
ROAM: Room-based Object-based Agent Middleware

Guido J. van’t Noordende, Frances M.T. Brazier, Andrew S. Tanenbaum, Maarten R. van Steen

Division of Mathematics and Computer Science, Faculty of Sciences
Vrije Universiteit, Amsterdam, The Netherlands

{guido,frances,ast,steen}@cs.vu.nl

Keywords: Multi-Agent Systems, Mobile Agents, Distributed Systems, Middleware, Virtual Environments

Abstract

In this paper we present work in progress on a
worldwide, scalable multi-agent system, based on a
paradigm of hyperlinked rooms.1 The framework of-
fers facilities for managing distribution, security and
mobility aspects for both active elements (agents) and
passive elements (objects) in the system. Our frame-
work offers separation of logical concepts from phys-
ical representation and hooks for security architec-
tures.

1 Introduction

Multi-Agent Systems (MASs) offer an infrastruc-
ture in which agents can do work autonomously for
their owner while moving along a physical or logi-
cal path. Existing MASs [1, 2, 3, 4, 5, 6, 7] often
deal with mobile agents, sometimes with heteroge-
nous agents, and occasionally with secure agents.
Current solutions are rarely scalable and frequently
lack location and distribution transparency. Very few
systems offer any kind of paradigm or framework
to help application designers produce coherent, well-
structured environments. In this paper we propose
a scalable multi-agent middleware system that solves
these problems.

2 The ROAM Framework

Our framework consists of a world (or possibly
multiple disjoint worlds), each containing a set of hy-
perlinked rooms. Each room contains agents and ob-
jects. At any instant, an agent is in one room, but
agents can move from room to room and they can take
objects with them.

In essence, a room forms a shared data-space for
agents with regard to visibility. Agents can interact

1Submitted to ASCI 2001, May 30 - June 1, 2001, Heijen, The
Netherlands. This version slightly revised, Feb. 8, 2001.

only with objects in the same room, but can send mes-
sages to agents anywhere in the world. However, nor-
mally an agent will do most of its business with other
agents in the same room.

Entities in a room can be agents, objects, or hyper-
links. Each agent is a (possibly multithreaded) pro-
cess running on one host. No part of the internal pro-
cess state of an agent can be accessed from the out-
side by other agents. Objects are strictly passive: they
consist of data and code hidden by an interface. Hy-
perlinks determine how the rooms are connected.

An agent enters a world by entering a room. Cer-
tain rooms in a world may be used as starting points;
we call these ’entry rooms.’ Once in an entry room, an
agent may move to any other room to which that room
is hyperlinked. Directly moving to internal rooms
(behind an entry room) is not allowed; agents must
always go through an entry room, and follow hyper-
links from there. A world may have multiple entry
rooms.

When an agent enters an entry room for the first
time, the agent is registered in the world. A compo-
nent is provided in each world, called thebasement,
which keeps track of the information needed to make
the world function, such as the location of the agents.
The basement is not visible to agents.

The first thing an agent must access when enter-
ing a room is a special object, calledRoom Monitor
Object (RMO).The RMO registers all content in its
room, and provides an interface for agents to inter-
act with the room. Descriptions of entities in a room
(e.g., agents, objects and hyperlinks to other rooms)
are specified inattribute sets (ASs)which can be ob-
tained through the RMO interface.

Each entity has a (possibly empty) attribute set,
placed in the RMO, using which the entity is de-
scribed. Example attributes are the name of an agent
or the coordinates of an agent in a room. Attribute
sets are (object,attribute,value) triples. The attributes
of ASs may be fixed in a world, but they may also be
extensible; in this case, a definition of the AS can be



obtained through a method of the RMO interface. An
agent can alter an attribute set only if it has permission
from the owner of the entity. Each object in a room
can also contain an attribute set internally, besides the
one in the RMO, which specifies additional (private)
attributes.

