bufsize, &more) — size

Block until a message arrives. More tells if
the system has buffered any other messages.

ResetGroup(gd, hdr, nr_members) — group_size

Recover from processor failure. If the new
group has at least nr_member members, it
succeeds.

Fig 2. Primitives to manage a group and to communicate within a group. A message consists of a header and a buffer. An output param-

eter is marked with “&”’.

Once a group has been created, other processes can
become members of it by executing JoinGroup. Only a member
can receive messages that are sent to its group. Like Create-
Group, JoinGroup returns a group descriptor for use in subse-
quent group calls. In addition to adding a process to a group,
JoinGroup delivers hdr, a small message, to all other members.
hdr is an Amoeba header (described in the previous section). It
contains, for example, the group’s port. In this way, other
members can find out that a new member has joined the group.

Once a process is member of a group, it can leave the
group by calling LeaveGroup. When a member has left the
group, it will not receive subsequent broadcasts. In addition to
leaving the group, LeaveGroup delivers hdr to all other
members. In this way, other members can find out that a
member has left. The last member calling LeaveGroup causes
the group to cease to exist.

When a member wants to broadcast a message, it calls
SendToGroup. It guarantees that hdr and buf will be delivered
to all members, even in the face of unreliable communication
and finite buffers. Furthermore, when the resilience degree of
the group is , the protocol guarantees that in the event of a
simultaneous crash of up to k members, it delivers the message
to all remaining members or to none. Choosing a large value
for k provides a high degree of fault-tolerance, but extracts a
penalty in performance. The trade-off chosen is up to the user.

In addition to reliability, the protocol guarantees that
messages are delivered in the same order to all members. Thus,
if two members (on two different machines), simultaneously
broadcast two messages, A and B, the protocol guarantees that
either

(1) all members receives A first and then B, or
(2) all members receives B first and then A.

Random mixtures, where some members get A first and others
get B first are guaranteed not to occur. By making the group
primitives both reliable and indivisible in this way, the user
semantics become much simpler and easier to understand.

To
ReceiveFromGroup.

receive a broadcast, a member must call
If a broadcast arrives and no such
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primitive is outstanding, the message is buffered. When the
member finally does a ReceiveFromGroup, it will get the next
one in sequence. How this is implemented will be described
below. The more flag is used to indicate to the caller that one or
more broadcasts have been buffered and can be fetched using
ReceiveFromGroup. If a member never calls ReceiveFrom-
Group, the group may block, because it may run out of buffers.
Messages are never intentionally thrown away.

The final primitive allows recovery from member
crashes. If one of the members (or its kernel) does not respond
to messages, the protocol enters a recovery mode. All outstand-
ing calls return an error value indicating that a member has
crashed. The user application can now call ResetGroup to
transform the group into a new group that contains as many
alive members from the group as possible. The second parame-
ter is the number of members that the new group must contain
as a minimum. When ResetGroup succeeds, it returns the group
size of the new group. In addition to recovering from crashes,
ResetGroup delivers hdr at all new members. It may happen
that multiple members initiate a recovery at the same moment.
The new group consisting of the members that can communicate
with each other, however, is only built once.

The way recovery is done is based on the design princi-
ple that policy and mechanism should be separated. In many
systems that deal with fault tolerance, recovery from processor
crashes is completely invisible to the user application. We
decided not to do this. A parallel application that multiplies two
matrices, for example, may want to continue even if only one
processor is left. A banking system may require, however, that
at least half of the group is alive. In our system, the user is able
to decide on the policy. The group primitives only provide the
mechanism.

To summarize, the group primitives provide an abstrac-
tion that enables programmers to design applications that consist
of one or more processes that run on different machines. It is a
simple, but powerful abstraction. All members of a group see
all events in the same order. Even the events of a new member
joining the group, a member leaving the group, and recovery
from a crashed member are globally ordered. If, for example,



one process calls JoinGroup and a member calls SendToGroup,
all members first receive the join and then the broadcast or first
receive the broadcast and then the join. In the first case the pro-
cess that called JoinGroup will also receive the broadcast mes-
sage. In the second case, it will not receive the broadcast mes-
sage. A mixture of these two events is guaranteed not to hap-
pen. This property makes reasoning about a distributed applica-
tion much easier. Furthermore, the group interface gives sup-
port for building fault tolerant applications by choosing an
appropriate resilience degree.

