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Hawk is a language-independent runtime system for writing data-parailel programs using parti-
tioned objects. A partitioned object is a multidimensional array of elements that can be partitioned
and distributed by the programmer. The Hawk runtime system uses the user-defined partitioning
of objects and a runtime mechanism based on Partition Dependency Graphs (PDGs) to increase
the granularity of data transfers and consistency checks to a partition, Hawk further optimizes
the execution of parallel operations by prefetching data and overlapping communication and
computation.

We first present the partitioned object model. Then, we give an overview of Hawk and describe
how it uses PDGs to reduce communication overhead and optimize parallel operations. Finally,
we discuss the effectiveness of our optimization technique with two applications written on top
of Hawk.
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1 INTRODUCTION

Distributed and parallel computers have created new challenges for program-
mers and systems developers. Due to the difficulty involved in optimizing
data distribution and synchronizing processes over multiple machines, writing
efficient parallel programs is often difficult and time consuming,

* This work was supported in part by the CEC Human Capital Mobility program under contract
no. ERBL-HBGCT920001 and by a PIONIER grant from the Netherlands Organization for
Scientific Research (N.W.0.).
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Parallel programming systems for distributed memory machines can be
classified in three categories: message-passing systems, page-based Distributed
Shared Memory (DSM) systems, and object-based DSM systems.

Message passing programming systems such as MPI [6] generally offer a
set of low-level primitives with which processes executing in different address
spaces exchange information using messages. These systems offer the most
flexibility and can achieve good performance. Programmers, however, find
them difficult to use since they are responsible themselves for placing, moving,
and maintaining consistency of data.

In DSM systems, conceptually, shared data are located in an address space
common to all processors. In page-based DSM [1,5,15], the unit of sharing
between processes is a page. Physically, the pages are distributed over multiple
processors. The system is responsible for placing them and for keeping them
consistent. Page-based systems take advantage of hardware memory manage-
ment to control access to shared data efficiently. On the other hand, software
must carefully map data onto pages. This task turns out to be difficult to do
well [1]. For example, a trivial mapping of data onto shared pages can result
in false sharing if two unrelated data elements are accidentally stored on the
same page, and used by different processors. The page will be transferred back
and forth between the two processors on every access.

In object-based DSM [3,17,18,8], processes share objects. A shared object
encapsulates shared data structures and the operations on the data, so it is
essentially an instance of an Abstract Data Type (ADT). All processes may
access a shared object, even if they are on different processors in a distributed
memory system. Processes communicate by applying ADT operations to the
shared objects.

An example of object-based DSM is Orca' [2,3]. Using the Orca model, a
program forks processes on several machines. These processes communicate
and synchronize through user-defined shared objects. The Orca runtime system
(RTS) is responsible for the placement of objects and keeps them consistent
when concurrent operations (methods) are called.

Writing parallel applications using the Orca model is often easy because of
its clean semantics. Furthermore, the system does not rely on hardware mech-
anisms to implement shared memory consistency and thus is more portable
than page-based systems. There are, however, two drawbacks to the Orca
model. First, it was primarily designed for process parallelism and does not
allow implementing partitioning or partial replication easily. For example, in
order to partition a matrix row-wise, the programmer must define a shared

L'URL http://www.cs.vu.nl/orca,
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object for each row. The partitioning is hand-coded, and therefore not flex-
ible. Data-parallel constructs must also be hand-coded by the programmer.
Second, in the Orca system, a shared object is either placed on one processor
or replicated on all processors invoking the object. For many data-parallel
applications, placing objects on one processor creates a bottleneck and repli-
cating them over all processors generates unnecessary data transfers and traffic
on the network.

‘We have extended the shared object model of Orca with partitioned objects
to support data-parallelism [10]. A partitioned object is a multidimensional
array of elements that can be partitioned by the programimer using simple
directives to reflect data access locality within operations. The partitions may
then be distributed arbitrarily over multiple processors. The elements of a
partitioned object can be accessed through operations that are either sequential
or parallel.

This paper describes Hawk, a runtime system for partitioned objects. The
system provides a set of primitives to create, partition, distribute, and invoke
objects. The execution model of a parallel operation uses the owner-computes
rule [11]: a processor executes parallel operations on the partitions it owns. As
in the original Orca model, Hawk handles communication and synchroniza-
tion transparently to the user and guarantees sequential consistency. Therefore,
during the execution of a parallel operation, every time a processor accesses
data it does not own, the system first checks whether local copies of the data
are available. If there are not, the system fetches them from their owner.
Consequently, transferring data between processors incurs overhead due to
consistency checking and communication latency. Unlike other programming
systems, Hawk reduces this overhead by using the partitioning of objects
specified by the user: data transfers, computation partitioning, and consistency
checks are done on a per-partition basis. This not only reduces the commu-
nication and consistency checking overhead but it also increases the potential
for data prefetching and for overlapping communication and computation.
In message-passing systems, the potential for overlap of communication and
computation is the highest since data transfers are customized to the char-
acteristics of applications. However, this optimization is left to the user to
handle which makes writing parallel applications significantly more difficult.
Page-based systems use hardware memory management to decrease consis-
tency checking overhead but do not automatically overlap communication and
computation. Optimization of the execution of parallel statements must be
handled entirely by the user.