Event notification can be provided by the RMO
and other objects that have an attribute set. An ob-
ject that provides event notification has a method
notify(event-type)in its interface. This method blocks
(i.e., does not return) until the event occurs. The
event-type is a template AS, in which the values of
attributes that an agent is interested in are specified.
As soon as an attribute in the object matches the cor-
responding template AS’s value, notify returns. The
event-type is comparable to a template tuple as in
JavaSpaces [8]; in some worlds, the event-type may
also include expressions. The evaluation mechanism
of the event-type is hidden inside the object.

Every world can also have anattic. The attic
contains global services and is directly accessible to
agents in any room. Through the attic, an agent can
obtain world-scoped information, for example, the
topology (hyperlink layout) of a world, directory ser-
vices, or a bulletin board service (e.g., for publishing
agent information.)

3 Example Applications

As an example of the ROAM paradigm, consider a
world designed for buying and selling raw materials
for industry. An entry room is set up where interested
parties can obtain information about the products for
sale. Hyperlinks from this room lead to rooms for
specific products, such as ore, water, and electricity.

Agents for users that want to buy or sell certain
products can be launched into the system and go to an
appropriate room where they can meet other agents
that offer or want products. An offer may be nego-
tiated, after which an agent can either return to its
owner with the current offer, or communicate with
other agents to try to negotiate a package deal (e.g.,
optimizing for the cheapest combination of ore, wa-
ter, and electricity). Some global information such as
up-to-date currency exchange rates, freight rates, etc.,
may be available to all agents through objects in the
room or in the attic.

Other examples are: Multi-User Dungeons
(MUDs), in which players have to find their way
through a maze of rooms, in which they can find items
and may meet many adversaries; a virtual learning en-
vironment, where users can move among classrooms;
a shopping mall, where the world is divided up into
departments, each with stores selling a certain cate-
gory of products; and libraries, with rooms for differ-
ent topics.

In short, the ROAM paradigm replaces the World

Wide Web paradigm of a collection of hyperlinked
documents that users can inspect with that of a collec-
tion of hyperlinked rooms in which agents can meet
to do business.

4 Distribution Aspects of ROAM

A world may be spread over many machines. At
any instant, each agent is a process running on some
particular host computer. As agents move from room
to room, they may also move from machine to ma-
chine. As an agent wanders from room to room in a
world, it may not be aware of what machine it is on,
unless it cares.

A mechanism is provided that allows agents to
connect to objects transparently, using a location-
independent identifier. This mechanism is called
binding. Binding results in a binary interface being
loaded into the address space of the agent, hiding the
exact implementation and location of the object. Af-
ter the interface has been loaded, the agent can invoke
the object’s methods.

Our model supports distributed objects, whose
state may be replicated on a number of hosts simul-
taneously [9]. However, our model can also be built
using other object architectures, such as those sup-
ported by CORBA [10], DCOM [11], or Java RMI
[12].

In a world, logical location is decoupled from
physical location. Logical components (e.g., rooms,
objects and agents) as well as components that make
a world work (e.g., basement) may be physically lo-
cated on a number of hosts, but this is not visible to
an agent in a world.

We offer a way to group hosts in terms of shared
properties. This grouping is called azone.A zone can
consist of multiple hosts, and can be related to one
or more properties. Examples of those properties are
an administrative authority, or a common operating
system. A host can be a member of multiple zones.

Zones can be used for location and distribution
policies. A distribution policy can be used for a dis-
tributed object to determine to which hosts its data
may be distributed. For example, a policy may dictate
that only hosts in one zone may hold the full state of
a distributed object, whereas agents in another zone
may access the object only through a proxy (which
provides a mechanism to invoke methods on an ob-
ject remotely, but has no state). Non-distributed com-
ponents of a world such as agents may be located on
any host in a zone of a world.

5 Security in ROAM

Protection of data ’on the wire’ and point-to-point
authentication can be achieved using well-known
cryptographic mechanisms [13]. In a distributed sys-



tem, trust-based mechanisms are needed for autho-
rization. Zones offer an elegant abstraction by which
hosts can be grouped on security properties, that can
be used for authentication and authorization.