4. THE PROTOCOL FOR GROUP COMMUNICATION

The protocol to be described runs inside the kernel. It assumes
that unreliable message passing between entities is possible;
fragmentation, reassembly, and routing of messages is done at
lower layers in the kernel. If the underlying network does not
have a broadcast or multicast capability, the kernel will simulate
this by making copies of messages and sending them point-to-
point. This will hurt the performance of the protocol consider-
able, so we assume in our description that a network supports
broadcast or multicast.

Each kernel running a member keeps information about
the group (or groups) to which the member belongs. It stores,
for example, the size of the group and information about the
other members in the group. Any member of a group can, at
any instant, decide to send a broadcast message to its group. It
is the job of the kernel and the protocol to achieve reliable
broadcasting, even in the face of unreliable communications,
lost packets, finite buffers, and node failures. We assume, how-
ever, that byzantine failures (a process sends spurious or con-
tradictory messages) do not occur.

Without loss of generality, we assume that the system
contains one group with each member running on a separate
processor (see Fig. 3). The hardware of all machines is identi-
cal, and they run exactly the same kernel and application
software. However, when the application starts up, one of the
machines is elected as sequencer. The machine on which the
group is created is made the sequencer. If the sequencer
machine subsequently crashes, the remaining members elect a
new one (described below).

4.1, The Protocol for Communication Failures

The basic protocol works as follows (an elaborate description is
given in [9] ). When a group member calls SendToGroup to
send a message, M, it hands the message to its kernel and is
blocked. The kernel encapsulates M in an ordinary point-to-
point message and sends it to the sequencer. The sequencer
contains the same code as all other members. The only differ-
ence is that a flag tells it to process messages differently.

When the sequencer receives the point-to-point message
containing M, it allocates the next sequence number, s, and
broadcasts a packet containing M and s. Thus all broadcasts are
issued from the same node, the sequencer. Assuming that no
packets are lost, it is easy to see that if two members
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Fig 3. System structure. Each node runs a kernel and a user ap-
plication. Each kernel is capable of being sequencer, but, at any
instant, only one of them functions as sequencer. If the sequenc-
er crashes the remaining nodes can elect a new one.

simultaneously want to broadcast, one of them will reach the
sequencer first and its message will be broadcast to all the other
nodes first. Only when that broadcast has been completed will
the other broadcast be started. The sequencer provides a global
ordering in time. In this way, we can easily guarantee per group
the indivisibility of broadcasting.

When the kernel that has sent M, itself receives the mes-
sage from the network, it knows that its broadcast has been suc-
cessful. It unblocks the member that called SendToGroup.

Although most modern networks are highly reliable, they
are not perfect, so the protocol must deal with errors. Suppose
some node misses a broadcast packet, either due to a communi-
cation failure or lack of buffer space when the packet arrived.
When the following broadcast packet eventually arrives, the
kernel will immediately notice a gap in the sequence numbers.
If it was expecting s next, and it got s + 1, it knows it has
missed one.

The kernel then sends a special point-to-point message to
the sequencer asking it for copies of the missing message (or
messages, if several have been missed). To be able to reply to
such requests the sequencer stores broadcast messages in the
history buffer. The sequencer sends the missing messages to
the process requesting them as point-to-point messages. The
other members also keep a history buffer, to be able to recover
from sequencer failures (as we will see in the next section) and
to buffer messages if there is not outstanding a ReceiveFrom-
Group call.

As a practical matter, a kernel has only a finite amount of
space in its history buffer, so it cannot store broadcast messages
forever. However, if it could somehow discover that all
members have received broadcasts up to and including £, it
could then purge the first  broadcast messages from the history
buffer.

The protocol has several ways of letting a kernel discover
this information. For one thing, each point-to-point message to



the sequencer (e.g., a broadcast request), contains, in a header
field, the sequence number of the last broadcast received by the
sender of the message. This information is also included in the
message from the sequencer to the other kernels. In this way, a
kernel can maintain a table, indexed by member number, show-
ing that member i has received all broadcast messages O up to
T;, and perhaps more. At any instant, a kernel can compute the
lowest value in this table, and safely discard all broadcast mes-
sages up to and including that value. For example, if the values
of this table are 8, 7, 9, 8, 6, and 8, a kernel knows that every-
one has received broadcasts 0 through 6, so they can be safely
deleted from the history buffer.

If a node does not do any broadcasting for a while, the
sequencer will not have an up-to-date idea of which broadcasts
it has received. To provide this information, nodes that have
been quiet for a certain interval, At, send the sequencer a special
packet acknowledging all received broadcasts. The sequencer
can also request this information when it runs out of space in its
history buffer.

