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Abstract—Traditional file systems made it possible for adminis-
trators to create file volumes, on a one-file-volume-per-disk basis.
With the advent of RAID algorithms and their integration at the
block level, this “one file volume per disk” bond forced admin-
istrators to create a single, shared file volume across all users to
maximize storage efficiency, thereby complicating administration.
To simplify administration, and to introduce new functionalities,
file volume virtualization support was added at the block level.
This new virtualization engine is commonly referred to as the
volume manager, and the resulting arrangement, with volume
managers operating below file systems, has been referred to as
the traditional storage stack.

In this paper, we present several problems associated with
the compatibility-driven integration of file volume virtualization
at the block level. In earlier work, we presented Loris, a
reliable, modular storage stack, that solved several problems
with the traditional storage stack by design. In this paper, we
extend Loris to support file volume virtualization. In doing
so, we first present “File pools”, our novel storage model to
simplify storage administration, and support efficient file volume
virtualization. Following this, we will describe how our single
unified virtualization infrastructure, with a modular division of
labor, is used to support several new functionalities like 1) instan-
taneous snapshotting of both files and file volumes, 2) efficient
snapshot deletion through information sharing, and 3) open-close
versioning of files. We then present “Version directories,” our
unified interface for browsing file history information. Finally,
we will evaluate the infrastructure, and provide an in-depth
comparison of our approach with other competing approaches.

I. INTRODUCTION

Over the past few decades in the evolution of file and storage
systems, storage virtualization techniques have played a cru-
cial role in improving efficiency and manageability. Traditional
file systems provided the first layer of virtualization. File
systems were used to create hierarchies of files and directories,
also referred to as file volumes1, on dedicated disk drives.
Disks were small enough that administrators could create one
file volume per logical unit (per user or per project for in-
stance), and apply administrative policies on these file vol-
umes. As disks grew larger, administrators were forced to use
a single file volume across all users to improve storage effi-
ciency. Thus, this “one file volume per device” bond comp-

1Throughout this paper, we will use the term file system to refer to the
operating system code that implements a persistent name space of files and
directories, and file volumes to refer to an instantiation of a file system

licated administration, as administrators could no longer use
file volumes as the unit of administration.

Volume managers [22] solved this problem by virtualizing
file volumes. Similar to RAID algorithms, volume managers
were integrated at the block level to retain compatibility with
existing installations. The resulting arrangement, with volume
managers operating below file systems, has been referred to as
the traditional storage stack. In this stack, file systems are used
to create file volumes on logical disks exposed by the volume
manager. Thus, file systems translate file requests to logical
block requests. The volume manager transparently maps these
logical blocks to blocks on physical devices it manages. As a
result, multiple logical disks, and hence multiple file volumes,
could now share the same set of physical disk drives, thus
improving storage efficiency. Volume managers also simplified
administration, as administrators could now create and manage
file volumes in logical units.

In this paper, we examine the block-level integration
of file volume virtualization, and we highlight several prob-
lems along two dimensions: flexibility and heterogeneity. In
prior work, we outlined several fatal flaws that plague the
traditional stack [3], and presented Loris [4], our complete re-
design of the storage stack. Our first prototype, which we
refer to henceforth as Loris-V1, had the “one file volume per
device” bond, similar to traditional file systems. In this paper,
we add support for file volume virtualization to the Loris stack.
In doing so, we present File pools, a new model for managing
storage devices. We show how the new model simplifies man-
agement by automating several mundane chores, supports
heterogeneous device configurations, and provides file volume
virtualization in Loris. We then show how our unified in-
frastructure, with a modular division of labor among layers,
supports 1) instantaneous snapshotting of both files and file
volumes, 2) efficient deletion of snapshots by sharing informa-
tion between layers, and 3) version creation policies, like open-
close versioning, on a per-file basis. We also present Version
directories, our unified interface for browsing file history
information. We will show how version retention policies can
be implemented as simple shell scripts.

The rest of the paper is organized as follows. Sec. 2 out-
lines problems caused by the compatibility-driven, block-level
integration of volume managers. In Sec. 3, we present a
quick overview of Loris. Sec. 4 presents the design of file978-1-4577-0428-4/11/$26.00 c⃝ 2011 IEEE



volume virtualization in Loris. In Sec. 5, we present the
design of efficient file volume snapshotting in Loris. Sec. 6
presents a modular division of labor in Loris that integrates
support for both individual file snapshotting, and open-close
versioning. Sec. 7 presents our virtual directory interface.
We then evaluate Loris using a series of micro and macro
benchmarks in Sec. 8. An in-depth comparison of Loris with
other systems is presented in Sec. 9. We finally discuss future
work in Sec. 10 and conclude in Sec. 11.

II. PROBLEMS WITH EXISTING APPROACHES

In this section, we will outline the problems that plague
the traditional approach to file volume virtualization. Several
commercial and research projects have taken other approaches
for virtualizing file volumes. A detailed comparison of our
approach with other competing approaches is presented in
Sec. 9. We will now present problems along two dimensions,
namely, flexibility and heterogeneity.

A. Lack of Flexibility

An ideal storage stack must 1) provide flexible configuration
and management of devices, and 2) support policy assignment
at a range of granularities, from individual files or file types,
to entire file volumes. In this section, we will highlight how
inflexibility in the traditional stack complicates both device
management and file management.

1) Complicated device management: Traditional volume
managers used the level of indirection introduced by logi-
cal devices to support new functionalities, like file volume
snapshotting and cloning. However, this level of indirection
also introduced additional administrative operations. Even
a simple task, such as adding a new disk to an existing
installation, requires a series of steps, at least one for each
level in the stack, to be performed by the administrator. This
is because, any change in device configuration results in
changes, not only in the volume manager’s data structures, but
also in file system data structures (for instance, any change in
the size of a logical disk requires changes to the file system
block management data structures), as file systems continue
to work with the one file volume per logical disk assumption.
Each and every one of these newly added steps is error prone,
and a simple error could result in extensive data loss [5]. An
ideal system would allow the administrator to just state the
intent, like “add a new disk to an existing installation for
increasing storage space,” and automate implementation de-
tails (like expanding volumes). Traditional block-level volume
management fails to meet this requirement.

2) Coarse-grained file management: Administrators man-
age data at the granularity of file volumes. For instance, an en-
terprise administrator could create one file volume per project,
and encrypt certain file volumes, while compressing others.
Administrators also take snapshots of entire file volumes, and
use the snapshot for initiating periodic backups. Thus, at the
enterprise level, policy specification at the granularity of file
volumes is required. Block-level volume managers can easily
provide such policies at a file volume granularity [22].

However, end users tend to associate policies with individual
files or file types. The set of files over which a policy
must be applied is typically much smaller in number than a
file volume. For instance, a user might want open-close ver-
sioning on a source file, and no versioning for an object file.
Thus, end-users require the ability to specify policies on a per-
file basis. Since traditional volume managers operate below a
strict block interface, they are semantically unaware, and thus
are unable to provide fine-grained file management.

B. Lack of support for heterogeneous devices

An ideal volume virtualization solution should be designed
to work with heterogeneous device types. In this section,
we will explain why heterogeneity should be considered a
first class citizen during system design. We will show how
the traditional approach fails to support devices other than
conventional disk drives with a block interface.

1) Heterogeneity across device families: New devices are
emerging with completely new storage interfaces. A common
approach to integrating these devices into the traditional stack
involves building file systems for each device family [10].
These file systems communicate directly with the device,
using device-specific interfaces. However, traditional volume
managers can work only with file systems that translate file
requests to logical block requests. As a result, the traditional
approach of virtualizing file volumes at the block level is not
portable across heterogeneous device families.

