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A General-Purpose Macro Processor as a Poor Man's
Compiler-Compiler

ANDREW S. TANENBAUM, MEMBER, IEEE

Abstract—A method for quickly producing compilers for high level
languages is described. The technique consists of feeding a description
of the language to be translated to a general-purpose macro processor.
Used in this way, the macro processor functions as a compiler-compiler,
providing automatic parsing, lexical scanning, symbol table operations,
and handling of syntactic errors. A complete syntactic and semantic
description of a WHILE statement (except for Boolean expression pro-
cessing) is given in only seven lines, as an example. A system program-
ming language implemented by this method is discussed in order to il-
lustrate the main ideas. The compiler produced for this language is
compared to other compilers produced by conventional methods.

Index Terms—Compiler, compiler-compiler, implementation metho-
dology, macro processor, systems programming language.

I. INTRODUCTION

EVERAL techniques for producing compilers are in use.

One method, which we call the “from scratch” method,

consists of simply sitting down and writing the compiler
in some general-purpose programming language, such as Pascal
or PL/I. A second method is to use a compiler-compiler, a
program that accepts a syntactic and semantic description of
the programming language and produces as output a compiler
for that language. This technique requires far less work on
the part of the compiler writer, but has the disadvantage of
requiring a suitable compiler-compiler before it can be used.
In as much as few good compiler-compilers exist, and even
fewer are portable, their use, however desirable, is all too often
simply not practical. This paper suggests that a general-purpose
macro processor [1]-[4] has many of the desirable character-
istics of a compiler-compiler, and in addition, the advantage of
high portability.

The idea of using macro processors to implement program-
ming languages is not new. Halpern [5] and Brown [6], [7]
have described similar techniques. Nevertheless, in practice,
the use of macro processors to implement full scale production
compilers which are then heavily used is still exceedingly rare.
In this paper we discuss the method and give a case study of its
use for implementing a general-purpose systems programming
language (Sal). The Sal compiler has been in heavy use for
nearly two years, and has been used, among other things, to
implement a timesharing system.

This investigation grew out of a project to design and imple-
ment a general-purpose virtual memory timesharing system on
a PDP-11/45. A language was needed in which to write the
operating system. The languages provided by the manufacturer
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(Fortran, Basic, and Assembler) were deemed unsatisfactory.
No compiler-compiler was available on the PDP-11. Further-
more, a working compiler for the systems programming lan-
guage was needed within two months (in order to allow stu-
dents taking the author’s operating system course to participate
in the construction of the system).

The design goals for the systems programming language
to be implemented using the compiler-compiler were the
following.

1) It must be possible to implement the compiler very
quickly (2 months).

2) The language must be easy to learn and use (i.e., similar
to Pascal and Algol).

3) The language must encourage well-structured programs
(e.g., adequate control structures so that GOTO’s will not be
needed).

4) It must be possible to do machine dependent operations
needed in operating systems (e.g., I/O, and changing the vir-
tual memory map).

5) There must be powerful debugging facilities.

Because there was a severe time constraint, it was decided
to write the compiler in a general-purpose macro language,

'ML/I [1], because it appeared to offer some of the facilities

provided by compiler-compilers, and furthermore it was
available.

In the following section we describe the systems program-
ming language implemented using this method. We do this in
order to demonstrate that it is a substantial language, and not
merely an extension of assembly language. Many people are
unaware of the fact that macros are a suitable technique for
producing true high level languages. First, we will show that
Sal is a high level language, similar in notation to languages
like Pascal and Bliss [8]. In the following section we will dis-
cuss the implementation method. In the last section we will
compare an ML/I based compiler for Sal to some convention-
ally produced compilers.