The remainder of the paper is organized as follows. Section 2 presents our
partitioned object model. Section 3 gives an overview of a prototype of Hawk
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implemented on top of Amoeba? [24]. Section 4 describes how Hawk executes
parallel operations to reduce communication and consistency checking over-
head. Section 5 discusses two applications, Successive Over-Relaxation (SOR)
and Fast Fourier Transform (FFT), written on top of Hawk and presents
some performance results. Section 6 discusses related work. Finally, Section 7
provides conclusions and directions for further research.

2 THE PARTITIONED OBJECT MODEL

As in the Orca model, a partitioned object is an instance of an abstract data
type that encapsulates state and operations. The state of a partitioned object is
composed of elements that are grouped into partitions (see Figure 1). The parti-
tions are then distributed arbitrarily over multiple processors. In this section,
we describe the state of partitioned objects and their operations. Then, we
discuss partitioning and distribution.

2.1 Object State

A partitioned object encapsulates a data structure as a multidimensional array
of elements. An element (as defined by the model) is not itself an object. There
are no operations defined on individual elements. An element can be accessed
only through an operation defined at the object level. Within an operation, an
element is addressed by indices.

To illustrate the model, consider the example of an iterative algorithm such
as Successive Over-Relaxation (SOR) with red and black partitioning [23].
A partitioned object that implements SOR is shown in Figure 2 in an

'''''''

.......

\Partitioning/ \ Distribution /

Processor 0 Processor 1 D Processor 2

FIGURE 1 Example of a partitioned object. The object is a two-dimensional grid of elements.
It is partitioned row-wise and each row is allocated to one of three processors.

2 URL http:/fwww.am.cs.vinl,
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OBJECT IMPLEMENTATION grid [1..N : integer, 1..M : integer];
G: real;

OPERATION PrintGrid ();
BEGIN
FOR row IN 1..N DO
FOR col IN 1..M DO write (G{row, col], ” ™); OD;
WriteLine;
OD;
END;
PARALLEL OPERATION [row, col] UpdateGrid (c : color):
REDUCE real WITH max;
avg, diff: real;
BEGIN
diff := 0;
IF iscolor (row, col) = ¢ AND row>1 AND col>1
AND row<N AND col<M THEN
avg = (G [row — 1, col] + Gfrow+1, col]
+G[row, col — 1] + G[row, col+1})/4;
diff := ABS (avg — G[row, col]),
Glrow, col] := G[row, col] + OMEGA * (avg — G[row, col]);
FI;
RETURN diff;
END;
END;

FIGURE 2 Implementation of a Grid Object.

Orca-like program, The grid object is a two-dimensional array of N rows
and M columns. Each element consists of one floating-point number.

2.2 Operations on Partitioned Objects

Operations on a partitioned object are atomic and the system guarantees that
the execution of concurrent operations is equivalent to some serial execution
of these operations. Therefore, objects are sequentially consistent. Operations
are applied sequentially or in parallel to the elements of the object.

Sequential operations. As an example, the grid object includes one such
operation, PrintGrid() (see Figure 2), that prints the contents of the grid. It
accesses each element sequentially to write its value.

Parallel operations. A parallel operation is applied to all elements in
parallel. The elements are referenced within an operation by means of opera-
tion variables. The pseudo-code for the parallel operation UpdateGrid() that
implements the update of red or black cells in SOR is shown in Figure 2.
The ranges of the operation variables row and col are the intervals [1..N] and
[1..M], respectively, the same intervals as the ones specified in the grid decla-
ration. They are used within the body of the paralle]l operation to index the
partitioned data structure G, which is accessed like a two-dimensional array.
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Conceptually, there is one thread of control per element, in which only
that element can be updated. For example, in one thread of control of the
UpdateGrid() operation, only G[row,col] is updated. Arbitrary cells may be
read; their values are the ones before the execution of the parallel operation
started. In UpdateGrid(), the difference between avg and the cell value is
computed in diff and returned, filtered through a reduction function, max(),
specified in the header of the operation. This function takes two floating-point
numbers as arguments and returns their maximum value. The reduction process
combines the values returned for all cells. Thus, the maximum value of diff for
all cells will be returned to the caller. Several predefined reduction functions,
such as min() and sum(), are provided by the system. They can also be defined
by the programmer. These functions must be associative and commutative so
they can be applied to elements and partial results in a nondeterministic order.
The reduction process can be implemented efficiently by taking into account
the underlying network architecture.

An alternative solution is to return one floating-point number for each
element of the grid. The caller is returned an array of values, and is responsible
for combining them, if needed.

2.3 Partitioning and Distribution

A suitable partitioning of each object helps the system reduce the communica-
tion overhead due to data transfer between processors: rather than transferring
the elements of an object individually, the RTS transfers data at partition gran-
ularity. The partitioning must reflect data access locality within invocations.
So far, in the definition of the grid object, we did not mention how the data
structure is distributed, because partitioning and distribution are orthogonal to
the implementation of an object. As a result, if the partitioning changes either
during the same run or from one run of an application to another, the opera-
tions on the object need not be changed. The partitioning and distribution of
an object is specified by the programmer at the time the object is instantiated.
It can be modified dynamically, during program execution.