2) Heterogeneity within device families: Even devices
within the same family sometimes differ starkly in their per-
formance characteristics. It is a well known fact that SSDs can
be optimized to have different performance characteristics
depending on certain firmware design choices [2]. For in-
stance, Intel X25-V SSD provides very good random write
IOPS, but its sequential write throughput suffers due to a
price/performance tradeoff (only half the channels are pop-
ulated with NAND). As a result, X25-V provides the same
throughput for both large sequential writes, and small random
writes [20]. Intel X25-M, on the other hand, provides higher
throughput under large sequential writes than small random
writes. While it would certainly be beneficial to opt for a log-
structured layout on X25-M, it would provide little benefit
when a X25-V is used, as it delivers the same throughput for
both sequential and random writes. It might even prove to be
detrimental due to the unnecessary cleaning overhead.

Thus, device-specific layout requirements create hetero-
geneity even within device families. Accommodating this kind
of heterogeneity is impossible with the traditional stack, where
multiple file systems, with even competing layout designs,
could share the same physical device. Thus, any layout specific
optimizations employed by file systems are rendered futile.

III. THE LORIS STORAGE STACK

In prior work, we highlighted several issues that plague the
traditional storage stack. We proposed Loris, a fresh redesign
of the stack and showed how the right division of labor among
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Fig. 1: The figure depicts (a) the arrangement of layers in the traditional
stack, and (b) the new layering in Loris. The layers above the dotted line are
file aware; the layers below are not.

layers in Loris solves all problems by design. In this section
we provide a brief overview of Loris.

Loris is made up of four layers as shown in Figure 1. The
interface between these layers is a standardized file interface
consisting of operations such as create, delete, read, write,
and truncate. In addition to file operations, the interface also
contains attribute manipulation operations—getattribute and
setattribute. Attributes are associated with files and have two
purposes in Loris: 1) they enable information sharing between
layers, and 2) they store out-of-band file metadata. We will
now detail the division of labor between layers in a bottom-
up fashion.

A. Physical layer

The physical layer implements device-specific layout
schemes, and provides persistent storage for files and their
attributes. It exports a “physical file” abstraction to its client,
the logical layer, and by doing so, abstracts away any device-
specific interfaces or protocols. Each storage device is man-
aged by a separate instance of the physical layer, and we call
each instance, a physical module. The physical layer is also
in charge of data verification. Being file aware, physical layer
implementations can support parental checksumming [12]. By
being the lowest layer in the stack, the physical layer verifies
both application requests, and requests from other Loris layers

inode bitmap

block bitmap inode
inode bitmap inode

block bitmap file data

superblock

root inode

root data blocks

inodes

data blocks

Fig. 2: Parental checksumming hierarchy used by the physical layer prototype.
With respect to parental checksumming, the two special bitmap files are
treated as any other files. Indirect blocks have been omitted in this figure.

alike, thus acting as a single point of data verification.
Our Loris-V1 physical layer implementation was based on

the original MINIX 3 file system layout scheme [21], with
added support for parental checksumming. Inodes are used to
realize the physical file abstraction, and files are referred to
using their inode numbers. Each inode stores a fixed number
of persistent attributes, as well as 7 direct, one single indirect
and one double indirect safe block pointers. Each safe block
pointer contains a 32-bit block number as well as a checksum
of the data block. Single and double indirects also store such
pointers. Blocks belonging to both the block bitmap and inode
bitmap are checksummed, and their checksums are stored in
block bitmap file and inode bitmap file respectively. Each inode
is individually checksummed, and these checksums are stored
in the root file. The checksum of the root inode itself is stored
in the superblock. Thus, the resulting parental checksumming
hierarchy, as shown in Figure 2, ensures that all blocks, both
data and metadata, are verified without any exceptions.

B. Logical layer

The logical layer’s responsibility is to combine multiple
physical files and provide a virtualized logical file abstraction.
It also supports RAID algorithms on a per-file basis. From
the point of view of the cache layer, the logical layer’s client,
a logical file appear to be a single, flat file. Details such as
the RAID algorithm used, and the physical files that consti-
tute a logical file, are all abstracted away by the logical file
abstraction.

The central data structure in the logical layer is the mapping
file. The mapping file stores an array of entries, one per logical
file, each containing the configuration information of that file.
This configuration information is 1) the RAID level used, 2)
the stripe size used, and 3) the set of physical files that make
up the logical file, each specified as a physical module ID
and inode number pair. For instance, a file mirrored on two
devices could have the following configuration information
in its mapping entry: F1=<raidlevel=1, stripesize=INVALID,
physicalfiles=<D1:I1, D2:I2>>. The entry tells the logical
layer that this file is a RAID1-type file, and inodes I1 on mod-
ule D1, and I2 on module D2, form the physical files that store
F1’s data. The mapping file is itself a logical file with a static
configuration. The same static inode number is reserved on all
physical modules, and the mapping file is mirrored across all
these physical files for improved reliability.

C. Cache and naming layers

The cache layer’s responsibility is to provide data caching.
Our Loris-V1 cache layer is file aware, and it performs data
readahead and eviction on a per-file basis. The cache layer
uses a static set of buffer pages to hold cached data.

The naming layer acts as the interface layer. Our Loris-V1
naming layer implements the traditional POSIX interface, and
translates virtual file system (VFS) requests into corresponding
file operations. All POSIX semantics are confined to the nam-
ing layer. For instance, none of the layers below the naming
layer know about directories, or the format of directory entries.



All other layers treat directories as regular files. The naming
layer uses the attribute infrastructure in Loris to store POSIX
attributes. The naming layer is also in charge of assigning a
unique file identifier for each file at file creation time. This
identifier is passed as a parameter in all file and attribute op-
erations to identify the target file.

IV. FILE VOLUME VIRTUALIZATION IN LORIS

Like traditional file systems, Loris-V1 does not support vir-
tualized file volumes. However, unlike traditional file systems,
the logical layer supports RAID algorithms, and hence can
work with multiple devices. Thus, Loris-V1 has a “one file
volume per set of devices” bond. In this section, we detail
the design and implementation of file volume virtualization in
Loris. We first present file pools, our new storage model for
simplifying and automating the management of devices. We
then describe changes to the infrastructure for supporting file
volume virtualization.

A. File pools: Our new storage model

As we mentioned earlier, the standardized file interface
above the physical layer abstracts away device-specific details
from the logical layer. Thus, from the point of view of the
logical layer, each physical module is a source of physical files.
Thus, multiple physical modules can be combined together to
form a collection of files we call a file pool.

1) Simplified device management: File pools are the unit of
storage management. A Loris installation can have one or more
file pools. Administrators create a file pool by specifying the
set of devices that form the pool. Each device can be a part of
only one file pool. Multiple file pools can be created to provide
performance isolation for each pool. For instance, an enterprise
administrator could create two file pools, each having its own
dedicated set of devices, to host the departmental file server
and web server.

New devices can be added to, and old devices be removed
from, existing file pools. Addition/removal of devices to/from
a file pool is completely automated. When a device is added
to a pool, a device-specific physical module is started. This
new physical module registers itself with the logical layer as
a new source of files. Once registration is complete, the logical
layer can start creating new files on this module. Thus, unlike
traditional volume managers, adding a new device to an exist-
ing file pool is a single step process, and space on the newly
added device is immediately available for use.

Any device can be removed from a file pool by just moving
all the files on that device to a spare device, or in some cases,
even distributing the files among other existing devices.
Since the logical layer has complete knowledge of the file-
device mapping, supporting this is trivial. Furthermore, since
the logical layer is file aware, copying file data ensures that
only live data is moved over to the spare disk. This is a huge
benefit compared to block-level volume managers, which do
a block by block copy of the entire disk due to the absence
of block liveliness information [19].

2) Supporting heterogeneous installations: As mentioned
earlier, when a device is added to a file pool, a device-specific
physical module is started. Since the physical module exposes
a physical file abstraction to its clients, it can completely
abstract away heterogeneous device interfaces. As the physical
module is in charge of providing device-specific layout, it
is possible to support different layout schemes for different
devices even within the same device family. Thus, the file
pool model permits pairing devices with customized physical
modules, thereby exploiting heterogeneity both within and
across device families.