II. DESCRIPTION OF SAL

In this section we describe the systems programming lan-
guage (Sal) implemented using ML/I. Since there are no
“standards” in this area, we succumbed to the temptation
to design our own language. The overall structure of a Sal
program is similar to that of a program in other high level
languages, such as Pascal, Bliss, and Algol 68. As an ex-
ample, Dijkstra’s [9] divisionless prime number algorithm is
given below. This algorithm is given in Pascal in Wirth [10,
p. 141]; a quick glance at the Pascal version will demonstrate
the similarity between Pascal and Sal.
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EQUATE N = 100 //DEFINITION OF A MANIFEST CONSTANT;
EQUATE M = 10
PROC PRIME //PROCEDURE DECLARATION;

LOCAL X,SQUARE,LK,LIM,PRIM,P[1:N], V[1:M]
TION OF VARIABLES;

//DECLARA-

LET P[1] =2 //ASSIGNMENT TO FIRST ELEMENT OF P;
PRINT 2 //OUTPUT A LINE CONTAINING THE NUMBER 2;
LET X = 1

LET LIM =1

LET SQUARE = 4
FORIFROM 2TON //LOOP. ITAKESON2,3,---N;
DO //THE BODY OF THE FOR LOOP IS ENCLOSED BY DO - - - OD;
REPEAT //STOP WHEN “UNTIL” CONDITION IS TRUE;
LETX =X +2
IF SQUARE <= X
THEN LET V[LIM] = SQUARE
LETLIM =LIM + 1
LET SQUARE = P[LIM ] +P[LIM]
FI //FI CLOSES THE IF STATEMENT;
LEL K-
LET PRIM = TRUE
WHILE PRIM AND K < LIM
DO IF V[K] < X THEN LET V[K] = V[K] + P[K] FI
LET PRIM = X /= V[K] //PRIM IS ASSIGNED
TRUE OR FALSE;
LETK=K+ 1

oD
UNTIL PRIM LITNU //THIS LINE CLOSES THE REPEAT;
LET P[I] = X
PRINT X
oD
END

The principal statement types are indicated below.

1) LET (lhs) = (expression) (assignment statement)
2) IF (condition) THEN (statements) ELSE {statements) FI
3) WHILE {condition) DO (statements) OD
4) REPEAT (statements) UNTIL {condition) LITNU
5) FOR (variable) FROM (expression) TO {expression)
BY (expression) DO (statements) OD
6) CASE (expression) IN {clause list) ESAC
7) DO FOREVER ({statements) OD
8) cALL {procedure name){optional parameter list)
9) PRINT (item list)
10) RETURN (optional expression)
11) EXITLOOP

In addition there are a variety of statements for debugging
and miscellaneous use, as well as some declaration statements.
Statements may extend over as many lines as necessary, like
highlevel languages, and unlike assembly languages. Extra
blanks may be used for paragraphing, as in the above example.
// and ; delimit comments.

The usual variations are allowed; for example, ELSE parts in
IF statements and BY parts in FOR statements are optional.
Assignment statements begin with LET to aid parsing (every
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statement begins with a unique key word). The use of Algol
68 style explicit closing delimiters (FI, OD, LITNU, and ESAC)
solves the dangling ELSE and analogous problems, and elimi-
nates the need for DO ---END or BEGIN---END to delimit
compound statements.

The basic data types are machine words, arrays of machine
words, character strings, bit fields, and tables. A machine
word is an untyped aggregate of bits (16 in the case of the
PDP-11) used for counting, indexing, and other purposes.
A bit field is a named subfield of a word, allowing any con-
secutive sequence of 1 to 16 bits to be accessed symbolically.

Tables consist of one-dimensional arrays of entries. Each
entry contains one or more scalar or array fields accessed by
name. This feature is somewhat similar to structures in Algol
68 or PL/I, or records in Pascal.

Sal provides a wide variety of debugging and performance
monitoring aids. These include: the ability to ‘“‘single cycle”
at the source level, having selected (or all) source statements
typed out before their execution; procedure call/return
tracing; variable tracing, assertion checking [11]; a symbolic
interactive debugger; and automatic collection of procedure
call frequency statistics.