In short, to do a broadcast, an application process sends
the data to the sequencer, which gives it a sequence number and
broadcasts it. In general, no separate acknowledgement packets
are used, but all messages to the sequencer carry piggybacked
acknowledgements. When a node receives an out-of-sequence
broadcast, it buffers the broadcast temporarily, and asks the
sequencer for the missing broadcasts. Since members are
cooperating on the same task, broadcasts are expected to be
common—imany per second—and therefore the only effect that
a missed broadcast has is causing some application process to
get behind by a few tens of milliseconds once in a while, hardly
a serious problem. So, in general, a reliable broadcast costs
only 2 messages, one point-to-point and one broadcast.

There is a subtle design point concerning the perfor-
mance of the protocol. There are two ways to do a broadcast.
In method 1, which we have just described, the sender sends a
point-to-point message to the sequencer, which then broudcasts
it. In method 2, the sender broadcasts the message. When the
sequencer sees the broadcast, it broadcasts a special accept mes-
sage containing the newly assigned sequence number. A broad-
cast message is only ‘‘official”” when the accepr message has
been sent.

These methods are logically equivalent, but they have
different performance characteristics. In method 1 each mes-
sage appears on the network twice: once to the sequencer and
once from the sequencer. Thus a message of length n bytes
consumes 2n bytes of network bandwidth. However, only the
second message is broadcast, so each user machine is inter-
rupted only once (for the second message).

In method 2 the full message appears only once on the
network, plus a very short accept message from the sequencer.
Thus, only about n bytes of bandwidth are consumed. On the
other hand, every machine is interrupted twice, once for the
message and once for the accepr. Thus method 1 wastes
bandwidth to reduce interrupts and method 2 minimizes
bandwidth usage at the cost of more interrupts. In our current
implementation we use method ! for small messages and
method 2 for large messages.

4.2. The Protocol for Processor Failures

Processor failures are detected by a kernel when it tries to reach
another kernel to deliver a message. If, afier a certain number
of trials, a kernel has not responded, the member running on that
kernel is assumed to be dead. In reality a kernel may be busy
doing something else and respond a week later. This does not
affect, however, the correct functioning of the group primitives.

After a member failure is detected, all further group
primitives return an error status. Any surviving member may
call ResetGroup to recover from a member failure. ResetGroup
tries to re-form the group into a group that contains the living
members that can communicatie with each other. If needed, it
also elects a new sequencer. The second parameter of Reset-
Group is the minimum number of members of the old group that
are required for the new group to be valid. If ResetGroup
succeeds, it returns the actual number of members in the new
group. ResetGroup fails if it cannot form a group with enough
members.

The protocol to recover from member crashes resembles
the invitation protocol described in [8]. It runs in two phases.
In the first phase, the protocol establishes which members are
alive and chooses one member as coordinator to handle the
second phase. Every member that calls ReserGroup initially
becomes a coordinator and invites other members to join the
new group. If a member is alive and it is not a coordinator, it
responds with the highest sequence number that it has seen
(each member already keeps this number for running the proto-
col for communication failures as described above). If one
coordinator invites another coordinator, the one with the highest
sequence number becomes coordinator of both (if their
sequence numbers equal, the one with the lowest member id is
chosen). When all members of the old group have been invited,
there is one coordinator left. It knows which members are alive
and which member has the highest sequence number.

In the second phase of the recovery, the group is re-
started. If the coordinator has missed some messages, it asks
the member with the highest sequence number for retransmis-
sions (this is unlikely to happen, because the initiator of the
recovery with the highest sequence number becomes coordina-
tor). Now the coordinator is up-to-date, it builds a resulr mes-
sage, containing information about the new group: the size of
the new group, the members in the new group, the new
sequencer (itself), and the new incarnation number of the group.
(The incarnation number is included to make sure that messages
directed to the old group will not be accepted by the new
group.) It'stores this message in its history and broadcasts it to
all members. When a member receives the resulr message, it
checks for missing messages. After collecting these from the
coordinator, it updates the group information, sends an ack-
nowledgement to the coordinator, and enters normal operation.
The coordinator enters normal operation after it has received an
acknowledgement for the result message from all members.

When back in normal operation, members never accept
messages from a previous incarnation of the group. Thus,
members that have been quiet for a long time and did not take
part in the recovery will still use an old incarnation number
when sending a message to the new group. These message will



be ignored by the new group, treating the ex-member effectively
as a dead member. The incarnation numbers make sure that no
conflicts will arise when a member suddenly comes to alive
after being quiet for a period of time.