As a practical example of how zones can be used
for authentication, each zone may be associated with a
public key, called the zone key. A certification author-
ity can be used to sign this zone key and associated
security properties, which can then be made available
to others through a Public Key Infrastructure (PKI).
For authentication of a host as part of a zone, a shared
secret key may be used by the hosts in a zone, but
usually some more advanced mechanism, for exam-
ple using a group signature mechanism [14], will be
used. The associated security properties, as published
in the PKI, can be used as the basis for authorization.

Protecting a host against an agent running on it is
usually possible (e.g., using sandboxing techniques as
is done in Java [15] and SafeTcl [16].) Additionally,
trust-based mechanisms may be used by a host before
it accepts an agent to execute on it, to improve host
security. Trust mechanisms can be based on several
properties of an agent, such as who wrote its code, the
agent’s owner, or which zones it has passed through
on its itinerary. A code certification scheme may be
used to increase trust in an agent by a host that does
not know the agent. The zone key can be used to
check an agent’s code certificate. Based on the above
mentioned properties of an agent, a host can assign
permissions to an incoming agent, or reject it. Pro-
tecting an agent against a malicious host on which it
is executing is not possible in general [17].

Zones are visible only at the physical level, not
on the logical level: zones are orthogonal to logical
concepts such as agents, objects, and rooms. How-
ever, zone-related behavior may become apparent on
the logical level, for example because some object
may not be accessed due to zone-based security poli-
cies. In many cases, therefore, a world should provide
mechanisms for an agent to query zone information
and act on it.

6 Implementation

An agent must load in the runtime system of a
world to access that world. This runtime system uses
a middleware layer, which may provide general func-
tionality such as communication libraries and a bind
mechanism for a world. This middleware layer is
aware of most ROAM concepts, such as zones and
the basement. Using runtime system and middleware,
an agent can interact with a world.

The basement is an essential part of any world. It
contains among other things a registry of rooms and
a location service (lookup service) for agents that are
bound to a world. This information is among others
needed to guarantee logical consistency of a world

(e.g., an agent may not be in two rooms at a time),
and for interagent communication based on location-
independent agent identifiers.

To start an agent on some host, aspawn service
must be present on that host, which is capable of start-
ing up the agent in its proper execution environment
(e.g., sandbox). Several Agent Programming Lan-
guages (APLs) may be supported by a spawn service
on a host; the APL is the programming language in
which the agent is written. Typically, only a few APLs
are supported in a world. For example, a spawn ser-
vice might execute a Java agent by executing a JVM
with this agent in it, but it might also support binary
agents that can run as native code on this host. Agents
in a world are usually not allowed to access resources
outside a world, such as the local filesystem or the
Internet.

At any instant, an agent always runs on one host in
one zone. An agent can move to a host in a different
zone, or to another host in the same zone, by invok-
ing a method enterzone, specifying a target zone and
preferences.

Preferences can be given by the agent, to facilitate
proper selection of a host within the target zone. Ex-
amples of preferences that can lead to the selection of
a particular host in a zone are closeness to resources
(e.g., a database object), or some specific hosting OS.
An agent that wants to move to another host in the
same zone, must reenter its current zone using dif-
ferent preferences. Enterzone is atomic: the move
succeeds or the agent remains where it is. Changing
zone does not change the room the agent is in. En-
ter zone fails if the current room cannot be accessed
from a target zone.

An Agent Transfer Protocol (ATP)is used to physi-
cally move agents from one host to another. The ATP
negotiates the preferences of the agent with the re-
ceiving zone, which either results in the agent being
sent to a host in this zone, or in the agent being re-
jected.

An agent container (AC)represents an agent in a
marshalled format. An AC is divided into a number
of segments, preceded by a Table Of Content (TOC).
An AC is and sent over the network as a contiguous
byte-stream when an agent is moved to another host.
Segments are typed: types include shared agent code
+ data segment, agent code segment, agent data seg-
ment, object segment (to contain serialized objects),
and data segment (to contain general data).