3) Thin provisioning with file pools: We will describe
support for file volumes in detail in the next section, but we
would like to point out now that file pools also make thin
provisioning [6] of file volumes possible. Thin provisioning
refers to the ability to create dynamically filled, sparse file vol-
umes. This ability can be used as a planning tool to determine
new storage requirements, and hence derive a storage budget.
With the file pool model, storage space need not be reserved
for file volumes ahead of time. As a result, administrators
can create multiple file volumes without committing physical
storage space. As users create files and directories in these file
volumes, storage space is automatically allocated from the set
of physical modules that constitute the file pool. As we will
see later, snapshots and clones also utilize this functionality.
Multiple snapshots of a file volume can coexist together, but
most files and data blocks will be shared among snapshots.
Thus, file pools provide natural support for thin provisioning.

B. Infrastructure support for file pools

We extended the logical layer to support the new stor-
age model. The new logical layer can be considered to
be made up of two sublayers, namely, the volume manage-
ment/RAID sublayer, and the file pool sublayer. The file pool
sublayer sits below the volume management sublayer and pro-
vides device management services, like creating and deleting
file pools, adding and removing devices from existing file
pools, etc.

The file pool sublayer is also responsible for satisfying file
allocation requests from the shared pool of files it manages.
It can employ several algorithms for satisfying file allocation
requests. For instance, it could maintain a utilization summary
of each physical module and provide load leveling, or it could
monitor file access patterns and provide workload-aware file
allocation. Our file pool implementation just rotates file al-
location requests across physical modules. Exploiting device-
specific characteristics, and matching device types with file
types is a part of ongoing research.

The volume management sublayer operates above the file
pool sublayer. We will describe the design details of this sub-
layer in the next subsection, but it suffices to say now that
it supports RAID and volume management algorithms. It
utilizes the allocation services of the file pool sublayer to
satisfy file allocation requests. For instance, when a new file
create request arrives at the logical layer, it is forwarded to
the volume management sublayer. The volume management
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Fig. 3: The figure shows the relationship between meta index and volume
index, the two datastructures that support file volume virtualization in Loris.
The meta index file itself is a static file, and static inode is reserved to
store its data(an array of file volume metadata entries). The file volume
metadata entry for volume V1 shown in the figure could be <V1, REGU-
LARVOL, volume index configuration=<raidlevel=1, stripesize=INVALID,
physicalfiles=<D1:I1>>. Thus, inode I1 in physical module D1 is used to
store the volume index file data (an array of logical file configuration entries)
for file volume V1. The logical file configuration entry for file <V1, F1>
could be <raidlevel=1, stripesize=INVALID, physicalfiles=<D1:I2>>.
Thus, inode I2 in physical module D1 is used to store file data.

sublayer makes a file create request to the file pool sublayer,
passing the number of physical files required (depending on
the RAID type chosen for the file) as a parameter. The file
pool sublayer allocates the required number of physical files
and returns physical module–inode number pairs, which the
volume management sublayer then records in its data struc-
tures.

C. Infrastructure support for file volume virtualization

As described earlier, the mapping file in the logical layer
stores configuration information for each logical file, and mul-
tiplexes file requests across physical files. We decided to ex-
tend the logical layer to support multiple virtualized file vol-
umes, since it was a natural extension to the logical layer’s
data structures.

In the new infrastructure, multiple file volumes can be cre-
ated in a single file pool, and multiple files can be created in
each file volume. As a result, each file is now referenced in
Loris using a pair of identifiers, namely, a new volume iden-
tifier, and the traditional file identifier. The logical layer
assigns a new volume identifier to each file volume during
volume creation time. Associated with each file volume is a
volume index file. The format of this file is identical to the
original mapping file. Each volume index file contains an array
of entries, one per logical file belonging to that volume, and
each entry contains contains configuration information, similar
to the mapping file’s configuration information we described
earlier. The volume index file is also mirrored on all physical
modules belonging to the file pool for improving reliability.

Since volume index files are created during volume creation,
the configuration information of the volume index file itself is
not static, that is, the volume index file can use inodes with
different inode numbers on different physical modules. Hence,
this configuration information is stored in the meta index file,
with other file volume metadata. Each file pool has only one
meta index file, which is also mirrored on all physical modules
for improving reliability. This file contains an array of entries,

one per file volume, containing file volume metadata. This
metadata consists of 1) configuration information for the file
volume’s volume index file, 2) the type of the file volume, and
3) the volume id for this file volume. Thus, while the volume
index file tracks files within a volume, the meta index tracks
file volumes themselves. When the new logical layer receives a
call to perform any file operation, it uses the volume identifier
to first retrieve the volume metadata from the meta index file.
After this, it uses the file identifier to retrieve the target file’s
configuration information, following which, it performs the
requested operation. Thus, these two data structures make it
possible for multiple file volumes to share a file pool, as shown
in Figure 3, effectively breaking the one file volume per set
of devices bond.

V. NEW FUNCTIONALITY: FILE VOLUME SNAPSHOTTING IN
LORIS

Loris supports an extremely flexible snapshotting facility.
snapshotting is efficient and instantaneous in Loris. We added
a new snapshot operation to the standardized file interface
described earlier. The operation carries a parameter, which is
either the target file identifier for an individual file snapshot,
or the file volume identifier for a file volume snapshot.

A. Division of labor

Space-efficient snapshotting requires fine-grained, block-
level data sharing to avoid making unnecessary copies of
unchanged blocks. After investigating several possibilities, we
assigned the responsibility for providing data sharing to the
physical layer. This labor assignment maximizes storage ef-
ficiency without sacrificing modularity, as it is possible to
support different physical layer implementations, with differ-
ent mechanisms for data sharing, without affecting the logical
layer algorithms. Thus, each physical layer must provide sup-
port for physical file snapshotting. In this section, we will
describe two such physical layer implementations—a copy-
based physical layer that lacks storage efficiency, but is ex-
tremely simple to implement, and a copy-on-write physical
layer that supports fine-grained data sharing.

With individual file snapshotting and data sharing mecha-
nism provided by the physical layer, the logical layer acts as
a policy engine. It decides when a snapshot operation should
be invoked on which physical file, and supports file volume
snapshotting using individual file snapshotting provided by the
physical layer. In this section, we will describe the logical
layer data structures that support file volume snapshotting after
describing the two physical layer implementations.

B. Physical layer(1): Copy-based snapshotting

To implement copy-based snapshotting, we retained the lay-
out design of the Loris-V1 physical layer, and we added sup-
port for the new snapshot operation. In both copy-based and
copy-on-write-based physical layers, we distinguish between
two types of inodes, namely, current inodes, and snapshot in-
odes. Current inodes can be considered to be the active version
of a file which is used to satisfy normal read/write requests.



Snapshot inodes, on the other hand, are read-only, historical
versions, that act as point-in-time snapshots of a current inode.
A snapshot inode is created as a result of a snapshot operation
on a current inode. We will now describe how snapshot
creation and deletion work in the copy-based physical layer.

1) Snapshot creation: Since the physical layer is responsi-
ble for storing both data and attributes (POSIX attributes for
instance), it must preserve their old values after a snapshot.
So, the copy-based physical layer performs the following steps
during a snapshot call. It first retrieves the inode corresponding
to the inode number passed in as a parameter to the snapshot
call, which we will refer to henceforth as the target inode. It
then allocates a new inode, and copies over all the attributes
from the target inode to the new inode. Following this, data
belonging to the target inode is also copied over, allocating
new data blocks during the process, to the new inode. Thus,
after a snapshot operation, the new inode and target inode are
independent copies, not sharing any data blocks. Finally, the
new inode number is returned back to the the logical layer.
From here on, the target inode becomes a snapshot inode, and
the new inode becomes the current inode. It is important to
note here that the level of indirection provided by the logical
layer makes it possible to switch inodes without changing the
file identifier. As a result, higher layers in the stack, like the
naming layer, can continue using the same file identifier even
after a snapshot operation.