We summarize this section by reiterating that Sal is a high
level language rather than an assembly-like language. In the
following section we shall discuss the use of ML/I for imple-
menting high level languages.

III. Use oF ML/I As A COMPILER-COMPILER

At this point we turn our attention toward the production
of compilers (for languages like Sal) using ML/I. There are
four major aids provided to the compiler writer by ML/I:
automatic parsing, lexical scanning, symbol table operations,
and syntactic error handling. There are also several minor aids.
These will now be discussed in turn.

The most important facility ML/I provides to the compiler
writer is automatic parsing. Rather than providing a context-
free grammar to define the language to be translated, the user
provides a set of prototype statements (macros) that drive the
parser. Each prototype statement is a syntactic skeleton of
the statement to be recognized. A prototype statement be-
gins with a reserved word or token, and ends with a reserved
word or token (which may be end-of-line). These are called
delimiters. Furthermore, intermediate delimiters may also
be provided. For example,

FOR FROM TO DO OD

represents a possible prototype for a FOR statement.

The above prototype statement has five delimiters—FOR,
FROM, TO, DO, and oD. It directs the resulting compiler to
scan the program to be compiled for the word FOR, and upon
finding it, to search for the other four delimiters. The text
detected between FOR and FROM is called the first actual
parameter; we denote it by (al). Similarly, the text between
FROM and TO, between TO and DO, and between DO and OD
will be denoted by (a2), {(a3), and (a4), respectively. If the
statement



TANENBAUM: MACRO PROCESSOR AS A POOR MAN’S COMPILER-COMPILER 4 123

FORIFROMOTO?2 * N + 1
DO LET J = SQRT(I)
IFI<K
THEN LET A[I] = FUNCT1(J)
ELSE LET A[I] = FUNCT2(J)
FI
oD

is encountered in a program to be translated, the actual param-
eters are

(al)=1
(a2)=0
@) =2*N+1
(a4) = LET J = SQRT()
IFI< K
THEN LET A[I] = FUNCT1(J)
ELSE LET A[I] = FUNCT2(J)
FI

Note that an actual parameter may contain several lines, with
imbedded carriage returns, as illustrated in (a4).

To make clear how the parsing and code generation work,
we will examine the following simple prototype statement.
In our system, ML/I key words and internal macros are in
lower case to avoid conflicting with user chosen identifiers,
which are all in upper case.

mcdef WHILE DO OD /*DEFINE A NEW PROTOTYPE
STATEMENT ¥/

/¥*OUTPUT A LABEL, E.G. L4: */

/¥*TRANSLATE AND OUTPUT THE
CONDITION ¥/

as[L(t2):
expr(al), x(t2))

(a2) /*EXPAND THE SECOND PARAM-
ETER (BETWEEN DO OD) */

JMP L(t2) /*GENERATE A JUMP TO THE TOP
OF THE LOOP ¥/

x{t2): / *LABEL TO JUMP TO WHEN CON-
DITION FALSE */

1

In this example, comments are enclosed between /* and */.
(al) is the part between WHILE and DO (i.e., the condition)
and (a2) is the part between DO and oD (i.e., the state-
ments in the loop). The svmbol (t2) is a temporary variable
initialized to the number of macro calls to date. Thus, L{t2)
is a unique label. expr is itself a macro with two parameters,
the first being a Boolean expression to be analyzed, and the
second being a label. expr must expand into assembly code
to evaluate the expression and jump to the label when it is
false.

The line containing {(a2) simply outputs the second actual
parameter, causing it to be parsed and its statements to be
translated. L{t2): and x(t2): are the labels for repeating the
loop and exiting the loop, respectively. The square brackets
[ ] are used (in this example) to define the extent of the
translation rules.

It should be emphasized that except for the expression pro-
cessing macro, expr, the seven lines above represent the com-
plete syntax and semantics for processing a WHILE statement.