If the coordinator (or one of the members) crashes during
the recovery, the protocol starts again with phase 1. This con-
tinues until the recovery is successful or until there are not
enough living members left to recover successfully.

In Fig. 4 the recovery protocol is illustrated. In Fig. 4(a)
a possible start of phase 1 is depicted. Members 0, 1, and 2 start
simultaneously the recovery and are coordinators. Member 3
has received more messages (it has seen the highest sequence
number), but it did not call ResetGroup. Member 4, the
sequencer, has crashed. In Fig. 4(b), the end of phase 1 is
reached. Member 0 is the coordinator and the other members
are waiting for the result message (they check periodically if
member 0 is still alive). In Fig. 4(c), the end of phase 2 is
reached. Member O is the new sequencer. It has collected mes-
sage 34 from member 3 and has stored the result message
(number 35) in its history. The other members are also back in
normal operation. They have collected missing messages from
member 0 and have also received the result message.

C C C S
fss] |30| [33| [34] dead
0 3
@

C S
@) [F [0 [
0 T p) 2
(b)

S
[35| |35J |35| |35]
1 )
©

Fig. 4 A possible recovery for a group of size 5 after a crash of
member 4. S is a sequencer. C is a coordinator. The number in
the box is the sequence number. The number below the box is
the member id. (a) Shows a possible start of phase 1. (b) Shows
the start of phase 2. In (c) the recovery is completed.

The protocol described so far recovers from member
failures, but does not guarantee that all surviving members
receive all messages that have been sent. For example, a pro-
cess sends a message to the sequencer, which broadcast it. The
sender receives the broadcast and returns control to the applica-
tion, which interacts with the external world. Unfortunately, all
other processes miss the broadcast, and the sender and
sequencer both crash.

To avoid this situation, CreateGroup has a parameter
resilience that specifies the resiliency. This means that the the
SendToGroup primitive does not return control to the applica-
tion until the kernel knows that at least other resilience kernels
have the received the message. To achieve this the kernel broad-
casts the message using method 2, so that all kemels will
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receive the message. The sequencer buffers the message until it
receives from the resilience lowest-numbered kernels ack-
nowledgement messages. After receiving the acknowledg-
ments, the sequencer allocates the next sequence number and
broadcasts the accept message. On receiving the accept mes-
sage, resilience+] kernels store the broadcast message in their
history buffer. That way, no matter which resilience machines
crash, there will be at least one left containing the full history,
$0 everyone else can be brought up to date after the recovery.
Thus, an increase in fault-tolerance is paid for by a decrease in
performance. The trade-off chosen is up to the user.

5. DISCUSSION

In this section, we will compare our reliable broadcast protocol
with other protocols and our system with other systems that pro-
vide broadcast communication. Fig. 5 summarizes the results.
In comparing protocols, several points are of interest. First is the
performance of the protocol. This has two aspects: the time
before a message can be delivered to the application and the
number of protocol packets needed to broadcast the message.
Second are the semantics of sending a broadcast message,
which has three aspects: reliability, ordering, and fault-
tolerance. Although fault-tolerance can be considered as an
aspect of reliability, we have decided to consider it as a separate
aspect. Third is the hardware cost. The key aspect here is
whether the protocol requires members to be equipped with
additional hardware (e.g., a disk). Although more research has
been done in broadcast communication than is listed in the
table, this other research focuses on different aspects (e.g, mul-
ticast routing in a network consisting of point-to-point commun-
ication links). For these papers we refer the reader to [6].

Let us look at each protocol in turn. The protocols
described by [3] are implemented in the ISIS system. The ISIS
system is primarily intended for doing fault-tolerant computing.
Thus, ISIS tries to make broadcast as fast as possible in the con-
text of possible processor failures. Our system is intended to do
reliable ordered broadcast as fast as possible. If processor
failures occur, some message may be lost. If, however, an appli-
cation requires fault-tolerance our system can trade perfor-
mance against fault-tolerance. As reliable ordered broadcast in
the event of processor failures is quite expensive, ISIS has prim-
itives that provide a weaker ordering (e.g., a causal ordering).
These primitives have better performance, but still require more
messages than our primitive for doing ordered broadcasting.

