
A Cost-Efficient Counter-Intrusion Scheme for
One-Time Sensor Networks

Chandana Gamage 1, Jussipekka Leiwo 2, Kemal Bicakci 1, Bruno Crispo 1, and Andrew S. Tanenbaum 1

Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

{chandag,kemal, crispo,ast}@cs. vu.nl
2 School of Computer Engineering, Nanyang Technological University, Singapore

asjleiwo@ntu.edu.sg

Abstract

We propose a secure one-time sensor scheme that is highly
resistant to forged messages and replay message attacks. A
sensor in a one-time sensor network transmits only a single
message in its life time but retransmits messages from other
sensors to provide message routing. The only security-specific
computational capability required from a one-time sensor in
our scheme is a hash function. The bulk of security related
data in our scheme is static and therefore can be stored in
non-volatile memory. This is an important design criteria as
energy is the most critical resource in commonly used low-
cost battery-powered wireless sensors. We further improve the
storage efficiency of the proposed solution using Bloom filters.
Keywords: Sensor network security, one-time sensors, intru-
sion resistance, hash functions, Bloom filters

1. INTRODUCTION
In many applications of distributed ad-hoc wireless sensor net-
works, intruders can cause serious damage [1]. For example,
a perimeter surveillance sensor network installed to guard a
large facility like an airport complex or a military encampment
could have its efficacy seriously eroded if intruders are able
to repeatedly generate false alarms as in the classic tale of the
shepherd boy crying wolf. A prime reason for using wireless
sensor networks is the availability of low-cost sensor nodes
that can be deployed densely to achieve a high coverage
as well as a greater level of fault tolerance. Additionally,
the wireless communication capability of the battery-powered
sensors allows for rapid establishment of a sensor network
without the need for extensive infrastructure facilities such as
electrical power and communication lines.

For low-cost wireless sensor network applications to be
widely used, it is necessary to design security schemes that
embody the application-specific security needs that reduce cost
of implementation and operation while increasing resistance to
attacks. The sensor network security research that we describe
in this paper is focused on applications with a sensor-to-
base station uni-directional messaging model [II]. This model
selection was motivated by the large number of real-world ap-
plications ranging from perimeter protection to natural disaster
detection that can be implemented with low-cost sensors. In

contrast, we have found it quite difficult to envisage a similarly
large class of peer-to-peer type of sensor network applications
in which a low-cost and limited functionality sensor would
have an application-level requirement to securely communicate
with another similar capability sensor.
The problem that we address is intrusions into a sensor

network by an attacker who either records past messages
or captures sensors to raise false alarms at a base station.
We present a technique that is computationally and storage
efficient for use in sensor networks to defeat intruders who
aim to send repeated false alarms to the base station and also
to deplete the battery power of sensors throughout the network
and not just at the local neighborhood of attack.
The proposed security scheme and the sensor network

model on which it is based is given in section 2 with security
and performance analysis in section 3. The techniques for
performance improvement are described in section 4 with
example values to illustrate the benefits. Related work is
discussed in section 5; concluding remarks are given in section
6.

2. THE SECURE ONE-TIME SENSOR SCHEME

In this section, we first describe the model for a sensor net-
work using one-time sensors. Then we describe our proposed
security scheme.

A. The sensor and network model
We assume each sensor to be configured with a unique
identifier bit-string id uniformly and randomly selected from
a large set. The sensor network, at the communication layer,
operates as a peer-to-peer system with each sensor providing a
message forwarding service for routing of communications. At
the application layer, the sensor network operates as a client-
server system with the messages originating from sensors
being forwarded to a central base station for application-
specific processing. These low-cost sensors (with limited chip
area) are assumed to have severe constraints in processing
capability, storage capacity and battery power. Furthermore,
as the energy cost of transmitting a single bit is roughly
equivalent to the execution of 1,000 instructions [20], it is
necessary to keep the number of bits transmitted as low as
possible.

0-7803-9399-6/05/$20.00 © 2005 IEEE ISSNIP 200545

In the proposed sensor network model, we assume that all
the sensor identities for the nodes to be used in the deployment
are known at startup time and the full list of id values are
stored at the base station. The base station is a device with
adequate protection and it does not have storage, processing
or power constraints.
The most important assumption we make is that the sensors

are of one-time use. For example, sensors used for applications
such as forest fire detectors, biological/chemical warfare agent
detectors, or pressure-based ground surveillance detectors
would have a sensor element that would operate correctly only
once. Its activation would render the sensor element unusable
without recalibration or replacement. However, the wireless
communication element of the sensor would continue to op-
erate by providing message relaying towards the base station.
Furthermore, we do not assume any form of tamper-resistance
for these low-cost sensors and therefore if an intruder were to
capture a sensor, he will have full knowledge of all its content
including unique identifier value id and any other security-
related data.