An AC is extensible by an agent: segments in the
agent container can be changed, deleted and added; it
contains at least one TOC and a segment containing
the agent. The language in which the agent is written
is indicated in the AC. A cryptographic TOC mecha-
nism may be used that allows for inspection of what
changes were made to an AC during its itinerary, and
where. This allows for detection of malicious alter-



ations to the AC in most cases [18]. An agent is ini-
tialized on a target host by the spawn service that is
present there, using the serialized agent contained in
the AC.

Some components of a world must be present at
world deployment. A world deployer must at least
provide the basement and one entry room. Additional
(hyperlinked) rooms, and initial content, i.e., objects
contained in rooms, may also be provided by a world
deployer.

Usually, a world is extensible: objects and rooms
may be created dynamically. Adding object-based
components to a world is done using anObject Cre-
ation Service (OCS).For example, to create an object
in the context of a room, the OCS makes an instance
of a class object (dependent on the object architec-
ture supported by a world), the identifier (object ref-
erence) of which is placed in a room. Similarly, to
create a new room, a RMO is created by the OCS,
the identifier of which is placed in one or more rooms
if it concerns a hyperlinked (internal) room, or in the
basement if it concerns an entry room. Policies in
rooms or basement, subject to zone policies, deter-
mine whether a new object or room may be added or
deleted.

Agents can create, move, copy, delete, and replace
objects in a world (if security permits.) Usually, when
moving an object from one room to another, mov-
ing the object’s identifier to the new room is suffi-
cient. However, sometimes it is necessary to copy (or
move) an object physically to another zone, for ex-
ample because it has to be placed in a room located in
a zone with restrictive security policies. In this case,
the object can be serialized by the OCS and placed in
the AC of an agent. The OCS in the receiving zone
instantiates a new object from a class object in this
zone, and initializes it with the serialized state from
the agent’s AC. If an agent places an object in a room,
the agent automatically becomes the owner. In some
worlds, ownership may be transferable, for example
when picking up items in a MUD.

7 World Design Language

We are currently developing a World Design Lan-
guage (WDL) for specifying properties of a world,
which facilitates designing worlds. Through the
WDL, both high-level design issues about the world
structure (e.g., constraints on room topology), as well
as low-level issues (e.g., reliability of communica-
tion) are addressed.

Using the WDL, a world designer can specify
items such as whether new rooms may be added
dynamically; whether events are supported (and the
mechanism for event-type evaluation); whether a par-
ticular mechanism is used to manage zone member-
ship (and a mechanism for defining security poli-

cies); whether certain methods have to be provided
by all objects in a world, and whether this object
interface is extensible; what methods the interface
for components such as the RMO has (some meth-
ods are mandatory for all worlds); whether attribute
sets can be dynamically defined per room (and what
language is used to describe attribute sets); whether
there is a naming scheme for entry rooms; whether
all agents should support a common Agent Com-
munication Language (ACL) within this world, e.g.,
to communicate with agents provided by the world
designer; which APLs are allowed (e.g., Java or
SafeTcl agents); what architecture is used for objects
(e.g.,Globe or Java RMI). This list is neither exhaus-
tive nor final.

We are currently studying a middleware-based de-
sign for world systems, in which a runtime system
is built specifically for each world, that makes use of
functionality offered by the middleware. This middle-
ware should be extensible, so that functionality speci-
fied in the WDL can be integrated in this middleware,
if needed. It may be that this middleware layer always
offers some standard functionality for all worlds, for
example providing best-effort, unreliable, unordered
interagent communication.

