
Communication in GLOBE: An Object-Based Worldwide
Operating System

Philip Homburg, Maarten van Steen, Andrew S. Tanenbaum
Vrije Universiteit, Amsterdam

Abstract

Current paradigms for interprocess communication are not
sufficient to describe the exchange of information at an
adequate level of abstraction. They are either too low-
level, or their implementations cannot meet performance
requirements. As an alternative, we propose distributed
shared objects as a unifying concept. These objects offer
user-defined operations on shared state, but allow for effi-
cient implementations through replication and distribution
of state. In contrast to other object-based models, these
implementation aspects are completely hidden from appli-
cations.

1 Introduction

In the 1960s and 1970s, the computing universe was dom-
inated by mainframes and minicomputers that ran batch
and timesharing operating systems. Typical examples of
these systems were OS/360 and UNIX. These system were
primarily concerned with the efficient and secure sharing
of the resources of a single machine among many compet-
ing users.

In the 1980s, personal computers became popular.
These machines had different kinds of operating system,
such as MS-DOS and Windows, and were primarily con-
cerned with providing a good interactive environment for
a single user. Resource allocation was not a major issue.

As we move closer to the year 2000, it is becoming
clearer that a new environment is appearing, one domi-
nated by millions of machines interacting over wide area
networks such as the current Internet. While all these ma-
chines have individual local operating systems, the world-
wide system as a whole raises many of the same issues
that are found in local operating systems, including in-
terprocess communication, naming, storage, replication,
and management of files and other kinds of data, resource
management, deadlock prevention, fault tolerance, and so
on. Only instead of being performed on a single machine,

these issues arise in the large.
In effect, we need an “operating system” for this world-

wide system. This operating system will of necessity be
different from existing operating systems in that it will run
in user mode on top of existing operating systems (as do
the servers in many modern microkernel-based operating
systems). Nevertheless, it will have to perform traditional
operating system functions on a huge scale.

At the Vrije Universiteit, we are developing such an op-
erating system, GLOBE, for the worldwide computing en-
vironment of the future. In this paper we will describe
some novel parts of this system, especially concerning
communication.

GLOBE is based on objects in the sense that all the im-
portant items in the system are modeled as objects. Typical
objects include machines, Web pages, mailboxes, News
articles, etc. Associated with each object is a set of meth-
ods that authorized users can invoke without regard to the
relative location of the user and the object.

GLOBE objects are unusual in that they are distributed
shared objects[1, 13]. This means that processes on dif-
ferent machines can bind to an object even though these
machines may be spread all over the world. Any process
bound to the object can invoke its methods. How the ob-
jects are internally organized is up to each object’s de-
signer.

Communication in GLOBE is quite different from other
systems. Most systems, especially wide-area ones, are
based on messaging. Typically two processes that want
to communicate first establish a (TCP or ATM) connec-
tion, and then pump bits through the connection. In other
systems, a datagram-style of communication is used (e.g.,
UDP packets), but here, too, the basis is still message pass-
ing.

GLOBE works differently. Here processes do not send
messages to communicate. Instead they communicate
using the GLOBE distributed shared object mechanism.
Both (or all) interested parties first bind to some common
distributed shared object, and then perform operations on
it. For example, to send email, a process might bind to



the recipients mailbox and then invoke an INSERT ITEM
method. To read mail, the receiver would invoke a GET
ITEM method. While the object would have to use phys-
ical communication internally to move the bits, the users
would just deal with objects, and not with sockets, TCP
connections, and other message-oriented primitives. We
believe this model allows us to unify many currently dis-
tinct services. For example, GET ITEM could be used to
read mail, read a News article, read a Web page, or read a
remote FTP-able file in exactly the same way: in all cases,
the user just invokes a method on a local object.

In addition, this model isolates programmers and users
from issues such as the location and replication of data.
In a communication-oriented system, users have to know
how the data are replicated and where the copies are. In
our model, the user of an object does not have to know
how many copies there are or where they are. The object
itself manages the replication transparently. To see the im-
plications of this design, think about accessing a copy of
a replicated Web page or FTP file. In both cases the user
must make a conscious choice about which copy to access,
since different copies have different URLs or DNS names,
respectively. In GLOBE, each object has a single unique
name that users deal with. Managing the replicated data is
done inside the object, not outside, so users are presented
with a higher level of abstraction than is currently the case.
This higher level of abstraction makes it much easier to de-
sign new worldwide applications.