B. Proposed solution
We consider a network of one-time sensors that report to a
base station. An attacker has the following main objectives:
(1) To raise a (false) alarm to which the base station responds
positively so that its resources are depleted and (2) to make
sensors in the network repeatedly process and retransmit alarm
messages so that their fixed energy store is exhausted.

Consider a sensor network of n nodes with the id values
randomly and uniformly selected from a large set of size N
with n < N. The message transmitted by a one-time sensor
is formatted with a header consisting of an index value (idx,
from 0 . . . n-1) and identifier value (id, from 0 ... N - 1)
pair. As this is simply an alarm message generated by a one-
time application-specific sensor, the message can be implicit
with a null-length payload. Thus, the total header length of
log2(n) + log2(N) bits will equal actual transmitted message
length.

Let's assume that each sensor in a network of n nodes is
configured with a full list of id values for the nodes in the
network by storing the values HASH(idx 11 id) in a list L'. It
also has a bit string S of length n with each bit initially set to
value 0. As the index values are a consecutive series 0 ... n,
the list L needs to store only the computed hash values with
the index being implicit.
Now, when a sensor receives a message, with a header in

which the index and identifier value pair is (idx,, id,), before
retransmitting the message, the sensor would first check if the
idx4h bit in the string S is set to the value 1. If the value
is not set, then it checks in its list L if the identifier value
in the message has a match by computing the hash value for
the received value and directly matching at location idxr in
L. If a match is found then the sensor would set the idxlh

'Although it is suffi cient to compute a simpler HASH(id) value list for stor-
ing in a sensor, it prevents an optimization that we describe later. Therefore,
the value is computed as HASH(idx 11 id) with additional redundancy.

bit in S to 1 and the message is retransmitted according to
the routing rules applicable to the sensor network. Otherwise,
it is assumed that the message was a copy received due to
multipath routing or injected into the network by an intruder
and simply discarded.

3. ANALYSIS
In this section, we first analyze how the proposed security
solution can completely prevent certain attacks on a one-
time sensor network and how some of the other attacks are
deterred either by preventing its propagation or by causing the
intruder to incur a high attack cost. Then we analyze the extra
computational and storage requirements imposed on a sensor
by the proposed solution. We continue the analysis in section
4 by presenting a scheme that can provide a trade-off between
security and performance that does not significantly weaken
the security strength.

A. Security analysis
1) Replay attacks.: An intruder who enters the sensor

network will not be able to transmit messages generated by
himself as he will not have valid id values to use. Therefore,
the intruder has to monitor the traffic and capture some
messages. An intruder cannot mount a successful replay attack
in the same area from which he has captured a message as
each local sensor will have the corresponding id value flagged
in string S as having already transmitted its message. If the
intruder moves to a new area and replays the message, then it
will be forwarded to the base station. However, as the original
message would have reached the base station already with a
high probability2, the replayed message will be discarded there
as a copy forwarded due to multipath routing. As it is only a
replayed message and is duly discarded, this attack does not
result in an application-context damage.

Therefore, a static intruder can mount a power exhaustion
attack only on immediate neighbour sensors by forcing them
to repeatedly perform message receive (RX), hashing and list
matching. However, these operations require much less battery
power than the more energy intensive message transmission
(TX), which the static intruder has to incur. Only heuristic
measures such as an exponential back-off on responding can
protect against this type of power exhaustion attacks on sensor
nodes in which an intruder repeatedly engages a sensor in
communication with a view to exhaust its battery power.
Another possibility is for the sensors to use technology for
power harvesting3 from the received signal for the RX part of
the processing, similar to how RFID tags operate.
A powerful roaming intruder can cause the losses due to

power exhaustion attack to increase by moving through the

2We do not consider as practical the scenario in which an attacker
selectively jams sensor network traffi c to prevent legitimate messages being
received at the base station while invalid messages are let through.