8 Discussion

Current multi-agent frameworks do not separate
logical location from physical location. In our sys-
tem the logical, virtual environment in which an agent
resides uses concepts that are completely orthogonal
to physical location. This is a major improvement
over current systems. Furthermore, our framework
imposes no restrictions on the APLs of agents using
the system and it provides interagent communication
independent of an agent’s logical location. The zone
concept allows for flexible and scalable deployment
of worlds, using for example location and distribution
policies to place (distributed) logical components on
physical locations, and security policies to allow se-
cure deployment of a world over multiple security do-
mains.

9 Acknowledgements

Thanks to Niek Wijngaards for valuable discus-
sions on the model.

References

[1] J. Baumann, F. Hohl, M. Strasser, K. Rother-
mel. Mole - Concepts of a Mobile Agent Sys-
tem, August 1997. Technical Report, Universität
Stuttgart.

[2] F.M.T. Brazier B. Dunin Keplicz M. Jennings J.
Treur. DESIRE: Modelling Multi-Agent Sys-
tems in a Compositional Formal Framework.



Int’l Journal Coop. Information Systems, 6:67–
94, 1997.

[3] R.S. Gray, D. Kotz, G. Cybenko, D. Rus.
D’Agents: Security in a Multiple-language,
Mobile-agent System.Mobile Agents and Se-
curity, pages 154–187, 1998. LNCS 1419,
Springer-Verlag.

[4] M. Oshima D.B. Lange. Programming and
Deploying Java Mobile Agents with Aglets.
Addison-Wesley, 1998.

[5] L.C. Lee H.S. Nwana, D.T. Ndumu. Zeus, a col-
laborative agents toolkit.Proc. of the 3d Int’l
Conference on Practical Applications of Agents
and Multi-agent Technology, London, UK, pages
377–392, March 1998.

[6] T. Stolpmann H. Peine. The architecture of the
ara platform for mobile agents.Proc. First Int’l
Workshop on Mobile Agents, 1997. LNCS 1219,
Springer-Verlag.

[7] H.C. Wong and K. Sycara. Adding Security
and Trust to Multi-Agent Systems.Proceedings
of Autonomous Agents Workshop on Deception,
Fraud and Trust in Agent Societies, pages 149–
161, May 1999.

[8] K. Arnold E. Freeman, S. Hupfer.JavaSpaces
Principles, Patterns and Practice. Addison-
Wesley, 1999.

[9] A.S. Tanenbaum M. van Steen, P. Homburg.
Globe: A wide-area distributed system.IEEE
Concurrency, January-March 1999.

[10] S. Vinoski. Corba: Integrating diverse applica-
tions within distributed heterogeneous environ-
ments.IEEE Communications Magazine, 14(2),
February 1997.

[11] Microsoft Corporation. Dcom technical
overview. November 1996.

[12] Sun Microsystems.Java RMI. A New Approach
to Distributed Computing, 1998. White paper,
http://java.sun.com/products/javaspaces/
whitepapers/dcpaper.pdf.

[13] M. Speciner C. Kaufman, R. Perlman.Network
Security. Prentice Hall, 1995.

[14] D. Chaum and E. van Heyst. Group signa-
tures. Advances in Cryptology - EUROCRYPT
’91, pages 257–265, 1991. LNCS 547, Springer-
Verlag.

[15] L. Gong. Inside Java 2 Platform Security:
Architecture, API Design, and Implementation.
Addison-Wesley, June 1999.

[16] B.B. Welch J.K. Ousterhout, H.Y. Levy. The
safe-tcl security model.Mobile Agents and Se-
curity, 1998. LNCS 1419, Springer-Verlag.

[17] C.F. Tschudin T. Sander. Protecting mobile
agents against malicious hosts.Mobile Agents
and Security, 1998. LNCS 1419, Springer-
Verlag.

[18] N. Karnik and A. Tripathi. Security in the ajanta
mobile agent system.To appear in: Software -
Practice and Experience, 2000.


	1 Introduction
	2 The ROAM Framework
	3 Example Applications
	4 Distribution Aspects of ROAM
	5 Security in ROAM
	6 Implementation
	7 World Design Language
	8 Discussion
	9 Acknowledgements