2) Snapshot deletion: Deletion of a snapshot inode is a triv-
ial operation. Since no data is shared between snapshots, the
deletion operation deallocates all data, single and double indi-
rect blocks, and then the inode itself, by marking them free in
their corresponding bitmaps. Thus, while copy-based snapshot-
ting suffers from inefficient storage utilization, its conceptual
simplicity makes it a good mechanism for some personal and
enterprise computing environments, where accesses to small
files dominate the workload.

C. Physical layer(2): Copy-on-write-based snapshotting

Our copy-on-write layout is a natural extension of the Loris-
V1 layout. There are two major requirements for supporting
copy-on-write-based snapshots as we will see in this section.
The first requirement is that, for each data block, we need to
identify if the block is shared with a previous snapshot. This is
required to be able to perform a copy-on-write operation only
when required. Second, for each snapshot inode, we need to
know the chronological successor and predecessor to provide
efficient snapshot deletion.

To support the former, we changed the definition of a safe
block pointer. As we mentioned earlier, both inodes and indi-
rect blocks contain a number of safe block pointers, and each
safe block pointer contains a 32-bit block number–checksum
pair. On an installation with a 4 KB block size, the largest
disk size that can be supported with a 32-bit block number is
16 TB. For our prototype, we borrowed a bit from the block
number, and the resulting safe block pointer contains a 31 bit
block number, a 1- bit status field, and the block checksum.
The resulting layout can now support a maximum disk size
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B1'

Snapshot 1 Snapshot 2 Current inode

B4

Snapshot 3

B5B3 B4' B5B3

Fig. 4: The figure shows physical layer data structures after performing the
following operations: 1) Create file (write B1, B2, B3, B4 and B5) 2) Snapshot
file 3) Modify B1 to B1’ 4) Snapshot file. 5) Modify B4 to B4’. 6) Snapshot
file. A black rectangle represents a status bit that is set (an unshared block),
and a white rectangle represents a cleared status bit(a shared block).

of 8 TB. Setting the status bit marks a data block as being
newly allocated in this snapshot, and hence unshared with the
previous snapshot. Clearing the status bit marks a data block as
shared with the previous snapshot. We adopted this approach
of borrowing a bit only for reducing the implementation effort.
It is always possible to make the safe block pointer larger and
overcome this space limitation. To maintain a chronological
relationship between snapshots, we added two new fields to the
inode, the previous snapshot and next snapshot. These fields
are the inode numbers of the previous and next snapshot inodes
respectively, and they link snapshots together in a bidirectional
list.

1) Snapshot creation: When the copy-on-write physical
layer receives a snapshot request, it performs the follow-
ing steps. It first allocates a new inode, and copies over all the
attributes from the target inode, just like the copy-based snap-
shotting approach. However, unlike the copy-based approach,
it then copies over only the safe block pointers from the target
inode, instead of allocating new blocks. While copying over
the safe block pointers, it clears the status bit in each pointer
to indicate that the data blocks are shared between the new
and snapshot inodes. The physical layer then adds both inodes
to the bidirectional list of snapshots by setting the previous
and next snapshot fields. Finally, it returns back the new
inode number to the logical layer. From here on, the target
inode becomes a snapshot inode, and the new inode becomes
the current inode. Figure 4 illustrates the snapshot operation
with an example.

2) Copy-on-write mechanism: When the physical layer
receives a write request, it first retrieves the target inode. For
each block being written, the physical layer then retrieves the
corresponding safe block pointers from either the inode, or
from one of the indirects. If the status bit in the safe block
pointer is cleared, the data block is shared with the previous
snapshot. Hence, the physical layer allocates a new block, and
the data is written out to this new location. However, if the
status bit is set, no allocation happens, and the data is written
to the block address contained in the block pointer.

If a new data block was allocated, the physical layer must
update its corresponding block pointer in either the inode, or
one of the indirects, to reflect 1) the new location of this data
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Fig. 5: The figure shows the physical layer data structures after the following
operations are performed: 1) Create file 2) Snapshot 3) Modify B1 4) Snapshot
5) Delete the first snapshot

block, and 2) the new unshared state of the block by setting
the status bit. If the safe block pointer is in the inode, updating
this information is trivial, as shown for snapshot 2 in Figure 4.
However, if the block pointer is in an indirect block, then the
physical layer must allocate a new indirect, since the old one
is being referenced by the previous snapshot.

In Figure 4, snapshot 3 illustrates the indirect block update
process with an example. First, the old indirect block pointed
to by the inode is read in. Following this, a new indirect block
is allocated, and it is populated with safe block pointers from
the old indirect block. During this process, the status bits in the
safe block pointers are cleared. Following this, the safe block
pointer for the newly allocated data block is updated in the
indirect block. Finally, the safe block pointer for the indirect
itself is updated in the inode. As shown in the figure, by
clearing the status bit for all shared data pointers, we postpone
block allocation until the very last moment, thereby providing
efficient data sharing. As allocation of blocks takes place in a
dynamic fashion, the amount of space taken by a snapshot is
proportional to the amount of data overwritten.

3) Snapshot deletion: Deleting a snapshot inode is more
complicated, since blocks pointed to by an inode could be
shared with other snapshot inodes. A block can be freed only
if it is not shared with any other inode. We use two facts to
help us make this decision. For any given snapshot inode,

1) any data block not shared with the immediate predeces-
sor is also not shared with any other predecessor.

2) any data block not shared with the immediate successor
is also not shared with any other successor.

Thus, a block that is not shared with the immediate prede-
cessor and successor snapshots are blocks that are unshared
with any other snapshots, and hence by definition, are blocks
that can be deleted. We can easily find blocks of the former
kind using the status bits in the safe block pointers associated
with the target inode. We can find blocks of the latter kind by
reading in the safe block pointers associated with the target’s
successor inode, and examine their status bits. However, there
are two interesting boundary conditions that deserve a special
mention.

The first condition is when a file is truncated in the succes-
sor. In such a case, some of the successor’s safe block pointers

would be invalid, as the truncation code zeroes out these block
pointers (by setting them to NOBLOCK). The second condi-
tion occurs when the target of deletion is the head of the snap-
shot list. Consider the situation depicted in Figure 5. When the
first snapshot is deleted, block B1 is freed, but B2 is not
freed as it is shared with the second snapshot. After deleting
the first snapshot, the second snapshot is at the head of the
snapshot list. However, the status bit for block B2 is cleared
in the snapshot inode, as B2 was not overwritten during the
snapshot lifetime. Thus, if the second snapshot is deleted, B2
will not be freed. Thus, considering both boundary conditions,
we adopt the following algorithm for deleting snapshot inodes.

for each block offset in inode being deleted do
if pointer in successor.block number = NOBLOCK or
pointer in successor.status = 1 then

if pointer in deleted inode.status = 1
or inode being deleted.predecessor = NONE then

delete the block
end if

end if
end for

D. File volume snapshotting in the logical layer

Having explained the mechanism for block sharing in the
physical layer, we will now explain the snapshot operation at
the logical layer. We will also show how information sharing
between the logical and physical layers makes it possible to
support efficient snapshot deletion.

In order to support snapshotting, each logical file is asso-
ciated with a file epoch number. This epoch number is stored
together with other logical file configuration information in
the corresponding volume index file. Each file volume is also
associated with a volume epoch number. This epoch number
is stored together with other file volume metadata in the meta
index file. Each file volume metadata entry also contains pre-
vious and next snapshot fields. These fields store the volume
identifiers of preceding and succeeding snapshot volumes, thus
linking snapshots in a bidirectional list, similar to the inode
snapshots in the physical layer. As we will see later, version
directories utilize this bidirectional linking to enumerate the
list of snapshots.