3There are many techniques such as energy scavenging [17], energy hunting
[21] and RF energy harvesting [15] to obtain ambient energy for the operation
of low-power devices. Unlike RFID chips that operate purely from RF energy
harvesting, one-time sensors may use a mix of own battery energy and
externally sourced energy.

46

network and replaying messages that would get retransmitted
towards the base station. In this attack scenario, the intruder
has to expend an even higher amount of energy to both
transmit messages and to move around the network.

2) Forgery attacks.: For an intruder to successfully attack
the base station and cause application-context damage (such as
raising a false biological weapons attack alarm), he has to first
obtain a valid id. The only method available to do this other
than to capture a sensor is to randomly guess. For a sensor id
value length of log2(N) bits and a sensor network of n nodes,
the probability Pf of a successful guess is Pf =n/(n - N) =
1/N. By selecting appropriate values for N (say, 64 bits)
the probability of an intruder successfully forging a message
that would get retransmitted to the base station and processed
correctly could be made as small as required. Therefore, with
a very high probability, the immediate neighbor sensors will
discard the forged message without retransmission.

Similar to the replay attack, an intruder can repeatedly
mount forged message attacks on a sensor causing power ex-
haustion. But as explained earlier, the attack will not propagate
and the intruder has to expend much more energy than the
sensor under attack.

3) Sensor capture attacks.: The only method by which an
intruder can successfully cause an application-level damage
with high probability is by capturing a sensor and then
transmitting a false message. Once an intruder captures a
sensor, he has full control over it and can use all its data
and functionality. The proposed scheme does not provide any
direct countermeasure against this type of powerful attack.
However, by the very nature of the one-time sensor paradigm,
the intruder can send only a single valid message using a
captured sensor. Any other message transmission attempts
will be either forged or replay message attacks and will be
unsuccessful. Therefore, the sensor network may implement
application-specific heuristics to counter this threat. These
heuristics can be as complex as necessary as they are imple-
mented at the base station or beyond and not on the sensors.
As an example, for a sensor network deployed at a large

public gathering such as an international sports event to detect
chemical warfare agents, the base station may not raise a
public safety alarm unless messages from a cluster of at
least st nearby sensors arrive at the base station, where st is
the threshold value. It is clearly required for sensor network
application developers to calibrate message interpretation to
deal with false positives.

4) Sybil and black-hole attack.: An intruder will not be
able to forge multiple valid identities if the id values for the
sensors are chosen uniformly and randomly from a large pool.
This is an effective counter measure against the Sybil attack
[8], [16] on a sensor network. An intruder will not have any
increased advantage in carrying out a Sybil attack even after
capturing a set of valid sensor nodes and extractino their id
values due to the one-time nature of the sensors.
A black-hole attack is semantically the inverse of a Sybil

attack and occurs when an intruder takes over a sensor and
continually discards received messages without ever retrans-

mitting them. If this particular sensor is located in a message
routing path that has no other alternatives, it could potentially
partition the network and isolate one or more sensors from
communicating with the base station. So, rather than illegally
introducing multiple identities to the network, as in Sybil
attack, many valid identities will disappear from the network.
A black-hole attack may be carried out by an intruder even

without capturing a valid sensor if the MAC algorithm used
in the sensor network link layer uses a dynamic neighbour
discovery protocol [19]. For example if the MAC algorithm
uses a scheme by which transmission power is incremented
by a fixed quantum until a neighbour acknowledges reception,
then an attacker could masquerade as a valid sensor and carry
out the denial of service attack. The only effective counter
measure for black-hole attacks is to deploy a sensor network
with adequate density to provide multiple paths for message
transmission to the base station.

B. Performance analysis
For a sensor network of n sensors with an id value length
of log2(N) bits (with n < N) and a hash function HASH
with output length r bits (for example, SHA-1 with 160 bits),
the total security related memory requirement at a sensor is
(log2(n) + log2 (N) + nr + n) bits respectively for its own
(idx, id) pair, list L, and control string S. However, it is strictly
not necessary to store the full hash function output as the
size of the network n is significantly less than the output size
of this hash function. Therefore, we can fold the hash value
output without any loss of randomness by simply taking the
t least significant bits (for example, 64 bits) as all the bits
in a computed hash value are equally random. This allows us
to maintain the required Pf = 2' against forgery attacks.
Also, the string S is used to control network communications
by preventing both multiple retransmissions and replaying of
messages. Therefore, processing and storage costs associated
with S should not be considered as a purely security-related
cost. The index value idx of a sensor is also not solely security
related as it is required to identify the sensor from which a
message has originated.