Let us consider the example of SOR again. In the operation UpdateGrid(),
the update of an element might require the value of a remote cell. Transferring
the cells individually would be too costly. Therefore, the grid is partitioned
into sets of rows (or columns) because entire rows can then be transferred
from one processor to another. In an operation, the first time an element of
a remote partition is accessed, the entire partition is fetched by the system.
Access to another element of that same partition does not incur any additional
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communication or access overhead. How this is implemented in Hawk is
discussed in Sections 3 and 4.

In this implementation of SOR, during each iteration, all the elements of
the rows are transferred between processors. In a message passing version,
the program can be written to transfer only red or black cells of the rows,
thus half the communication volume. In general, the message passing imple-
mentation of an application would be less costly in terms of communication
volume. However, it would also require the programmer to use low-level, thus
error-prone, communication primitives whereas our model provides high-level
partitioning and distribution directives. Most DSM systems attempt to mini-
mize the communication volume during data transfer. It is not clear, however,
that the cost of automatic marshaling/unmarshaling and the size of the resulting
messages is minimal in such systems: each element must be sent along with
an identification (e.g., its indices), which requires additional space. In contrast,
with our approach, only partitions must be identified within a message.

Several predefined directives allow the programmer to partition an object
row-wise, column-wise, or block-wise and to distribute adjacent partitions to
the same processor or cyclically. A programmer can also specify arbitrary
partitioning and distribution schemes provided that each partition is an array
structure. A processor owns all partitions it is allocated. The distribution of
partitions can be changed at run-time (atomically) for example to balance the
workload.

The pseudo-code in Figure 3 shows how the grid object is partitioned and
invoked to compute a stable state of the grid. The grid is partitioned row-wise
and distributed in blocks.

With this object model, the programmer has some control over data and
workload distribution without having to worry about keeping data consistent.
Often, the programmer can find an efficient partitioning by visualizing and
analyzing data structures and access patterns. In principle, the partitioning and

#Create a partitioned object
SORgrid: grid [1..50, 1.,100];

SORgrid$$partition (ROWWISE); # Row-wise partitioning
SORgrid$$distribute (BLLOCK); # Block distribution
SORgrid$init (); # Initialize the grid data
REPEAT

# Invoke data parallel operation for each phase

maxdiff ;= SORgrid$UpdateGrid (red);

maxdiff = max (maxdiff, SORgrid$UpdateGrid (black));
UNTIL maxdiff < epsilon;
SORgrid$PrintGrid ();

FIGURE 3 A data-parallel Successive Over-Relaxation program using the grid object.



212 SANIYA BEN HASSEN et al.

distribution directives could also be generated by a compiler. In this case, the
user would only have to define the data structure encapsulated by the object
and its operations.

3 THE HAWK RUNTIME SYSTEM

Hawk is an RTS that implements the partitioned object model. Using Hawk’s
primitives, processes create, partition, and distribute objects over several
processors. The processes may call parallel and sequential operations on
objects concurrently: the RTS is responsible for keeping objects consistent
and transfers data between processors transparently to the user whenever
necessary. In this section, we first give an overview of the RTS. Then we
describe fragments and Partition Dependency Graphs. Finally, we discuss the
most important aspects of object creation and invocation.

3.1 Overview

An application program consists of processes, implemented by threads, and
partitioned objects, implemented by one fragment for each object on each
processor. To each fragment corresponds an invocation thread connected to
other invocation threads and to client processes by communication channels.
The channels are used to send and receive invocation messages and partitions
over the network.

When a process calls an operation, it sends a message to one or more invo-
cation threads of the object invoked. The thread or threads carry out the oper-
ation. They use its Partition Dependency Graph (PDG) to determine if there
are dependencies between the partitions the operation accesses and validates
their local copies as needed. PDGs will be discussed further in this section.

An operation is implemented by an operation code. For sequential opera-
tions, it is just the body of the operation and is called once by an invocation
thread, For a parallel operation, the operation code executes the body of the
operation for every element of a partition. For example, a simplified version
of the operation code for UpdateGrid() is shown in Figure 4. The body of
UpdateGrid() is applied to every element of a partition part_num, which is
an argument to the call. An invocation thread must call the operation code for
each partition owned by its processor.

Hawk’s user interface contains four categories of primitives: PDG construc-
tion, class creation, object instantiation, and object invocation. We discuss
some of the primitives in detail after describing fragments.
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void UpdateGridOpCode (object_p object,
int part_num, void **args) {

double avg, diff;

/* Initialize return values. %/

for every element [row, cel] in part.num {

if ((iscolor (row, col) = = ¢) && (row>1) && (col>1)
&& (row<N) && (col<M) {
avg= (object— state [row — 1, col]

+ object — state [row+1, col]

+ object — state [row, col—1]

+ object — state [row, col+1])/4;
diff = abs (avg — object — state [row, col]);
object — temp [row, col] =

object — temp [row, col] +
OMEGA * (avg — object — temp [row, col]);

FIGURE 4 Operation code for the operation UpdateGrid ().
3.2 Fragments

The information on the class and the set of partitions of an object handled by
a processor is called a fragment, just as a copy of a replicated object is called
a replica. A fragment consists of descriptors for an object and the operations
that can be applied to it (see Figure 5). Each descriptor is given a system-wide
unique identifier and is replicated on all processors.