1) Snapshot creation: When the logical layer receives a
request to snapshot a file volume, which we will henceforth
refer to as the target volume, it first retrieves the volume meta-
data from the meta index file. The logical layer then cre-
ates a new snapshot volume. A snapshot volume is a read-only
file volume. No file operations, except read and getattribute,
are permitted on any files in a snapshot volume. The type field
in the volume metadata indicates whether a volume is a reg-
ular or a snapshot volume. The process of creating a snap-
shot volume involves 1) assigning a new volume identifier, 2)
allocating an entry for storing the new volume’s metadata in
the meta index file. Following this, the logical layer copies
over all metadata fields from the target volume entry to the
snapshot volume entry. Once this step is completed, both the
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Fig. 6: The figure shows the different phases of a snapshot operation, and the interaction between logical and physical layer data structures during, and
after a snapshot operation. A block labeled D in the figure represents a data file inode, V represents a current/regular volume’s volume index inode, and SV
represents a snapshot volume’s volume index inode. Arrows in the figure connect a file volume metadata entry with the volume index inode, and a logical
file configuration entry with its data file inode. Blocks in the logical layer show the logical layer’s view of the meta and volume index files, while blocks
in the physical layer represent the actual blocks storing data corresponding to those file. Dotted lines between the two layers show the mapping between
the two views. The figure is divided into four parts. Part (a) shows the state of the stack before a snapshot. Part (b) shows the first phase of the snapshot
operation, where a new snapshot volume is created. Part (c) shows the second phase of the operation, where a snapshot of the volume index file itself has
been performed. Part (d) shows a new data file inode being allocated due to a write operation after a snapshot, and the new volume index file pointing to the
new data file.

snapshot and target volumes share the same volume index file.
Figure 6(b) illustrates the first step with an example.

Next, the logical layer snapshots the volume index file. It
does this by making a snapshot call to each physical module,
passing in the relevant inode number as a parameter. Each
physical module snapshots the inode as explained in the previ-
ous section, and returns back a new inode number. The logical
layer updates only the target volume’s volume index configu-
ration information with this new inode number. At this point,
the snapshot volume’s configuration points to the old volume
index inodes, and the target volume’s configuration points to
the new inodes, as shown in Figure 6(c). Finally, the epoch
number in the target volume is incremented by 1 to reflect a
completed file volume snapshot operation. Thus, snapshotting
is an instantaneous operation, and it involves only a snapshot
call to freeze the volume index file.

snapshotting of individual files happens dynamically at the
next operation that modifies the data or metadata of the
file. When the logical layer receives a write, delete, setattr
or truncate operation on a file, it compares the file’s epoch
number with the corresponding file volume’s epoch number. If
the file has a smaller epoch number, the logical layer snapshots
the file before performing the operation. Read, create and
getattr Loris operations do not incur this check, as they do
not modify a file or its metadata in any way. For instance,
a read request from the application gets transformed into a
Loris read operation to retrieve the data, and a Loris setattr
operation to update the access time. While the Loris read
operation bypasses the check, the setattr operation results in a
snapshot being created. Finally, the file’s epoch number is set
to the file volume’s epoch number. Future operations on the
file proceed without snapshotting the file again as the epoch
number test fails. The logical layer snapshots a file by calling
the snapshot operation on all associated physical modules.
The file’s configuration information is updated with the new
inode numbers returned by the physical modules. When the
data block containing this new file entry is written out to the
physical layer, the data sharing mechanism in the physical
layer ensures that only the current volume index file stores

this new configuration. Thus, as illustrated in Figure 6(d), any
snapshot of a file is reachable through that snapshot volume’s
volume index.

2) Efficient deletion support through information sharing:
The algorithm for deleting snapshot volumes in the logical
layer is very similar to the algorithm for deleting blocks in
the physical layer. In the pseudocode for deleting snapshots
given below, target snapshot refers to the snapshot volume be-
ing deleted.

for each file in the target snapshot do
if file does not exist in the next snapshot or file has been
modified in the next snapshot then

if file has been modified in the target snapshot or target
snapshot has no preceding snapshot then

call delete on this file’s physical modules
end if

end if
end for

Similar to block deletion, files that are not shared between
snapshots are the files that are deletable. A file is not shared
by two snapshots if it has been modified between snapshots.
As mentioned earlier, a file is modified if the file receives
a setattribute, delete, truncate or write operation after a file
volume snapshot. Any such modification operation results in
a new file entry, with a new configuration information, and an
updated epoch number. Thus, unshared files are ones for which
file epoch number is the same as the snapshot volume’s epoch
number. Each such file identified by the algorithm is deleted by
making a delete call to each corresponding physical module,
which deletes the snapshot inode as mentioned earlier.

It is a well-known fact that file access distribution is heavily
skewed, with a very small percentage of files getting a large
percentage of accesses [16]. Thus, it is very likely that only
a relatively small number of files, and hence file entries, are
modified between any two snapshots. The deletion efficiency
could be improved significantly if we process only these
changed file entries. Thinking about this, we realized that the
copy-on-write-based physical layer already stores this infor-



mation in the form of status bits associated with each block.
Thus, we added a new operation which the physical layer could
use to communicate a snapshot inode’s modified block offsets
to the logical layer. When the logical layer receives a delete
request, it retrieves the file volume configuration information
as usual. It then makes a call to retrieve the set of modified
file offsets for the snapshot’s volume index file. Equipped
with this information, the logical layer executes the algorithm
mentioned earlier, but only for file entries in these modified
offsets thus avoiding a linear scan.

VI. NEW FUNCTIONALITY: UNIFYING FILE SNAPSHOTTING
AND VERSION CREATION POLICIES

In this section, we will describe the infrastructure support
for providing per-file snapshotting and open-close versioning.
Per-file snapshotting and open-close versioning introduce an
interesting problem in the design of file volumes. With both
these features, multiple snapshots of a file can be taken
between any two file volume snapshots. Each such snapshot
requires the configuration information at the time of snapshot
to be recorded. In our file volume design, each configuration
information is always tracked by a volume index belonging to
either a snapshot volume or a current volume. For instance,
after the first operation that modifies file data or metadata
following a snapshot, the snapshot volume’s volume index
entry tracks the old inodes that existed at the time of snapshot,
as we already described earlier. However, with individual file
snapshots, no volume index is available to track multiple
snapshot configurations. Hence, without added support, we
lose the ability to access all individual snapshots created
between two file volume snapshots.

Solving this problem requires a way to track version history,
in the form of configuration information for each file snapshot.
Thinking about this, we realized that we could create a new
file volume for each file, and use its volume index file to store
this configuration information.

A. Version volumes

To support per-file snapshotting, we define a new volume
type, called Version volume. The fundamental idea behind ver-
sion volume is to group all individual file snapshots together
in a file volume. Each logical file in Loris can be conceptually
seen as being associated with a version volume, and each
version volume stores the version history of its parent file.
A version volume is linked to its parent file by storing its
volume identifier with the file’s configuration information. We
will now explain how version volumes are created, and how
they support per-file snapshotting.

Initially, all files start out without a version volume. A
version volume is created during the first individual file
snapshot operation. Creating a version volume is similar to
creating a regular volume–a new volume identifier is assigned,
a new metadata entry is created in the meta-index file, a new
volume index file is created, and its configuration information
is stored with other details in metadata entry. An important
piece of metadata specific to version volumes is the next

version number field. This field is incremented every time a
new file version is added to the version volume. The logical
layer also stores the version volume’s identifier with the file’s
configuration information, thereby linking the file with its
version volume.

Every individual file snapshot operation proceeds as follows.
The target file’s configuration information is retrieved from
the corresponding volume index file. The version volume’s
next version number is incremented, and this value is used
to determine the version volume’s volume index entry where
this old configuration information is stored. Following this, a
snapshot call is made to all associated physical modules, and
the target file’s configuration information is updated in the
current volume. Figure 7 illustrates this with an example.