Therefore, we can approximate the direct security related
memory cost to be (log2(N) + nt) bits or just nt bits for
log2(N) << nt. For sample values of log2(N) = 256, n =
1024, and t = 64, the total security-related memory cost is
approximately 64 Kbits per sensor.

For each received message, the sensor has to compute
a single hash value (for cost(HASH)) and then do a direct
match with list L with index value being the list address
pointer. For a single bit-comparison cost of cost(BEQ), the
comparison cost is t x cost(BEQ). Therefore the total of strictly
security-related computational cost can be approximated as
cost(HASH) + t x cost(BEQ) e cost(HASH) as in general,
cost(BEQ) < cost(HASH).

4. AN IMPROVED SOLUTION USING BLOOM FILTERS

Two of the main design objectives of the proposed secure one-
time sensor scheme were firstly to minimize the amount of

47

useful information an intruder can obtain by capturing a sensor
and secondly to minimize the security-related complexity of
the sensor processing element. These two objectives were
successfully achieved by storing a list of hashed (idx,id)
value pairs on the sensor and requiring only hash computations 9
on the sensor. These two design decisions allow us to use a 6

classic algorithm called a Bloom filter [4] to further reduce the @
memory required to store the list L.
A Bloom filter is an algorithm to compactly store a list of

keys and then efficiently search it to see if a candidate key is
a member in that list. The algorithm requires that the list of
keys is fixed at the startup and the membership result tolerates
a certain probability of false positives. The one-time sensor
network applications that we have outlined earlier can tolerate
both these algorithmic limitations. As Bloom filters store the
list of (idx, id) value pairs as HASH(idx, id) one-way hashes,
an intruder who captures a sensor cannot recover the actual
id values without performing an exhaustive search of the full
(idx, id) value space. Even in such a brute force attack, the
intruder cannot be certain of finding the correct id values due
to the probability of false positives associated with the Bloom
filter scheme.
To be successful, an intruder will require "valid" id values

for forging messages for which the base station will react
positively in comparison to "arbitrary" id values that pass the
Bloom filter test but are rejected at the base station, which i
compare the received id value against the stored master list.

Construction of a Bloom filter requires use of a number of t
distinct (say, k) hash functions. We can satisfy this requirement
by initializing the common hash function HASH with a set of k
different values stored on the sensor. The Bloom filter uses a t
bit vector V of a suitable length m bits and the hash function t
output must be in the range of O ... mr-1, so that the computed i
hash value acts as an index to a bit position in the vector V.
The bit vector is initialized by setting all bits to 0. Before the
sensors are deployed, the Bloom filter is computed and stored i
on them by running each of the concatenated idx 11 id values
for all n sensors through the k hash functions and setting the f
bit in V corresponding to the hash value to be 1. If a bit at a f
particular position is already set to 1, it remains unchanged.

After the sensor network is deployed and when a sensor X
receives a message with header index value and identifier a
value pair (idx,, id,), the membership in the Bloom filter is s
checked by computing the k hash values for the concatenated t
input idx, 11 id, and checking to see if the corresponding bit A
positions in V is set to 1. If any of the bits remains as 0, then f
the id, value does not belong to the list of valid identifiers a
and indicates a fake message. If all the corresponding bits are

set to 1, then the id, value can be accepted as a valid member I
with a high probability. The classic original paper on Bloom c
filters [4] gives the probability of a false positive acceptance a
PC as t

=(1-em) k (1)

We need to choose k and m so that P, is at an acceptable c

level based on the sensor network application heuristics. As c

70000

60000

50000

40000

30000

20000

10000

o
5 10 15 20 25 30

k - no of hash functions
35 40 45

Fig. 1: The optimal number of hash functions (k) and bit vector length (m)
for different false positive probabilities (Pa) in a sensor network of n = 1024
nodes

we would be setting the probability of false positives PC and
number of hash function initializers k, the size of the bit vector
V stored on each sensor can be given as