A class descriptor contains the shape of the partitioned object, i.e., the
number of dimensions and the size of the elements, and an operation descriptor
for each one of its operations.

To guarantee object and operation semantics, Hawk determines how to
execute the operation depending on its type (whether the operation is sequential
or parallel and whether it updates the state of the object). The operation type is
stored in the operation descriptor along with a description of the arguments,
a pointer to the operation code, and a pointer to a PDG constructer.

An object descriptor contains the length -of each dimension of the object
instantiated, a pointer to its state, a description of its partitioning and distri-
bution, and optionally a PDG for each operation defined on the object. The
description of the partitioning includes the length of the partitions along each
dimension. For example, if a partitioned object of NxM elements is parti-
tioned row-wise, the partitions have length 1-along the first dimension and M
along the second dimension. The description of the distribution includes the
owner of each partition.

When a client process modifies the partitioning and distribution of an object,
it sends a group message to all processors. Upon reception of the message, each
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Fragment

Class Descriptor o Operation Descriptor for Op1

Shape of object - Operation Type

Op1 descriptor Description of Arguments

Op2 descriptor I Operation code

— PDG Constructor
PDG Constructor Function

Object Descriptor

Class descriptor .

Size of dimensions O_pgmn_cgde

Partitioning
Distribution
Opl PDG o State
Op2 PDG

State

FIGURE 5 Hawk keeps track of classes, objects, and operations in the descriptors shown above.

processor updates its fragment. These messages and invocation messages are
totally ordered [12]. Therefore, the update of the partitioning and distribution
information is atomic and the fragments remain consistent on all processors.

3.3 Partition Dependency Graphs

During the execution of a parallel operation, on each processor, Hawk makes
sure that all partitions accessed by a processor are consistent. If they are not,
the RTS transfers copies from their respective owners. Both the consistency
checks and the communication overhead may lead to significant performance
drops. To reduce this overhead, Hawk uses the PDGs of operations. Below
we describe PDGs and their constructors, How they are exploited by Hawk is
described in Section 4.

A PDG Gyp is associated with an operation op() of an object. It specifies the
dependencies between partitions during the execution of op(). The nodes of
the PDG are labeled with partition numbers. An edge (or dependency) (ps, pa)
from a source node p; to a destination node p, specifies that, in op(), some
element of p, depends on some element of py, i.e., the execution of op() on
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some element of p; requires access to some element in p,;. A dependency
(ps,» pa) is local if p; and p, belong to the same processor. Otherwise, it is
a remote dependency. Before executing op() on a partition py, Hawk resclves
each remote dependency of p, in the graph: for example, for each remote
dependency (ps, pa), it checks whether the local copy of p, is valid; if the
copy is not valid, the system fetches it from its owner.

Figure 6 shows the PDG for UpdateGrid() when the grid is partitioned
row-wise and distributed in blocks over three processors. The update of each
element, except for boundary ones, requires accessing neighboring elements,
which belong either to the same row or to a neighboring row. Therefore, in
the graph, there is an edge from each partition to its neighboring partitions.

Generating a PDG for an operation requires that the corresponding object
has been partitioned, because the graph defines dependencies between parti-
tions. To decide whether a dependency is local or remote, generating the graph
also requires knowing where each partition is located. Since partitioning and
distribution occur at runtime and may change during the execution of the
same application, the user (or compiler) does not provide a graph for an oper-
ation, but rather, provides a PDG constructor that is used by the runtime
system to build the graph once the object has been instantiated, partitioned,
and distributed. In addition to being independent of the object’s partitioning
and distribution, the PDG constructor must be independent of the size of each
dimension so it can be used for all instances of the same class.

In general, a PDG is constructed as follows. Let p; denote the partition an
element e; belongs to. Let G, be a PDG for op(). Initially, there are no edges

Grid Partitioning
and Distribution

PDG for UpdateGrid()

Remote Dependency

Partition P4

Partition PS5

Processor 0 Processor 1 D Processor 2

FIGURE 6 The PDG for UpdateGrid (). The grid is partitioned row-wise. Each row depends
on the neighboring rows, as shown by the PDG. Plain edges represent remote dependencies.
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in Gop. For every element e of the object, if in operation op(), ¢, depe
on element ey, then an edge (ps, pa) is added to Gp. If pg and py belong
different processors, the dependency is marked as being remote. Adding
same edge to the graph more than once has no effect. There is no edge fi
a node to itself.