Figure 7 illustrates the interaction between a file volume
snapshot and an individual file snapshot. Version volumes are
used only to store configuration information for snapshots
created by user-initiated per-file snapshots, or auto-generated
open-close versioning based snapshots. File snapshots created
as a side effect of a file volume snapshot are tracked by the
respective snapshot volume’s volume index.

While it might appear at first thought that creating a file
volume for each file might be expensive, such is not the case
due to several reasons. First of all, files start out initially
without a version volume. As we mentioned earlier, version
volumes are created on-the-fly during the first individual file
snapshot operation. Thus, all files that are not modified after a
snapshot do not have version volumes. Second, each volume
requires space proportional to the number of configuration
entries it stores. As version volumes are created on a per-file
basis, only files that are snapshotted very frequently end up
with version volumes containing many configuration entries.
Third, as all individual file versions share unmodified data
blocks using the physical layer’s copy-on-write functionality,
the only information that is not shared between versions is
each version’s configuration entry, which by itself is very small
(roughly 100 bytes) compared to the modified data blocks.
Thus, version volumes provide a light-weight mechanism for
tracking file history.

B. Open-close versioning in the naming layer

We will now illustrate how the same infrastructure that
supports individual file snapshotting supports open-close ver-
sioning as well. The naming layer, being aware of open-
close sessions, acts as the policy enforcement layer. It creates
new versions of files that have been modified in an open-
close session, by making a snapshot call following the close
operation. The logical layer processes this snapshot call, as
explained earlier, using its version volume infrastructure, and
forwards the snapshot call to each associated physical module
for snapshotting the inodes. The next setattr, write, truncate or
delete operation on this file will result in the physical layer
performing block-granular copy-on-write. Thus, as the naming
layer only specifies policies, plugging in a different version
creation policy, like provenance-based version creation [13],
is very simple. The only code change required would be to
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Fig. 7: The figure illustrates individual file snapshotting using version volumes. Part(a) in the figure shows a current volume(CV) containing configuration
information for a file F1. Part (b) in the figure shows the data structures after an individual snapshot of file F1. It shows that a new version volume(VV)
has been created, and F1’s V1 configuration information is stored as an entry in VV. Part (c) shows the state after another individual file snapshot. Now,
VV has two entries, one configuration per snapshot. Part (d) shows the state after the following operations: 1) snapshot volume CV, 2) write F1. A snapshot
volume(SV) has been created, and it contains the configuration information for version V3 of F1. It is important to note that VV stores only individual file
snapshot history(V1 and V2 of the file). File volume snapshot history (V3 in this case) is recorded by snapshot volumes, SV in this case.

figure out the exact time and place where a snapshot call
must be made. Thus, using a unified infrastructure, we are
able to support 1) per-file version creation policies, 2) per-file
snapshotting, and 3) file volume snapshotting.

VII. NEW FUNCTIONALITY: VERSION DIRECTORIES–
A UNIFIED INTERFACE FOR BROWSING HISTORY

snapshotting and versioning systems have provided several
different interfaces for browsing file history information. The
design requirements we had for our interface were threefold:
1) the interface should be simple and natural to use, 2)
applications should be able to access file versions without
any modifications, 3) the same interface should be used for
accessing individual file snapshots, open-close version based
snapshots, and file volume snapshots. We now present version
directories, our new unified interface for browsing file history
information.

A. Version directories – interface specification

With most versioning systems, users can access file versions
by suffixing a file name with a version specifier. The version
specifier consists of a syntax token, which is a special character
(like “!” in CedarFS [8]), and a version sequence number,
which identifies the target version from a list of available file
versions. Most snapshotting systems, on the other hand, re-
quire users to mount a file volume snapshot, or auto mount the
snapshot at a designated mount point. We rejected the mount-
based history access as it violated our third requirement.

In our interface, the “@” character acts as the syntax token.
Thus, for a file foo, the name foo@N can be used to access the
Nth version of foo. Version specifiers can also be used with
directories to achieve version inheritance. Version inheritance
refers to the mechanism by which files and directories are
automatically scoped using their parent’s sequence number.
Version inheritance can be used to simulate a mount-based
interface. For instance, if /home/user1 is a file volume, an
administrator could create a symbolic link to /home/user1@1
at any location, and scope the entire subtree to the first
snapshot.

Yet another interesting feature of this inheritance mecha-
nism is its use in recovering deleted files. Since we do not
support name versioning yet, once a file is deleted, its name
is removed from its parent directory by the naming layer,
the file entry is purged from the current file volume by the

logical layer, and the inodes storing file data are deleted by the
corresponding physical modules. However, a user could scope
the parent directory to a snapshot that has the file name intact,
and by inheritance, access the file version at that snapshot. For
instance if a file foo has been removed from directory bar, the
name bar/foo@2 cannot be used to access the snapshot version
of foo, as we do not support name versioning yet. However, the
name bar@2/foo could be used to achieve the same effect. As
an aside, the name bar@2/foo@1 resolves to the same version
as the name bar@1/foo, and the name bar@1/foo@2 resolves
the same version as the name bar@2/foo. Thus, multiple scope
specifiers can be used in a single path name.

Having described the interface for accessing old versions,
we will now describe our interface to enumerate the list of all
file versions. Most systems add an explicit library call, that in
turn forwards an ioctl to a versioning file system to retrieve
such details. Previous research has already suggested that
overloading file system semantics improves uniformity when
compared to creating new interfaces [7]. In our interface, by
suffixing any file or directory name with just the syntax token,
the user can treat it as a version directory. A version directory
is a virtual directory, in the sense that its directory entries
are created on the fly. Virtual directories meet all the three
requirements we mentioned earlier: 1) It is a simple and natural
technique, as it overloads a well known file system construct—
directories, 2) one can use shell utilities and applications
unmodified to access old versions, and 3) every snapshot—
irrespective of how it is created—is presented as a virtual
directory entry, thus providing an integrated access interface.

A directory entry enumeration operation on a version direc-
tory results in all versions of the target file being displayed to
the user as individual file entries in the directory. For instance,
a user could perform a “cd foo@”, followed by an “ls –l”
to view both dynamically generated file names and POSIX
attributes of each individual version. Each file name in a
version directory has two parts: a type specifier, and a version
sequence number. The type specifier identifies whether the
version was created by an individual file snapshot (SNAP), an
open-close versioning snapshot (VERSION), or a file volume
snapshot (VOLSNAP). As an aside, users can also access
versions by using directory entries instead of suffixing file
names with sequence numbers. For instance, /usr/foo.txt@1,
and /usr/foo.txt@/VolSnap 1 resolve to the same file version.
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Fig. 8: The figure shows the vstat structures for file F1 shown in Figure 7(d).
The columns from left to right contain the volume identifier, volume type,
and file identifier for the file version shown to the left of the vstat structure.
The names on the right of each vstat structure are the names assigned by the
naming layer, for each virtual directory entry, when the file is treated as a
version directory.

Another advantage of using version directories is the fact
that retention policies can be implemented as simple shell
scripts. For instance, a script that implements a number based
retention policy could access each file as a version directory,
and delete oldest N versions using standard UNIX utilities.
A landmark based retention policy could diff two versions
(diff foo@1 foo@2), and pick versions with minimal changes
to discard. Furthermore, different policies can be applied to
different files or file types, thus providing highly flexible
version management. It is important to note here that only
snapshots created by open-close versioning or individual file
snapshotting can be explicitly deleted. File snapshots created
as a side effect of volume snapshotting can be deleted only
by deleting the file volume. Retention scripts can use the type
specifier part of the file name to identify deletable versions.