Although expr is longer, it is also called in IF, CASE, REPEAT,
assignment, and everywhere else where expressions are al-
lowed, so only one such macro is needed for the entire compiler.

Prototype statements may be more complicated than indi-
cated in this example. One useful feature is the ability to
specify sets of alternative delimiters. For example, an IF
statement consists of the keywords I1F and THEN followed
either by FI (no else part) or ELSE FI.

Automatic parsing is not the only compiler-compiler fa-
cility provided by ML/I; another one is lexical scanning.
Most compilers have one or more procedures, or sometimes
even a complete pass, to read source programs and break them
up into basic symbols. Such basic symbols are identifiers
(e.g., variable names), punctuation marks, or certain com-
binations of these. For example in Algol, := is regarded as a
single basic symbol, the assignment symbol. When using
ML/I, the compiler writer need not worry about the recog-
nition of the basic symbols; it is all done automatically.

Another typical compiler-compiler facility provided by
ML/I is symbol table handling. This can be most easily ex-
ploited by using a compile-time array of integer variables
to store the properties of declared variables, data structures,
named constants, etc. Such properties may include access
mechanism (e.g., local, parameter, or global), type, run-time
address, dimensionality, and size. The name is not stored
explicitly.

Instead, whenever a name is declared, it is defined as a
parameterless macro that expands into an underline (or some
other easily recognizable character) followed by three or four
digits. These digits comprise an index into the property array
where the attributes of the name is stored. In effect, the
name is redefined as a “pointer” to the properties of the
name.

Whenever a declared name is encountered during the code
generation phase, it is automatically replaced by an index
into the property array. This replacement is part of ML/I’s
normal macro expansion, and requires no work on the part
of the compiler writer. If the code generation phase of the ex-
pression macro checks for actual parameters that begin with
an underline, the location of the corresponding properties is
immediately known, with no hashing or searching needed. Of
course, ML/I itself must maintain hash tables in order to look
up macro names and replace them by character strings, but
how ML/I performs these conversions is its business, and not
the compiler writer’s. To him it is automatic.

The compilers produced by ML/I have the ability to detect
certain syntactic errors and give error messages, without the
compiler writer having to explicitly program this. In particu-
lar, if an ML/I generated compiler detects the keyword that
begins a statement, but fails to find one of the intermediate
delimiters or the closing delimiter, it automatically issues a
message to that effect, telling what was missing and where.
The automatic error message facility applies only to syntactic
errors, and not to semantic errors, such as undefined variables.

Inasmuch as compilation to assembly language may be
viewed as a problem in string manipulation, namely, replacing
the input strings (source statements) by output strings (as-
sembly code), character handling facilities are useful. ML/I
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TABLE I
Compiler: Assembler Compiler: Assembler
Object Program Speed Ratio Object Program Size Ratio
Program Sal  Pascal Algol 68  Algol 60 Sal Pascal  Algol 68  Algol 60
towers of Hanoi 1.6 i 25 8.7 1.8 1.8 2.3 4.0
dot product 3 2.6 52 54 240 4.2 6.2 7.6
interchange sort 2.5 3:1 6.1 8.0 2.0 4.2 6.3 6.7
finding primes 1A s 16 21 14 32 4.1 3.7
Average 2:1 20 39 6.0 1.8 34 4.7 S

provides simple methods for extracting substrings, concatenat-
ing strings, and comparing strings or substrings.

ML/I’s macro facilities are useful for purposes in addition
to parsing source statements. A major use is to provide func-
tions whose outputs are character strings. In this sense they
are similar to function procedures in conventional program-
ming languages. Macros may yield the null string as output.
They are also useful for tasks such as printing messages and
setting up predefined constants such as TRUE and FALSE.

Furthermore, since ML/I provides extensive macro facilities,
it is easy to include macro facilities in the source language
at no extra cost.

ML/I can also produce a listing of the translated code,
saving the compiler writer the trouble of providing a routine.