Hawk provides several primitives for writing PDG constructors to cre
a PDG, add or remove dependencies in a PDG, and determine the partil
number of an element. A PDG constructor uses the dependencies betw
elements to build the dependencies between partitions: a loop goes over ¢
element of the object and determines the partition source it belongs to. |
each index expression used within the operation, the routine determines
corresponding partition dest, Then, it adds an edge from source to dest to
graph, provided that dest is a valid partition. The RTS marks the depender
as being local or remote according to the current distribution of the obij
This constructor is independent of the size, partitioning, and distribution
the object. We could also write a PDG constructor that is customized ti
particular partitioning and distribution of the grid. Such a constructor wo
be more efficient but also error-prone and less flexible since the partition
and distribution may not be changed.

The PDG constructor for an operation of an object is given with the desci
tion of the operation through a call to new.operation(). The constructor
generated by a compiler or written by the user and Hawk executes it af
the object is partitioned and distributed. If no PDG constructor is provid
by default, the system makes a conservative assumption which may not
optimal: it assumes that there are dependencies between all partitions in
object. When dependencies are resolved for the operation, all partitions .
replicated on all processors vsing collective communication.

The overhead generated by the PDG construction for an operation depet
on how often the operation is called. If the operation is called many tim
the graph construction time is negligible compared to the execution ti
of the operation. For example, for SOR, we measured an overhead rang
from 1% for a 400 x 400 matrix (470 iterations) to 3% for a 100 x 1
matrix (192 iterations). For other operations, the overhead might be mc
substantial,

3.4 Class Creation

To create a class, all processors call the primitive new..po() and give |
number of dimensions of the object and a description of each operati
(basically, all the information stored in an operation descriptor). Using t
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information, Hawk builds the class and operation descriptors on all processors
and gives them a system-wide unique identifier.

3.5 Object Creation

Given a class identifier, a client process calls new_instance() to instantiate
an object of that class and specifies the actual size of each dimension of the
object. Hawk creates the corresponding object descriptor on each processor
and returns a handle to the creator of the object. This handle may then be
used to partition, distribute, and invoke the object.

Once the object has been instantiated, a process partitions the state of the
object either by giving the length of each dimension of a partition or by
using a predefined directive. Then, the process distributes the state of the
object by mapping each partition onto one processor, which becomes the
owier of the partition. The owner of a partition retains the master copy of
it. Other copies are secondary copies. After Hawk has stored partitioning
and distribution information in the object descriptor, it executes the PDG
constructors, if any, and puts the corresponding PDGs in the object descriptor.
Hawk finally creates point-to-point and collective communication channels to
transfer partitions between processors.

The object may not be invoked before all the steps described above are
completed. Partitioning and distribution may be changed between invocations.
If the partitioning is changed, the object may not be invoked before a new
distribution is defined. Hawk executes the PDG constructors every time a new
distribution scheme is defined.

The calls to the RTS primitives for object instantiation, partitioning, and
distribution are broadcast to all processors using a totally ordered multicast
protocol [12]. In this protocol, when two messages are broadcast concurrently
to a group of processes, all of them receive these messages in the same order.
Therefore, instantiation, partitioning and distribution are atomic and performed
in the same order on all processors.

3.6 Operation Execution

Each sequential or parallel operation is classified as a read or a write operation.
A read operation does not update the state of the object; a write operation
does. If a remote partition is accessed during the execution of the operation,
the system makes sure the local copy is consistent. If not, it fetches it from
the owner. During a write operation, each processor creates a temporary copy
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of the partitions it is updating. All write accesses to owned partitions are
performed on the temporary copies. If a processor requests the copy of a
partition, the original copy is handed out. The original is the value of the
partitidn before the invocation started and is guaranteed to be consistent. All
write accesses to non-owned partitions (e.g., in a sequential operation) are
performed on the state of the object.

A read sequential operation is executed on the processor where the invo-
cation was issued (Figure 7(a)). If the local copies of the partitions accessed
by the operation are not consistent, they are fetched from their owners before
the execution of the operation code.

A write sequential operation is broadcast using total ordering of messages
(Figure 7(b)). Each processor executes the operation code once and may
update the entire state of the object. When done, the processors reach a
barrier and commit the update of the object. Results are returned from the
local execution.

A parallel operation is also broadcast to all processors (Figure 7(c)). If the
operation is a write operation, temporary copies are created for each partition
owned locally. The processors execute the operation code on the elements of
their partitions, reach a barrier, and then commit the updates. Return values
are combined during the barrier either by gathering them into a single array
structure or by reducing them.

This implementation of the operations guarantees totally ordered and atomic
execution of operations. Two concurrent invocations of an object are ordered
by the broadcast communication protocol. The synchronization phase after
each write sequential operation and each parallel operation guarantees the
consistency of partitions.