2 Current Paradigms for Commu-
nication

Simply encapsulating communication in objects in not
enough: dealing with the wide spectrum of communi-
cation demands in complex, wide-area systems requires
high-level primitives with emphasis on optimizing the
ease of use of communication facilities, along with effi-
cient use of those facilities. Realizing efficient communi-
cation requires that we look at three aspects: maximizing
the bandwidth offered to an application, minimizing laten-
cies observed by the application, and balancing the pro-
cessing (CPU time) at various machines.

To effectively deal with latency, processing, and band-
width requirements, we need a high-level description of
the application’s intrinsic communication requirements
independent of network protocols, topology, etc. For ex-
ample, for mailing systems we have the requirement that
when a message is sent, the receiver is notified when it is
delivered so that it can subsequently be read. These re-
quirements state only that when the message is to be read,

it should actually be available at the receiver’s side. This
means that message transfer can take place before notifica-
tion, but possibly also later. It is not an intrinsic require-
ment that message transfer has taken place before notifi-
cation.

In order to see how distributed shared objects can con-
siderably alleviate current communication problems, we
make the following distinction between different commu-
nication paradigms.

Synchronous data exchange. First, we distinguish
paradigms centered around synchronous exchange of
data. With synchronous we mean that data can only be
exchanged if both the sending and receiving processes are
executing at the same time. Examples include low-level
data exchange based directly on TCP and UDP implemen-
tations, distributed computing based on communication
libraries such as PVM [14] and MPI [10], group com-
munication systems such as ISIS [2], and RPC-based
systems like DCE [12].

Synchronous data exchange is primarily concerned with
moving data from one process to one or more other pro-
cesses. Naming is provided at the granularity of hosts or
processes, but not individual data items or objects. The
main limitation is that the data placement, replication, con-
sistency, and persistency management are left to the appli-
cation. This paradigm hides the topology of the underly-
ing network and provides a virtual network in which every
host (or process) is connected to every other host. Unfor-
tunately, in synchronous data exchange it is hard to hide
latency, and the application developer has to take explicit
measures to handle it.

Predefined operations on shared state. The second
class we distinguish contains paradigms centered around a
fixed set of operations on shared state (often just read and
write operations). Typical examples of systems that fall
into this class are network file systems [5], and distributed
shared memory (DSM) implementations, originating with
the work on Ivy [6].

Solutions in this class generally offer a small set of
low-level primitives for reading and writing bytes. These
primitives generally do not match an application’s needs.
For example, in file systems data must often be explicitly
marshaled, while in heterogeneous DSM systems, special
measures have to be taken by the application developer
(see e.g. [16]). In addition, attaining data consistency is of-
ten not that easy. For example, file systems generally offer
only course-grained locks or otherwise expensive transac-
tion mechanisms. In DSM systems, the situation can be
even worse as memory consistency is often relaxed for the



sake of performance [9]. Although this does allow a rea-
sonable transparency of replication and location of data,
the application developer is confronted with a model that
is much harder to understand and to deal with.

Current distributed file systems have almost no sup-
port for replication transparency, although the placement
of files is generally hidden for users. However, it is mainly
the limited functionality provided by file systems that
poses severe problems. For example, streams for com-
municating continuous data such as voice and video are
hardly supported.

Operations on remote shared objects. Finally, we dis-
tinguish paradigms centered around user-defined opera-
tions on remote state, such as offered by objects in Corba
[11] and Spring [8], and in models such as Network Ob-
jects [3].

Solutions that fall within this paradigm implement re-
mote objects, where a distinction is made between clients
and servers. Clients issue requests (invoke methods), and
servers implement methods and send back replies. This
limits communication patterns to the asymmetrical client–
server model, for example prohibiting clients to communi-
cate directly among themselves. A disadvantage of remote
objects is that every method invocation on a remote object
results in the exchange of a request and a reply message
between the client and the server. This problem is typi-
cally tackled by adhoc caching strategies at the client side.

Of the cited systems, Network Objects offers a pure re-
mote object system. Corba uses request brokers to handle
requests. In theory, these request brokers can hide repli-
cation and faulttolerance from the application, but general
efficient solutions that do so have not yet been proposed.
Spring offers subcontracts, which do provide support for
transparent caching and replication, but which seem to be
very limited when it comes to adaptability. For example,
replication is handled by mapping an object reference to
several object instances, and maintaining the mapping at
the client side. This approach will never scale.

Our goal is to combine the advantages of each
paradigm:

The efficiency of implementations for synchronous
data exchange.

The transparency of actual communication as it ap-
pears through read and write operations on shared
state.

The possibility for user-defined operations on shared
state as allowed in object-based systems.