B. Version directories – implementation details

We will now describe the infrastructure support for imple-
menting version directories. When an applications performs a
directory listing operation on a virtual directory, the naming
layer needs to enumerate the list of snapshots for the target file.
Since the task of tracking snapshots is provided by the logical
layer, a new version stat call was added to the standardized
file interface to communicate this information to the naming
layer. The naming layer makes the version stat call, passing
in the target file identifier as a parameter.

When the logical layer receives a version stat call, it first
pulls up the volume metadata from the meta index file. It then
walks through the set of snapshots associated with this volume,
using the previous and next snapshot fields we described
earlier, and checks each volume index for the target file. For
each valid configuration entry, the logical layer populates a
new vstat structure. Each vstat structure contains several fields,
like the volume identifier, volume type, and file identifier. After
checking all snapshot volumes, the logical layer retrieves the
file’s configuration information from its current volume. If the
configuration information records the presence of a version
volume, the logical layer retrieves the version volume’s volume
index file. For each configuration entry in this volume index,
it populates a new vstat structure. After processing all entries,
the logical layer returns back the list of vstat structures to the
naming layer, as shown in Figure 8.

The naming layer uses these vstat structures to build virtual
directory entries in the version directory. It uses the volume

type field to choose a type specifier, and a zero based counter
to assign the version sequence number for each directory
entry. When the user access a particular file version using one
of these entries, the naming layer uses the version sequence
number to retrieve the appropriate vstat structure. It then uses
the volume and file identifiers specified in the vstat structure
to identify the target file in any file operation.

This approach does have the disadvantage that a version’s
name might change as other versions are deleted. However,
we really do not consider this to be an issue due to two
reasons. First of all, as users can easily view POSIX metadata
associated with each version, they can identify the target ver-
sion using its metadata, thus obviating the need for consistent
system-generated names. Second, if name-based identification
is required, the proper approach would be to enable tagging of
individual versions. Once users tag versions with user-friendly
names, they can easily identify target versions using their tags.
We are working on extending our system to support tagging
of both individual file versions and file volume snapshots.

It is important to note in Figure 8, that the file identifiers
in the first two vstat structures are not F1, the target file’s
identifier. Since these two versions were created by individual
file snapshotting, their configuration information resides in the
version volume’s volume index. Since the version volume can
be accessed as a regular file volume, one could directly access
a version by using its position within the volume index as the
file identifier. For instance, when the logical layer gets the
identifier pair <VVID, 1>, it first retrieves the volume with
identifier VVID, which in our case is the file’s version volume.
It then uses 1 as the file identifier, and retrieves the first file
entry from the volume index, which would be the configuration
information for the first file version. Thus, by grouping all file
snapshots in a version volume, we are able to use the same
mechanism for accessing file snapshots, irrespective of how
they are created.

VIII. EVALUATION

In this section we will present our evaluation of the Loris
prototype which supports all new functionality presented
in this paper. We implemented our Loris prototype on the
MINIX 3 multiserver operating system [9]. We will first eval-
uate the overhead of open-close versioning and snapshotting
using micro-benchmarks. We will then present an evaluation
of the infrastructure using two macro-benchmarks, and show
that our file volume virtualization approach has no overhead.

A. Test Setup

All tests were conducted on an Intel Core 2 Duo E8600 PC,
with 4 GB RAM, and one 500 GB 7200RPM Western Digital
Caviar Blue SATA hard disk (WD5000AAKS). We ran all tests
on 8 GB test partitions at the beginning of the disk. Loris was
set up to work with a 32 MB buffer cache.

B. Copy-based and copy-on-write snapshotting comparison

We will first compare the performance of copy-based
and copy-on-write-based snapshotting using a custom micro-



benchmark. The micro-benchmark stresses file system snap-
shotting by first creating either 500 1 MB files, or one 500
MB file, in a single file volume. Following this, we perform
ten rewrite runs, where we truncate and rewrite all the files,
snapshotting the entire file volume after each run. We measure
the total time taken to overwrite all the files in each run, and
the median of these ten values is shown in Table I. As the
file volume is snapshoted, each rewrite run results in a new
snapshot of all files being created.

Benchmark No Snapshot Copy-based Copy-on-write-based
500 1 MB files 7.30 17.95 7.31
1 500 MB file 7.50 21.01 7.95

TABLE I: Time in seconds for file volume snapshotting using copy-based and
copy-on-write-based physical layer implementations.

As shown in Table I, file volume snapshotting has very little
overhead with the copy-on-write-based physical layer. The
copy-based physical layer however has a significant overhead.
This is due to the fact that each file is copied over in its entirety
after every snapshot operation. As each copy operation reads
and writes 1 MB per file snapshot in the first case, and 500 MB
in the second case, it causes excessive delay in the mainline
write path leading to poor performance.

C. Open-close versioning evaluation
We will now present an evaluation of our open-close ver-

sioning implementation using the same micro-benchmark that
was used to evaluate snapshotting, with a minor modification.
We no longer snapshot the file volume at the end of each
run. Instead, we enable open-close versioning for each file.
As shown in Table II, the copy-based physical layer suffers
due to the copying overhead, as we explained earlier.

Benchmark No versioning Copy-based Copy-on-write
500 1 MB files 7.30 21.26 10.53
1 500 MB file 7.48 20.80 7.95

TABLE II: Time in seconds for open-close versioning using copy-based and
copy-on-write-based physical layer implementations.

The copy-on-write-based physical layer on the other hand
incurs an overhead only when 500 1 MB files are are individ-
ually versioned. Versioning of a single 500 MB file does not
exhibit any overhead. We examined this further, and we found
individual flushing of metadata blocks to be responsible for
this performance loss. As all files are open-close versioned,
every file has an associated version volume. Each version
volume’s volume index file contains logical configuration
entries that track file history. Thus, for 500 files, there exist 500
version volumes, each having a volume index file containing
one data block with logical configuration entries. In our current
implementation, these 500 blocks are flushed using individual
write operations. This results in multiple, small, random writes
at the disk, and the resulting seeks result in performance loss.
We are working on fixing this problem by vectoring these
write requests in a single write operation using the vwrite call
we introduced to solve a similar problem with small files [4].

D. Overhead of file volume virtualization

We now evaluate the overhead of our new infrastructure
using two macro-benchmarks: (1) PostMark, configured to
perform 20,000 transactions on 5,000 files, spread over 10
subdirectories, with file sizes ranging from 4 KB to 1 MB,
and read/write granularities of 4 KB, and (2) an application-
level macro-benchmark, which we will refer to henceforth as
Applevel, which consists a set of very common file system
operations including copying (a complete MINIX 3 source
tree), compiling (running “make clean world”), and running
find and grep (searching for a keyword in all source and header
files).

Benchmark Loris-V1 Loris(new)
Postmark 686.00 693.00
Applevel (copy) 124.00 134.00
Applevel (build) 112.00 113.00
Applevel (find and grep) 20.00 19.00

TABLE III: Transaction time in seconds for Postmark and wall clock time
in seconds for Applevel tests

Table III shows PostMark and Applevel results for both
Loris-V1 and our latest Loris version that supports all the
new functionalities described in the paper. As can be seen,
file volume virtualization in Loris has very little overhead,
if any. Most other systems maintain elaborate block mapping
information to virtualize file volumes, and hence suffer from
performance degradation due to increased metadata footprint.
As no such mapping information is maintained by Loris, there
is no performance impact.

Benchmark No Snap Copy Snap COW Snap
Applevel (build) 123.00 131.00 124.00
Applevel (find and grep) 21.53 38.68 21.60

TABLE IV: Wall clock time in seconds for applevel tests using copy-based
and copy-on-write-based physical layer implementations.

Table IV shows an interesting comparison of the two
snapshotting approaches using the Applevel benchmark. To
perform this evaluation, we modified our test suite to take a
file volume snapshot after the copy phase. As can be seen
copy-on-write snapshotting does not suffer from any overhead
in both build and find phases.