(a) Read Sequential (b) Write Sequential (¢) Parallel
Pl P2 P3 Pl P2 P3 Pl p2 P3
|
y
|
Barrier Barrier/Combine
f ' ' f ' '

FIGURE 7 Implementation of (a) read sequential operations, (b) write sequential operations,
and (c) parallel operations. There arc three processars named P, P2, and P3. A client process
on P1 issues the call to the operation.
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4 OPTIMIZING PARALLEL OPERATION EXECUTION

Accessing remote partitions is time consuming: a processor might spend most
of its time checking whether the elements it needs to access are consistent or
blocked waiting for copies of partitions to be transferred. To reduce consis-
tency checking overhead, Hawk uses PDGs so that the consistency of a parti-
tion is checked only once rather than every time one of its elements is accessed.
The latency for transferring partitions between processors during the execution
of an operation also leads to a critical performance issue. To hide communi-
cation latency, Hawk prefetches data as early as possible during the execution
of a parallel operation and overlaps communication and computation.

This section discusses consistency checking and communication latency
hiding in more detail. First, we present the communication protocols Hawk
uses to transfer partitions between processors. Second, we show how Hawk
executes parallel operations in a way that reduces communication overhead.
The protocols and primitives discussed in this section are not part of Hawk’s
user interface but are used only within the RTS to execute parallel operations
on objects.

4.1 Protocols for Data Transfer

A status field is associated with each partition that tells whether the partition
is consistent or not. The status field can take one of three different values:
consistent, inconsistent, or in transfer. The copy of a consistent partition can
be accessed immediately. If a partition is inconsistent, the original copy of
the partition has been updated by its owner and the local copy has been
invalidated; the original copy must be fetched before the partition is accessed.
If a partition is in transfer, the original copy of the partition has been updated
by the owner; a consistent copy has been requested by the system and is on
its way.

Hawk supports three reliable protocols to transfer partitions between proces-
sors: a receiver-initiated protocol, a sender-initiated protocol, and a collective
protocol. With the receiver-initiated protocol, a processor requests a valid copy
of a partition from the owner whenever it needs to access the partition and
its own copy is out of date. If (based on the PDG) the owner knows which
processor will need the copy, it can use the sender-initiated protocol and send
a copy of the partition without waiting for a request. This strategy saves a
request message and it allows the owner to broadcast a partition when several
processors need it. Hawk also supports a collective protocol to replicate the
entire state of an object on one or on all processors. It is used when one or
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more processors access a large number of partitions. All primitives fo
transfer are nonblocking and must be followed by a call to a synch:
primitive to check whether transfers have ended.

The protocols described above are low-level protocols for partitic
between processors. Hawk also uses high-level primitives to transfer
using a PDG, These procedures are briefly discussed below. They
during operation execution to validate and control access to data.

If op() is an operation of object obj, pdg-send (obj, op, p) send.
p to all processors that need the partition during the execution of
do so, it traverses the PDG of op() and for each remote dependen
it sends a consistent copy of p to the owner of r using the sende
protocol. If all processors issue a call to pdg_send {(obj, op, p)
owned partition p, eventually, all remote dependencies of r will b
on the processor that owns r. A call to pdg_fetch (obj, op, p) als:
dependencies for p but uses the réceiver-initiated protocol. For ea
dependency (p, r) in the PDG of op(), if the local copy of r is
requests a valid one from its owner. The primitive pdg_access (o
blocks until the local copies of all p’s remote dependencies are val

4.2 Parallel Operation Execution

During the execution of an operation, the system applies the oper:
to each partition owned by a processor in turn. For each partitic
the PDG of the operation to make sure all the partition’s depende:
been resolved. Instead of performing consistency checks before acce
remote element, the runtime system uses the PDGs to perform c
checks before accessing each remote partition. This increases the g
for managing data consistency and reduces access overhead.

Furthermore, Hawk uses PDGs to overlap communication and cos
In such cases, it prefetches remote dependencies early during the
of an operation while executing the operation code on partitions th:
remote dependencies.

Hawk uses one of three prefetching strategies: no-prefetch
prefetching, and partial-prefetching. Below, we describe each o1
Each strategy is implemented independently from the operation
system allows other strategies to be defined and provided by the -
ones already available in Hawk are not appropriate {9].

Execution without Prefetching. In this strategy, there is no .
computation and communication. It is available for experimental
We use it in Section 5 to measure the effectiveness of other strateg
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Assume that processor P owns 1 partitions that have only local dependencies
and r partitions that have remote dependencies. The partition numbers are
stored respectively in arrays L and R. In this strategy, Hawk first executes the
operation code on each L[i]. Because the dependencies of each L[i] are owned
by the local processor, there is no need to check their consistency. Then, for
each R[], it fetches copies of the partitions R[i] depends on. When their local
copies are validated, it executes the operation code on RJi]. The algorithm for
a no-prefetching strategy is shown in Figure 8.

Execution with Full Prefetching. This strategy attempts to hide communi-
cation latency by overlapping communication and computation. While remote
dependencies are being resolved, the system executes the operation code on
partitions that have no remote dependencies. The system uses the sender-
initiated protocol for partition transfers. Upon invocation of an object, a
processor P first sends all the partitions it owns to processors that need their
copies. While the transfer is being carried out, the operation code is applied
to all partitions L[i] since these do not require transfer of data. Then, for each
partition R[i], P waits until the partitions R[i] depends on are consistent and
then executes the operation code on R[i]. The algorithm for this strategy is
shown in Figure 9. :

for (i=0:i<1; i4++4)
/# Execute operation code on LJ[i]. #/
(*op) (obj, L[i}, args);

for(i=0; i<r i+4){
/# Fetch R [i]’s remote dependencies. #/
pdg..fetch (obj, op, R[i]);
/# Wait for end of transfer. %/
pdg-access (obj, op, R[i]);
/# Execute operation code on R[i]. =/
(+0p) (obj, Ril, args);

)

FIGURE 8 Executjon of a parallel operation op () with no-prefetching.