Chang and Maxemchuk describe a family of proto-
cols {5]. The protocols differ mainly in the degree of fault-
tolerance that they provide. Our protocol for resilience degree 0
resembles their protocol that is not fault-tolerant (i.e., it may
lose messages if processors fail), but ours is optimized for the
common case of no communication failures. Like our protocol,
the CM protoco! depends also on a central node, the token site,
for ordering messages. However, on each acknowledgement
another node takes over the role of token site. Depending on the
system utilization, the transfer of the token site on each ack-
nowledgement can take one extra control message. Thus their
protocol requires 2 to 3 messages per broadcast, whereas ours
requires only 2 in the best case.



Performance Semantics Additional
Protocol Hard-
Delay #Pkis | Reliable | Ordering | Fault-tolerance ware
Birman and Joseph {3}
2 Rounds 2n Yes Yes n No
Chang and Maxemchuk [5]
2 2+€ Yes Yes 0...n No
Cheriton and Zwaenepoel [7]
2 2...n No...Yes No No No
Luan and Gligor {10]
3 Phases 1...4n Yes Yes Yes Yes
Melliar-Smith et al. [11]
Random 1 Yes Yes n/3 No
Navaratnam et al. [13]
2 n+l1 Yes No...Yes 0...n No
Tseung [17]
2 3 Yes Yes No...Yes Yes
Our protocol
2 2 Yes Yes 0...n No

Fig 5. Comparison between different broadcast protocols. A protocol is identified by the name of the authors of the protocol. n is the
group size. In a round each member sends a message. A phase is the time necessary to complete a state transition (sending messages,
receiving messages, and local computation). For each protocol, we list the best performance. The performance may decrease, for exam-

ple, for higher degrees of fault-tolerance.

Fault-tolerance is achieved in the CM protocol by
transferring the token. If a message is delivered after the token
has been transferred L times, then L processor failures can be
tolerated. This scheme introduces a very long delay before a
message can be delivered. Finally, in the CM protocol all mes-
sages are broadcast, whereas our protocol uses point-to-point
messages whenever possible, reducing interrupts and context
switches at each node. This is important, because the efficiency
of the protocol is not only determined by the ransmission time,
but also (and mainly) by the processing time at the nodes. In
their scheme, each broadcast causes at least 2(n — 1) interrupts,
ours only n.

The group communication described in[7] integrates
RPC communication with broadcast communication in a flexi-
ble way. If a client sends a request message to a process group,
V tries to deliver the message at all members in the group. If
any one of the members of the group sends a reply back, the
RPC successfully returns. Additional replies from other
members can be collected by the client by calling GetReply.
Thus, the V system does not provide reliable, ordered broad-
casting. However, this can be implemented by a client and a
server (e.g., the protocol described by Navaratnam, Chanson,
and Neufeld runs on top of V). In this case, a client and a
server should know how they are implemented. We do not
think this is a good approach. If an unreplicated file server, for
example, is re-implemented as a replicated file server to
improve performance and to increase availability, it could mean
that all client programs have to be changed.

The protocol described in [10] is one of two protocols
that require additional hardware. In this protocol each member
must be equipped with a disk. Using these disks the protocol
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can provide reliable ordered broadcasting, even if a network
partitions. It uses a majority-consensus decision to commit on a
unique ordering of broadcast messages that have been received
and stored on disk. Under normal operation the protocol
requires 4n messages. However, under heavy load the number
of messages goes down to 1. The delay before a message can
be delivered is constant: the protocol needs three protocol
phases before it can be delivered. In a system like Amoeba that
consists of a large number of processors, equipping each
machine with a disk would be far too expensive. Furthermors,
the performance of the protocol is also much too low to be con-
sidered as a general protocol for reliable broadcasting.

A totally different approach to reliable broadcasting is
described in[11]. They describe a protocol that achieves reli-
able broadcast with a certain probability. If processor failures
occur, it may happen that the protocol cannot decide on the
order in which messages must be delivered. They claim that the
probability is high enough to assume that all messages are
ordered globally, but nevertheless there is a certain chance that
messages are not globally ordered. The protocol uses only one
message, but a message cannot be delivered at an application
until several other broadcast messages have been received. For
a group of 10 nodes, a message can be delivered on average
after receiving another 7.5 messages. Thus with large groups,
the delay is unacceptably large.

Navaratnam, Chanson, and Neufeld provide two primi-
tives for reliable broadcasting [13]. One orders messages; the
other does not. Their protocol also uses a centralized scheme,
but instead of transferring the token site on each acknowledge-
ment, their central site waits until it has received acknowledge-
ments from each node that runs a member before sending the



next broadcast. In an implementation of the NCN protocol on
the V-system, a reliable broadcast message costs 24.8 msec for
a group of 4 nodes. Our current implementation does this in
less than 2.5 msec (an earlier tuned prototype with less func-
tionality did it in 1.4 msec). Ours is thus an order of magnitude
faster.