-kn
mn = 1 (2)

ln(1P-PCk)
The total security-related memory required under the Bloom
filter improved scheme is (log2((n) + log2(N) + m +
klog2(m) + n) bits respectively for (idx, id) pair, vector V,
the k number of HASH function initialization values, and the
string S. As before, we can exclude the memory required for
the retransmission control string S and index value idx from
this purely security-related cost. This memory cost can be
further approximated as m bits by removing the cost of fixed
id value of the sensor and the very small memory requirement
of k log2(m) for hash function initializers. For a sample value
ofn = 1024, Pc = 0.001, and k = 5, the security memory cost
is approximately 17 Kbits per sensor, which is a significant
saving from the earlier non optimized scheme cost of 64 Kbits
for t = 64 bits. The graph in figure illustrates the possible
performance improvements in memory usage.
This memory saving is achieved at a cost of false positive

probability-of PC (for the example values above, PC = 0.001)
and additional computational costs in hashing. For each mes-
sage received at the sensor, hash values must be computed k
times and bit comparisons done k times for a total cost of
k cost(HASH) + k cost(BEQ) k cost(HASH) which compares

favorably for small k with the non optimized scheme cost of
a single cost(HASH).
The specific number of hash functions (k) to be used with

Bloom filter optimization technique should be determined in
conjunction with the relative cost of computing a hash value
against the acceptable level of false positives as these in
[urn trigger message forwarding through the network towards
the base station. As sensors are powered by fixed-capacity
)atteries, it is important to note that when considering the
,ost of computations in sensor networks, it is more pertinent to
,onsider the actual energy cost per operation than the number

48

Standa sc em*..

........................

ImprovddSGhomOs o

1\~~~~~~~~~~~~~~~~~0

. . .i/

_ ~~~~.... .

3500

3000

2500

2000

1500

1000

500

0
5 10 15 20 25 30

k - no of hash functions
35 40 45

Fig. 2: The total number of sensors a network can support for different false
positive probabilities (P,)cost for a fi xed bit vector size (m = 32 Kbits or 4
KBytes)

of processor cycles to complete an operation.
In practice, a sensor manufacturer would fix the amount of

memory available for users. Therefore, it is interesting to check
the total number of sensors in a network that can be supported
by a given fixed amount of memory available for implementing
the proposed security scheme. The graph in figure 2 shows
the total number of sensors that is possible for a sensor with
4 KBytes of memory for different false positive probabilities
that an application could tolerate. The graph shows that for
P, = 0.001, the maximum size of the sensor network is
approximately 2300 nodes at k = 9.

A. Colluding intruders
The probability of false positives (Pc) in the Bloom filter based
one-time sensor network security scheme has an interesting
benefit. Let us assume, for example, that an international sports
event is being protected against attacks with chemical warfare
agents and that the security administrators have decided on

a threshold of st alarm messages before activating public
emergency services. Let us also assume that an intruder to
the sensor network that has captured s, number of sensors

(sc < st) has found out this threshold value and is negotiating
with some other intruders to obtain the remaining number of
sensor id values to mount a false alarm attack.

This being a transaction among less than honorable parties,
the first requirement is for the sellers to prove to the buyer
that they have possession of some sensors without revealing
the actual id values of the sensors they have until the sales
negotiation is complete. Now, if a seller computes the set of
k hash function values for the sensor id he has and sends
them to the buyer, the buyer can convince himself of the
truthfulness of the sellers claim of possession of a sensor

with only a probability of (1 - Pa). Therefore, an intruder
who already has access to the Bloom filter cannot prove with
absolute certainty to another intruder who also has access to

the same Bloom filter of its possession of a valid sensor,

thus potentially complicating transactions among colluding
intruders. The second requirement, which is more important,

is for the buyer to be certain that the id value given by the
seller is a valid identifier that would be accepted by the base
station. As the intruder who is offering to sell an id value can
query its Bloom filter with arbitrary values to find a (idx, id)
pair that would pass the membership test, the buyer would
have no guarantee that it is a valid id.

B. Offline oracle attacks
An intruder who captures a secure one-time sensor, optimized
with a Bloom filter, can use it as an oracle to create a list
of "arbitrary" (idx, id) value pairs for which the membership
test succeeds without having to use a brute force attack to