/* Send R[i] to processors that need it. %/
for i=0; i<r i++)pdg_send (obj, op, R[i])
/* Send L[i] to processors that need if, */
for i=0; i<1; i+4-)pdg_send (obj, op, L[i]);
for i=0; i<, i++)
/# Execute operation code on Lfi]. =/
(+ op) (obj, Lfi], args);
for i=0; i<r i++){
/* Wait until R[i]’s dependencies are resolved. */.
pdg-access (obj, op, R[i]); '
/# Execule operation code on R{i]. %/
(* op) (obj, R[i], args);

FIGURE 9 Execution of a parallel operation op () with full-prefetching.
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if (r >= 1) pdg_fetch (obj, op, R[1]);
forti=1i<1;i4++4)
/* Execute operation code on Lfi]. */
( op) (obj, L[i], args);
fori=1i<=ni++){
/* Wait until R[i}’s dependencies are resolved. %/
pdg-access (obj, op, R[i]);
/#* Prefetch dependencies for next partition. #/
if (i<r) pdg-fetch (obj, op, R[i+1]);
/* Execute operation code on R[il. */
(* op) (abj, R[i}, args);
)

FIGURE 10 Execution of a parallel operation op () with partial-prefetching.

Execution with Partial Prefetching. In the full-prefetching strategy, all
partitions are sent by all processors at the start of the operation. This may yield
to network contention and actually slow down the execution of the operation
in communication intensive applications. For such applications, an alternative
strategy resolves dependencies for one partition at a time rather than for all
of them at once (see Figure 10). The RTS transfers partitions to resolve the
dependencies of R[i+1] while executing the operation on R[i]. This strategy
uses a receiver-initiated protocol since the receiver must control the moment
at which it needs partitions to be transferred.

5 PERFORMANCE

‘We have implemented a prototype of Hawk on top of Amoeba [24] on a
network of workstations connected by a 10 Mbps switched. Ethernet. The
processor boards are SPARC classic clones running at 50 MHz with 32 MB
of RAM. To increase network bandwidth, multiple Ethernet segments are
connected by a cross-bar switch,

This section describes performance measurements on SOR and FFT. In both
applications, objects are created, instantiated, and called using the runtime
system primitives. Although (or because) on our system, both applications
do not scale well to a large number of processors, the experiments show the
benefits and the limits of prefetching.

5.1 Successive Over-Relaxation

The first experiment compares the flexibility and performance of an Orca
program with those of the same program using partitioned objects. For that,
we have written two versions of SOR with red/black partitioning: one in Orca
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(using Orca objects) and one in the extended version of Orca that supports
partitioned objects. Using Orca objects, the grid is partitioned manually. Each
processor contains a number of adjacent rows, that are stored in local data.
Before each iteration, neighboring processes exchange boundary rows, using
shared objects for communication. The version that uses partitioned objects is
shown in Figures 2 and 3. We obtain similar performance behaviors with the
two programs: the difference in response time is less than 1% for matrices of
100 x 100, 200 x 200, 300 x 300, and 400 x 400 elements. In the Orca version,
as we explained above, row-wise partitioning of the grid is hard-wired into
the program. Changing the partitioning (e.g., to port the program to another
type of machine) would require many changes to the source code. In the
version using partitioned object, only the partitioning directive would have to
be changed and its arguments can be given as an input to the program. We
conclude that, in this case, we have gained ease of programming and flexibility
without loosing performance,

The second experiment illustrates the benefits of prefetching in Hawk.
Figure 11 shows the response time of two implementations of SOR with
partitioned objects, one that uses full-prefetching and one that uses no-
prefetching. Each variant of the program was executed on a grid of four
different sizes partitioned row-wise and distributed in blocks. Prefetching
performs better in all experiments® The relative effectiveness of full
prefetching, however, varies from less than 5% to more than 30%.

There are several explanations for these large differences in performance
gain. A first one is the amount of computation carried out during an opera-
tion. Even when prefetching eliminates the idle time of the invocation threads
entirely, prefetching has relatively little effect if the computation time of an
operation is very large.

The large differences in performance gain are also due to the fine-grained
nature of the algorithm. If the computation carried out on each partition is
large enough, the invocation thread is never idle, waiting for remote partitions
to be transferred. If the computation part is not large enough, however, the
invocation thread may become idle for a certain amount of time. In Figure 11,
if the- grid size is small, the computation time is short, and therefore, the
gain of prefetching is small. As the grid size increases, the computation time
increases and prefetching becomes more effective.