Copy-based snapshotting on the other hand suffers from
a small overhead during the build operation, and a huge
overhead during the find and grep operation. The find and
grep operations result in the access time of all source and
header files being updated. Since the access time is stored
as an attribute by the physical layer, setting a new access
time is done by making a setattr call. This call triggers a
file snapshot operation at the logical layer. The copy-based
physical layer copies over the entire file data to create a new
current version, while the copy-on-write physical layer just
allocates a new inode and marks data blocks as shared. This
is the reason behind the poor performance of the copy-based
physical layer. Turning off access time updates resulted in



similar performance figures for both copy-based and copy-
on-write physical layer implementations.

We are working on a new naming layer that provides
structured data storage to applications. The new naming layer
will provide a new directory storage and indexing scheme. It
will also be responsible for storing attributes with directory
entries, and providing snapshotting of attributes. With this
new naming layer, the physical layer will be in charge of
snapshotting only file data, and thus the copying overhead will
not be incurred for attribute changes.

IX. COMPARISON WITH OTHER APPROACHES

Several commercial and academic projects have taken other
approaches toward virtualizing file volumes. We will first
discuss device management alternatives, and compare file
pools with other approaches. Then, we will discuss file volume
virtualization, and present the advantages that Loris has over
other techniques. We discussed logical volume managers in
great detail earlier in this paper. Most block-level virtualization
solutions suffer from problems similar to the ones mentioned
in Sec.II, and so we will not discuss them in further detail
here.

A. Device management

Sun’s ZFS [1] proposed refactoring the traditional storage
stack to solve many problems we presented earlier. ZFS
introduced storage pools, a new storage model for simplifying
device management. Storage pools are based on the idea that
block allocation decision is made by the wrong layer in the
traditional stack—the file system layer. In the ZFS stack, a
separate storage pool allocation (SPA) layer manages a pool
of storage devices, and provides an interface for allocating
and freeing virtual blocks, similar to the malloc() and free()
interface for virtual memory. As the SPA provides a virtualized
block address space, multiple file volumes can share a single
storage pool. The SPA also simplifies and automates addition
and removal of devices.

Our approach (file pools) offers advantages in addition
to the benefits offered by storage pools. Providing RAID
and volume management services at a file-level makes it
possible to support advanced functionalities, like snapshotting,
at several granularities, thus improving flexibility. Rather than
bundling allocation and storage management together like
ZFS, Loris makes a clean split between the two function-
alities, by assigning block allocation to the physical layer,
and storage management to the logical layer. The improved
modularity makes it possible to support heterogeneous device
configurations using custom layout designs without affecting
RAID and volume management algorithms.

B. File management and file volume virtualization

AFS[18] was one of the first projects to promote the use
of file volumes as administrative units. AFS was a client-
server system, and AFS clients accessed files using a <volume
identifier, file identifier > pair similar to Loris. The volume
identifier was used to locate the server housing the file

volume. On the server side, many volumes share a single
disk partition, and administrators could associate usage quotas
with file volumes. File volumes were supported by modifying
the 4.2BSD on-disk file system, to include per-volume inode
tables that translated the <volume identifier, file identifier>
pair to an inode. snapshotting was a nightly operation that
was implemented by incrementing the link count on all inodes
associated with a file volume, and block-level data sharing
was not supported. In contrast, file volume virtualization
Loris is layout independent, snapshotting is a flexible and
instantaneous operation, and if required, a copy-on-write based
physical module can be used to support fine grained block-
level data sharing.

There are several file systems, both on-disk and stackable
ones, that support snapshotting and versioning. Most version-
ing file systems, like ElephantFS [17], support only open-
close versioning and do not support file system snapshots.
File systems that do support both, like ext3cow [15] are on-
disk file systems, and do not support virtualized file volumes.
Stackable file systems like RAIF [11], and VersionFS [14] are
extremely flexible, portable, and support open-close versioning
and RAID algorithms on a per-file basis. However, unlike on-
disk file systems, they suffer from performance problems due
to double buffering, and data copying. Loris, on the other hand,
implements portable file volume virtualization in the logical
layer by relegating storage-efficient block-level data sharing
to the physical layer. It supports flexible snapshotting and
versioning with its policy-mechanism split. Thus, Loris has
the advantages of all these systems with its modular division
of labor without the disadvantages.

Flexol [6] is the file volume virtualization system from
NetApp. The basic idea adopted by FlexVol is to virtualize file
volumes by creating a file volume inside a file, in a lower file
system. The recursive use of the WAFL file system provided
file awareness to the virtualization layer, making it possible
to support several advanced functionalities like snapshotting
and cloning. However, the dual mapping information that
needs to be maintained by FlexVol causes some performance
degradation. Unlike FlexVol, Loris approach does not suffer
from overhead due to metadata footprint as seen earlier.
Furthermore, while FlexVol supports file volume snapshotting
and cloning, it does not support individual file snapshotting or
open-close versioning. We will discuss support for cloning in
Loris in the next section.

X. FUTURE WORK

The design of file volume virtualization in Loris opens up
several areas of future work. We will now discuss two main
avenues of ongoing research.

A. Flexible cloning in Loris

As we mentioned in the previous section, a number of
commercial projects have introduced file volume cloning in
addition to snapshotting. We are currently working on adding
support for flexible copy-on-write-based cloning at both per-
file and file volume granularities. The mechanism that supports



snapshotting can also be used to support cloning with minor
modifications. A new clone operation will be added to the
standardized file interface. When the logical layer receives a
request to clone a volume, it first picks a new volume identifier,
and allocates a new metadata entry in the volume index file. It
then instantiates a clone volume, that is a writable clone of the
parent, by copying the target volume’s metadata to this new
entry. A new field in the snapshot volume’s metadata links it
with the new child volume. Following this, the clone volume’s
epoch number is set to one higher than its parent’s epoch
number. Individual files themselves are cloned on demand,
just like snapshotting.

Copy-based snapshotting physical layer can support cloning
without any modification, as each inode is an independent
copy, not sharing any data blocks with other snapshots. How-
ever, supporting copy-on-write based cloning requires some
changes to the physical layer to make sure that data blocks
belonging to snapshot inodes are not freed while there are
clones using those blocks.

B. Hybrid file pools

As we mentioned earlier when discussing file pools, several
file allocation algorithms can be employed by the file pool
sublayer to satisfy file creation requests. In addition, we are in-
vestigating the addition of device-aware migration algorithms
at the file-pool sublayer. Since the file pool manages devices of
multiple types, it can collect aggregate performance statistics
of these devices. Based on these metrics, it can classify
each device as belonging to a particular device type category.
Similarly, since the file pool sublayer works at a file-level, it
can also collect file access patterns on a per-file basis, using
which, it can classify each file as belonging to a particular file
type category. An easily configurable rule table can then be
used to match file types with device types.

As an example configuration, small, read-only files could be
positioned on a device with good random read performance,
while small, write-mostly files could be positioned on a device
with a log-structured layout. Large files that are both randomly
read and written, on the other hand, could use two physical
modules, one with a log-structured layout for absorbing writes,
and one on a device with good random read performance.
The logical layer would direct writes to the write-optimized
physical module, and migrate data in the background to the
read-optimized device. We use the term Hybrid file pools to
refer to this new storage model, as file pools can accommodate
heterogeneous devices in hybrid configurations.

XI. CONCLUSION

Virtualizing file volumes makes it possible to retain adminis-
trative flexibility without sacrificing storage efficiency. In this
paper, we examined the traditional approach of virtualizing
file volumes along two dimensions, namely, flexibility, and
heterogeneity. We illustrated several problems associated with
the traditional approach of virtualizing file volumes. We then
presented our file volume virtualization design based on Loris,
our fresh redesign of the traditional storage stack. We showed

how Loris, with its unified, modular infrastructure, supports
file volume snapshotting, per-file snapshotting, and open-close
versioning.
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