Figure 1: A distributed shared object

3 Distributed Shared Objects

A distributed shared object [4, 15] offers one or more in-
terfaces, each consisting of a set of methods. Objects in
our model are passive; client threads use objects by exe-
cuting the code for their methods. Multiple processes may
access the same object simultaneously. Changes to an ob-
ject’s state made by one process are visible to the others.
An important distinction with other models is that, in our
case, objects are physically distributed, meaning that ac-
tive copies of an object’s state can, and do, reside on mul-
tiple machines at the same time. However, all implemen-
tation aspects, including communication protocols, repli-
cation strategies, and distribution and migration of state,
are part of the object and are hidden behind its interface.

Our approach makes distributed shared objects quite
different from remote objects in another important way:
there is no a priori distinction between clients and servers.
We take the approach that processes that communicate
through method invocation on the same object, are treated
as equals. In particular, they are said to jointly participate
in the implementation of that object.

In a sense, distributed objects are a collection of local
objects that communicate and provide the user of the ob-
ject with the illusion of shared state. This is an improve-
ment over the remote object model because it is not re-
stricted to a small set of predefined communication pat-
terns.

Figure 1 shows a distributed object and its implementa-
tion. In this example, the distributed object is used in three
address spaces. Each of those address spaces has a local
object that participates in the distributed object. These lo-
cal objects use the communication facilities of a network



Figure 2: The organization of a local object.

to execute operations of the distributed object, and to keep
the object consistent.

The implementation of local objects is separated from
an application through an explicit interface table consist-
ing of method pointers that is instantiated when the pro-
cess binds to the object, but whose content may change
over time. This is an important aspect of our model, as it
allows us to dynamically adapt the local implementation
of a distributed object, without affecting its interface to the
applications that invoke its methods.

Using this approach, the implementation of a dis-
tributed object, in terms of communicating local objects,
can use arbitrary communication patterns, but can also en-
capsulate data placement, replication, etc. In other words,
the approach allows for efficient implementations of dif-
ferent communication paradigms. Also, because inter-
faces are entirely user-defined, we are not confined to a
limited set of predefined operations. Our framework will
thus allow us to combine the advantages of the three com-
munication paradigms discussed in Section 2, and at the
same time avoids their disadvantages.

The model described so far does not isolate the appli-
cation developer from communication technology, data
placement, replication, etc. The reason is that the local
objects which actually implement a distributed object still
have to be developed. To solve this problem we propose
a standard organization for the implementation of a dis-
tributed object. This organization is shown in Figure 2.

In this architecture, the developer of a distributed ob-
ject is isolated from communication, replication and con-
sistency management by what we have called a communi-
cation object and a replication object. The developer is
responsible for programming the semantics object, which
captures the actual functionality of the distributed object.

The replication and communication objects are simply se-
lected from a library. The control object is responsible for
handling the interaction between the semantics object and
the replication object as the result of method invocation by
an application. It is expected that the control object can be
generated automatically, similar to the generation of RPC
stubs.

This organization results in a local object that exports
methods that operate on internal state. Based on the in-
terface to the semantics object a control object is gener-
ated. The control object synchronizes access to the dis-
tributed object by serializing accesses to the semantics ob-
ject to prevent race conditions and by invoking the replica-
tion object to keep the state of the distributed object con-
sistent. The control object exports the same interface as
the semantics object.

The control object implements a method invocation as
three successive steps. The first step consists of invoking a
start method at the replication object, effectively giving it
control over the execution of the second step, which deals
with global state operations. There are three alternatives
for the second step.

The first alternative handles remote execution. The
control object passes the marshaled arguments of the
method invocation to the replication object. The
replication object proceeds execution according to
its specific replication protocol (such as, for exam-
ple, simple RPC, master/slave replication, two-phase
commit, voting, etc.), effectively doing a remote
method invocation. It returns the marshaled results
to the control object.

The second alternative is local execution. The con-
trol object simply invokes the corresponding method
on the semantics object.

The third alternative is active replication with a lo-
cal copy. The control object provides the repli-
cation object with the marshaled arguments of the
method invocation. The replication object executes
the protocol to send the arguments to all replicas
and to achieve synchronization with the other repli-
cas. Next, the control object invokes the appropriate
method on the semantics object.

Finally, as a third step, the control object invokes the fin-
ish method on the replication object. This method invoca-
tion gives the replication object the opportunity to update
remote replicas.

To be practically useful, the algorithm described above
has to be extended in two ways: firstly, the control object
and replication object have to recognize different kinds



of operations, for example, whether operations modify
the state of the object or not. Furthermore, it is neces-
sary to distinguish operations that modify only part of the
global state, which may happen in the case of partitioned
or nested objects.