When viewed as a compiler-compiler, ML/I first reads in a
file containing the prototype statements, i.e., the macro defi-
nitions. Then ML/I is “Frozen” by writing an absolute core
image onto another file. This core image is the compiler.
When executed, this compiler reads an input file containing
the source program, and produces an output file containing
the assembly code. This is precisely what one expects of a
compiler.

A noteworthy side effect of using ML/I as a compiler-
compiler is that once translation macros have been written
and debugged, they can be immediately used on any other
computer having an ML/I macro processor. Furthermore,
ML/I has been intentionally designed to be easy to imple-
ment on a new machine. Our experience is that a good stu-
dent can get ML/I running in under two weeks.

IV. DiScuUSsSION

The Sal translator consists of 57 macros, totaling just over
1450 lines of code. (A line of ML/I averages about 20 charac-
ters.) About 750 of these lines are involved with the opti-
mization of arithmetic and Boolean expressions. Another 100
lines are concerned with detecting semantic errors and issuing
error messages. The remaining 600 lines handle the complete
parsing and code generation for 13 kinds of executable state-
ments and more than 20 kinds of declarations and miscel-
laneous statements (e.g., do not generate a run-time table for
the interactive debugger).

To give an idea of the compactness of the translator, the
total number of lines of ML/I used in some executable state-
ments are given below. These sizes include the full syntax
and semantics, code generation (with optimization), checking

for semantic errors, printing error messages, and debugging
features, but not expression translation.

LET 6 IF 16
RETURN 10 PRINT 33
CALL 13 ASSERTION 36
REPEAT 15 CASE 3.
WHILE 16 FOR 56

Two man months were required to produce the initial
version of the compiler. This was done by the author and his
student assistants, none of whom were familiar with ML/I
at the outset. The initial version did no optimizing, provided
no debugging facilities, and simply ignored all semantic errors.
However, it was definitely usable, and allowed work to begin
that would otherwise have been held up.

Six months later, a much more polished version was begun,
including considerable optimizing, a variety of debugging fa-
cilities, and much better semantic error messages. An addi-
tional four months was required to write the second version,
for a total of about six man months altogether.

One diffficulty with the use of ML/I is that the resulting
compilers tend to be quite slow, although the object programs
they generate can be fast. Work is still underway attempting
to speed up the compilation process, primarily by modifying
ML/I itself. At present the compilation rate is about 1-2
lines of source code per second. This is more than an order
of magnitude slower than conventionally produced compilers.
However, much of the compilation time is spent optimizing
arithmetic expressions.  Eliminating this would increase
compilation speed by perhaps a factor of 2. The Sal com-
piler itself occupies 40K bytes of memory, which is reason-
able. Although the compilation process is slow, the quality
of the generated object programs is quite good. Since we
had no comparable compilers available on the PDP-11 to
measure the Sal compiler against, the following machine
independent test was devised. A sample program is written
both in a high level language and in assembly language. The
execution speed ratio of the compiler generated object pro-
gram to the carefully hand coded program is an ‘“absolute”
measure of the compiler quality. :

This measure is machine independent because both the
compiler and assembly language programmer are using the
same architecture, instruction set, etc. It simply measures
how close the compiler comes to producing assembly lan-
guage quality code. To compare compilers for different com-
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puters, the test programs must be separately coded in the
assembly language for each machine, so that each compiler
is “competing” against its own assembler.

The Sal compiler was compared using this method to three
other high level languages on the CDC Cyber 73: Pascal,
Algol 60, and Algol 68 in terms of both execution speed
and object program size. The results are shown in Table I.
The Sal compiler produced the most compact code of all
(partly due to language design, since there are only two scope
levels, local and global). It was also almost as good as the
Pascal compiler in producing fast object programs. The Sal
compiler was better than both the Algol 68 and Algol 60
compilers for speed and size on all four tests. All compilers
ran in their most optimizing mode (e.g., no subscript checking).
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