50 determine "valid" (idx, id) value pairs. Depending on the
probability of false positives the Bloom filter was configured
to accept, the intruder can query the captured sensor repeatedly
with random (idx, id) value pairs to buildup a set of values that
pass the test. For example, a P, = 0.001 probability would
allow the intruder to build a list with 100 values that pass the
membership test by simply querying 100,000 times, which is
a relatively small effort.
Now, the intruder can use these arbitrary (idx, id) value

pairs to forge messages that would be correctly accepted and
forwarded by other sensors towards the base station. While
there would be no application-level damage caused as the base
station would detect these values to be bogus by comparing
with the original set of (idx, id) pairs it stores, the sensors in
the network would be subject to a serious power exhaustion
attack. We can mitigate this offline oracle attack by computing
a set of distinct Bloom filters (for example, by using different
hash initialization values) and randomly selecting a Bloom
filter to be stored in a particular sensor. In the extreme case,
each sensor could be stored with its own unique Bloom filter.
As the computation of Bloom filters and then configuring
the sensors with them is done offline prior to the actual
deployment of a sensor network, the costs associated with this
solution are not a significant factor.

This multiple Bloom filter approach would greatly reduce
the success probability of an intruder, who captures a sensor

and computes a list of acceptable (idx, id) pairs, being able
to simply transmit messages constructed using the list and
have those messages accepted and retransmitted by other
sensors. This is an effective countermeasure against the power
exhaustion attack.

5. RELATED WORK
The concept of one-time sensors was introduced by Bicakci, et

al. [2] with protection against node capturing attacks provided
using several techniques including public key cryptography
and Merkle hash trees [14]. This concept paper [2] explains
the usefulness and justification for one-time sensor network
applications. The Bloom filters were originally introduced
for use in efficient compression and fast searching of data
structures such as dictionaries and were later found wide use

in database applications. In recent times, Bloom filters have
been used in many network applications as indicated in the
survey by Broder and Mitzenmacher [6].

49

cn0

a)
cn

c

/ =0c1%
.

. . "......

e/~~~~~ . . ~~~~~ : ImSandrdvt schemnes(=4

One of the first security protocol suites for sensor networks
was the SPINS architecture by Perrig, et al. [18] that was
based on a model of sensor-to-base station communication. For
peer-to-peer secure communication between sensors, a shared
key was established using the base station as a TTP. Recent
research work on sensor network security has focused on peer-
to-peer secure communication by sensors and the most widely
proposed security scheme for conventional sensor networks
has been pair-wise key predistribution. A probabilistic hop-by-
hop key establishment protocol was proposed by Eschenauer
and Gligor [10] where each sensor is preinstalled with a
randomly selected subset of keys from a large key pool. A
secure communication path between two sensors is established
by selecting a set of intermediary nodes with a single pair-wise
shared key between each sensor pair.

This scheme by Eschenauer and Gligor has the weakness
that an attacker who is capable of capturing a small set of
sensors is able to determine a large number of end-to-end
paths. The work by Chan, et al. [7] was directed towards
reducing this problem by requiring a sensor to have more than
one pair-wise shared-key with a neighbour to establish a hop in
the end-to-end path. The random pair-wise key establishment
scheme of Du, et al. [9] is based on the key predistribution
scheme of Blom [3] and the similar scheme of Liu and Ning
[13] was based on the two-party key establishment for dynamic
groups of Blundo, et al. [5] combined with multiple key
spaces.
We do not make a direct comparison of our proposed sensor

network security scheme with other work cited above for two
reasons: (1) the security model used by us is based on a
one-time sensor concept while all the previous work consider
multi-use conventional sensors and (2) the main objectives of
previous security proposals have been to provide message con-
fidentiality (by encryption) and integrity (by MAC) using the
shared keys and prevent exposure of a shared key established
using the particular protocol to an attacker while we focus on
countering an intruders ability to raise false alarms by using
message forgery, message replay or node capture techniques.

6. CONCLUSION
We have presented an efficient security scheme for one-time
sensor networks with performance improvements using Bloom
filters. Both the proposed security scheme and the use of
Bloom filters in sensor network security are new contribu-
tions in this evolving research area. Importantly, the use of
Bloom filters to reduce memory requirements on the sensor
does not increase the size of messages and thus keeps the
important cost of bit transmission fixed. This is an important
factor, as message transmission constitutes a major portion of
sensor energy consumption. The feasibility for the one-time
sensor network applications to tolerate false positives (that is,
allowing a forged message to reach the base station) rather
than false negatives (that is, disallowing a correct message
to be transmitted within the network) is a key element in
the applicability of the proposed Bloom filter based security
scheme to real-world scenarios.