Secondly, some extensions are needed to deal with syn-
chronization on conditions. Since operations on the se-
mantics object are serialized (through locking), they are
not allowed to block for a long time. Our approach is to
support guarded operations: the semantics object can pro-
vide for blocking on a condition by returning status in-
formation to the control object after possibly undoing any
changes made so far. The control object will suspend the
execution of the operation until the next modification of
the state, after which another attempt to execute the oper-
ation can be made.

A system that seems at first glance similar to ours are
Fragmented Objects[7]. These objects provide a similar
model to the user of the object as our model. The internals
of fragmented objects are however quite different: they
consist of fragments that communicate through connective
objects. The interface to a fragmented object is provided
by a proxy object, which implements operations on the
fragments object by invoking operations on the so-called
group interface. Fragmented objects hide data replication
and consistency management from the user of an object,
but those details are exposed to the implementor of an ob-
ject.

4 Conclusions

In this paper we have shown how distributed objects can
provide a high-level interface for information sharing and
exchange between processes. Separating the application
from the implementation of a distributed object allows ef-
ficient implementations and dynamic adaptations to differ-
ent situations. A standard architecture for implementing
distributed objects isolates the object developer from data
placement and replication.

References
[1] H.E. Bal and A.S. Tanenbaum. “Orca: A Language for Dis-

tributed Object-Based Programming.” Technical Report IR-140,
Vrije Universiteit, Amsterdam, 1987.

[2] K.P. Birman and R. van Renesse, (eds.). Reliable Distributed
Computing with the Isis Toolkit. IEEE Computer Society Press,
Los Alamitos, CA., 1994.

[3] A. Birrell, G. Nelson, S. Owicki, and E. Wobber. “Network Ob-
jects.” In Proc. 14th Symp. on Operating System Principles, pp.
217–230, Asheville, North Carolina, Dec. 1993. ACM.

[4] P. Homburg, L. van Doorn, M. van Steen, A. Tanenbaum, and
W. de Jonge. “An Object Model for Flexible Distributed Sys-
tems.” In Proc. First ASCI Annual Conf. , pp. 69–78, Heijen, The
Netherlands, May 1995.

[5] E. Levy and A. Silberschatz. “Distributed File Systems: Concepts
and Examples.” ACM Comput. Surv., 22(4):321–375, Dec. 1990.

[6] K. Li and P. Hudak. “Memory Cache Coherence in Shared Virtual
Memory Systems.” ACM Trans. Comp. Syst., 7(3):321–359, Nov.
1989.

[7] M. Makpangou, Y. Gourhant, J.-P. Le Narzul, and M. Shapiro.
“Fragmented Objects for Distributed Abstractions.” In T.L. Casa-
vant and M. Singhal, (eds.), Readings in Distributed Computing
Systems, pp. 170–186. IEEE Computer Society Press, Los Alami-
tos, CA., 1994.

[8] J. Mitchell et al. “An Overview of the Spring System.” In Proc.
Compcon Spring 1994. IEEE, Feb. 1994.

[9] D. Mosberger. “Memory Consistency Models.” Operating Sys-
tems Reviews, 27(1):18–26, Jan. 1993.

[10] MPI Forum. “Document for a Standard Message-Passing Inter-
face.” Draft report Technical Report, University of Tennessee,
Knoxville, Tennessee, Dec. 1993.

[11] OMG. “The Common Object Request Broker: Architecture and
Specification, revision 2.0.” OMG Document Technical Report
96.03.04, Object Management Group, Mar. 1996.

[12] OSF. “Distributed Computing Environment.” OSF Document
Technical Report OSF-DCE-PD-1090-4, Open Software Founda-
tion, Cambridge, Mass., Jan. 1992.

[13] M. Shapiro. “Structure and Encapsulation in Distributed Systems:
The Proxy Principle.” In Proc. Sixth Int’l Conf. on Distributed
Computing Systems, Boston, MA, May 1986. IEEE.

[14] V.S. Sunderam. “PVM: A Framework for Parallel Distributed
Computing.” Concurrency: Practice and Experience, 24(4):315–
339, Dec. 1990.

[15] M. van Steen, P. Homburg, L. van Doorn, A.S. Tanenbaum, and
W. de Jonge. “Towards Object-based Wide Area Distributed Sys-
tems.” In L.-F. Cabrera and M. Theimer, (eds.), Proc. Fourth Int’l
Workshop on Object Orientation in Operating Systems, pp. 224–
227, Lund, Sweden, Aug. 1995. IEEE.

[16] S. Zhou, M. Stumm, K. Li, and D. Wortman. “Heterogeneous Dis-
tributed Shared Memory.” IEEE Trans. Par. Distr. Syst., 3(5):540–
545, Sept. 1992.