The last protocol that provides reliable broadcasting is
described in [17]. It requires that at least three components are
added to a network: a Retransmission Computer, a Designated
Recorder Computer, and one or more Playback Recorder Com-
puters. The Playback Recorder Computers should be equipped
with a disk (typically one Playback Recorder Computer is used
per group). If fault-tolerance is required, hot backup systems
can be provided for the Retransmission Computer and the
Designated Recorder Computer. The protocol works as follows.
A user computer sends point-to-point a message to the
Retransmission Computer. The Retransmission Computer plays
a similar role as our sequencer. It adds some information to the
message, such as a sequence number, and broadcasts it. In
Tseung’s protocol, it is ready to broadcast the next message
after the Designated Recorder Computer has sent an ack-
nowledgement. The Designated Recorder stores messages for a
short period, in case one of the Playback Recorder Computers
has missed a message. The Playback Computers store the mes-
sages on disk for a long period of time to be able to send
retransmissions to user computers if they have missed a mes-
sage. This protocol requires more messages than our protocol
(the acknowledgment from the Designated Recorder to the
Retransmission Recorder is not needed in our protocol) and
requires additional hardware. Furthermore, one computer (the
Retransmission Computer) plays the sequencer for all groups.
If the sequencer becomes a bottleneck in one group, all other
groups will suffer from this. Also, if the Retransmission Com-
puter or the Designated Recorder crashes no group communica-
tion can take place in the whole system. For these reasons and
the fact that groups are mostly unrelated, we order messages
only per group by having a sequencer per group.

If messages are sent regularly and if messages may be
lost when processor failures occur, our protocol is more effi-
cient than any of the protocols described above. In our protocol,
the number of messages used is determined by the size of the
history buffer and the communication pattern of the application.
In the normal case, 2 messages, a point-to-point message to the
sequencer and a broadcast message, are used. In the worst case,
when one of the nodes is continuously broadcasting,
(n/HISTORY SIZE) + 2 messages are needed. For example, if
the number of buffers in the history is equal to the number of
processors, 3 messages per reliable broadcast are needed. In
practice, with say 1Mb history buffers and 1Kb messages, there
is room for 1024 messages. This means that the history buffer
will rarely fill up and the protocol will actually average 2 mes-
sages per reliable broadcast. The delay before a message can be
delivered to the application is optimal; as soon as a broadcast
arrives, it can be delivered. Also, our protocol causes a low
number of interrupts. Each node gets one interrupt for each
reliable broadcast message.

If messages must be delivered despite member crashes,
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the costs of the protocol increase. For a resilience degree of 7,
each reliable broadcast takes 2 + r messages. One message for
the broadcast message from a member to all kernels, » short
acknowledgements that are sent point-to-point to the sequencer,
and one broadcast message from the sequencer to all members.
The delay increases. A message can only be accepted by the
sequencer directly after receiving the message and r ack-
nowledgements. However, the r acknowledgments will be
received almost simultaneously. Thus, for an increase of fault-
tolerance the application pays with a decrease in performance.
It is up to the user application to make the tradeoff.

Like some of other protocols, our protocol uses a central-
ized node (the sequencer) to determine the order of the mes-
sages. Although in our protocol this centralized node does not
do anything computationally intensive (it receives a message,
adds the sequence number, and broadcasts it), it could conceiv-
ably become a bottleneck in a very large group. To analyze this
possibility, we have made a queuing theoretic model to see at
what point the sequencer saturates. For the most broadcast-
intensive applications we have tried so far, the issue begins to
be a problem at around 400 nodes. For most applications, how-
ever, well over 1000 nodes can be supported easily. If the resi-
lience degree is greater than 0, it is likely that the sequencer will
become a bottleneck sooner due to the resilience acknowledge-
ments that it has to process. Under heavy load, one could try to
piggyback these acknowledgements on other messages, to scale
the protocol for a high resilience degree also to a large number
of processors.

6. CONCLUSION

We have presented a simple protocol that achieves reliable
broadcast and guarantees that all messages will be received by
every live node of a group in the same order. We have
described how this protocol is implemented in the Amoeba
operating system. We proposed a simple, but powerful inter-
face that makes reliable ordered broadcasting available to user
applications. The interface allows the user to trade performance
against fault-tolerance.
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