The research result presented in this paper, based on the
novel one-time sensor idea, is part of an on-going effort to
develop efficient and secure algorithms for low-cost sensor
networks. To increase the range of sensor network applications
that can utilize the basic idea introduced in this paper, we have
extended the algorithm to a k-time sensor scheme [12] and at
present we are setting up an experimental network to evaluate
its energy use and other properties.

REFERENCES
[1] 1. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, A survey

on sensor networks, IEEE Communications Magazine, 40(8): 102-116,
IEEE, 2002.

[2] K. Bicakci, C. Gamage, C. B. Crispo, and A. S. Tanenbaum, One-time
sensors: A novel concept to mitigate node-capture attacks, European
Workshop on Security and Privacy in Ad hoc and Sensor Networks
(ESAS), LNCS, Springer, 2005.

[3] R. Blom, An optimal class of symmetric key generation systems, EU-
ROCRYPT 1984, LNCS 209, pages 335-338, Springer, 1985.

[4] B. H. Bloom, Space/time trade-offs in hash coding with allowable errors,
CACM, 13(7):422-426, ACM Press, 1970.

[5] C. Blundo, A. D. Santis, A. Herzberg, S. Kutten, U. Vaccaro, and
M. Yung, Perfectly secure key distribution for dynamic conferences,
CRYPTO 1992, LNCS 740, pages 471-486, Springer, 1993.

[6] A. Z. Broder and M. Mitzenmacher, Network applications of Bloom
fi Iters: A survey, Internet Mathematics, 1(4):485-509, 2003.

[7] H. Chan, A. Perrig, and D. Song, Random key pre distribution schemes
for sensor networks, IEEE Symposium on Security and Privacy, pages
197-213, IEEE Computer Society, 2003.

[8] J. R. Douceur, The Sybil attack, Workshop on Peer-to-Peer Systems,
LNCS 2429, pages 251-260, Springer, 2002.

[9] W. Du, J. Deng, Y. S. Han, and P. Varshney, A pairwise key predis-
tribution scheme for wireless sensor networks, ACM Conference on
Computer and Communications Security (CCS), pages 42-51, ACM
Press, 2003.

[10] L. Eschenauer and V. D. Gligor, A key-management scheme for dis-
tributed sensor networks, ACM Conference on Computer and Commu-
nications Security (CCS), pages 41-47, ACM Press, 2002.

[11] J. Elson and D. Estrin, Sensor networks: A bridge to the physical world,
Wireless sensor networks, pages 3-20, Kluwer Academic Publishers,
2004.

[12] Reference blinded for review, Counterinig SPAM and DOS attacks in a
sensor network, 2005.

[13] D. Liu and P. Ning, Establishing pairwise keys in distributed sensor
networks, ACM Conference on Computer and Communications Security
(CCS), pages 52-61, ACM Press, 2003.

[14] R. C. Merkle. Protocols for public key cryptosystems, IEEE Symposium
on Security and Privacy, pages 122-134, IEEE Computer Society, 1980.

[15] M. H. Mickle, M. Lovell, L. Mats, L. Neureuter and D. Gorodetsky,
Energy hanresting, profi les. and potential sources, International Journal
of Parallel and Distributed Systems and Networks, 4(3):150-160, ACTA
Press, 2001.

[16] J. Newsome, E. Shi, D. Song, and A. Perrig, The Sybil attack in sensor
networks: Analysis and defenses, ACM Symposium on Information
Processing in Sensor Networks, pages 259-268, ACM Press, 2004.

[17] J. A. Paradiso and T. Starner, Energy scavenging for mobile wid wireless
electronics, IEEE Pervasive Computing, 4(1):18-27, IEEE Computer
Society, 2005.

[18] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen and D. E. Culler, SPINS:
Security protocols for sensor networks, Wireless Networks, 8(5):521-
534, Kluwer Academic Publishers, 2002.

[19] J. Polastre, J. Hill and D. Culler, Versatile low power media access for
wireless sensor networks, ACM Conference on Embedded Networked
Sensor Systems (SenSys), pages 95-107, ACM Press, 2004.

[20] V. Raghunathan, C. Schurgers, S. Park and M. B. Srivastava, Energy-
aware wireless microsensor networks, IEEE Signal Processing Maga-
zine, 19(2):40-50, 2002.

[21] M. Rahimi, H. Shah, G. Sukhatme, J. Heidemann and D. Estrin, Studying
the feasibility of energy harvesting in a mobile sensor network, IEEE
International Conference on Robotics and Automation, pages 19-24,
IEEE, 2003.

50