Finally; the effectiveness of prefetching is limited by network bandwidth. As
the operation response time is reduced or the number of processors increases,

3Fora large number of processors, the poor speedup is due to the high latency of interprocessor
communication on the experimental platform we used.
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FIGURE 11 Performance of SOR executed with full-prefetching and with no-prefetching.

more partitions are transferred at a higher rate and require a higher band-
width. If this additional bandwidth is not available, prefetching may even be
counter-productive because it overloads the network. (This has been pointed
out in earlier publications, e.g., see [20].) In the full-prefetching strategy,
overloading of the network is increased because all threads initiate the trans-
fers right after receiving the invocation message sent by the caller of the
operation. Therefore, prefetching starts approximately at the same time on all
processors. In this case, we can expect the network to become a bottleneck.

Figure 12 shows the performance of SOR for different matrix sizes on
8 processors using the three strategies: no-prefetching, partial-prefetching,
and full-prefetching. The response times are scaled to 1 to improve the read-
ability of the graph. In all cases, full-prefetching is the most efficient strategy
and no-prefetching the least efficient one.

5.2 Fast Fourier Transform

FFT maps n complex values to n other complex values using a linear trans-
formation. We have implemented FFT by encapsulating the complex values in
a partitioned object vector. The transformation is applied by calling a parallel
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3URE 12 Response time of SOR (scaled to 1) on eight processors using the three prefetching
ategies,

reration transform() iteratively. Each processor holds a distinct part of the
ctor and applies the transformation on that part. In transform(), communi-
tion patterns are dynamic. Therefore, a new PDG is generated before every
Ntoit.
In the operation transform(), all dependencies between partitions are remote
ies. Therefore, the simplest and most intuitive partitioning of the vector is
define as many partitions as processors and map one partition on each
ocessor. A better partitioning scheme is to allocate more than one partition
r processor. This allows to overlap the update of one partition while the
:pendencies of others are being resolved. We executed the program five
nes on 8 processors, each time dividing the vector in respectively, 8, 16, 32,
b, and 128 partitions. Each processor was thus allocated, respectively, 1, 2, 4,
and 16 partitions. If the number of partitions held by a processor is larger,
e potential for overlapping communication and computation increases. On
e other hand, the overhead for managing the PDGs and the startup costs for
nding partitions over the network also increase.
We executed FFT with the no-prefetching, full-prefetching, and partial-
-efetching strategies on a vector of 2! complex numbers on eight processors
ee Figure 13). If there is no overlap of computation and communication,
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FIGURE 13 Performance of FFT on 217 complex numbers using the three prefetching strategies.

a finer-grained partitioning does not increase the efficiency of the appli-
cation. In Figure 13, no matter how many partitions there are, the execu-
tion with a mo-prefetching strategy leads to the same response time. With
full-prefetching and partial-prefetching, the response time decreases as the
number of partitions increases, i.e., as the potential for overlap increases. The
partial-prefetching strategy increases the execution time of FFT by up to
9.4% when compared to the execution without prefetching. Unlike in SOR,
the full-prefetching strategy is not the most effective one because FFT has
a high bandwidth requirement: for several iterations, the entire data structure
is sent over the network (each processors sends its partitions to one other
processor). Additionally, in this experiment, the input size is very large, thus
a large amount of data is sent over the network.

6 RELATED WORK
Munin [5] and TreadMarks [1] are page-based DSM systems that implement

shared memory with multiple consistency semantics on top of a loosely-
coupled distributed system. The systems use memory management hardware
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to detect whether pages are locally consistent or not. When a variable stored
on an invalidated page is accessed, a page-fault occurs and the system fetches
the page on which the variable is stored (or the parts of the page that have
been updated since the last transfer). Therefore, like in our runtime system,
Munin and TreadMarks reduce the overhead for accessing inconsistent data.
The advantage of such systems is that partitioning of objects (into pages) is
done transparently to the user. On the other hand, the page size is fixed and
the mapping of data onto pages is nontrivial and may be inappropriate, as
illustrated in [16].

LCM (Loosely-Coherent Memory) [14] is a DSM system with a finer-
grained memory access control than Munin and TreadMarks. Pages are divided
into blocks. Access to an invalidated block causes a page access fault, followed
by a block access fault, which in turn causes a block “reconciliation.” Blocks
are not reconciliated collectively. A block may not span multiple pages. There-
fore, mapping objects onto pages is still a critical issue. If block faults are
implemented in hardware, LCM also incurs less overhead than our runtime
system which checks for the consistency of partitions using a procedure call,
On the other hand, because they use hardware mechanisms, systems such as
LCM, Munin, and TreadMarks are less portable than our system, which only
uses software techniques. Furthermore, these systems are less flexible since
they do not allow collective transfers or sender-initiated transfers of pages.

Midway [4] is also a DSM system that offers several consistency semantics
for shared data. Unlike Munin, TreadMarks, and LCM, Midway is entirely
software based and relies on compile-time support to manage the consis-
tency of shared data. This software implementation avoids the problem of
false sharing. In some instances, it also decreases the time spent in crit-
ical sections, when invalidated data items are accessed: in page-based DSM
systems, accessing such items would generate a time consuming page-fault,

Most other optimization techniques are used in compile-time optimizers
that are implemented on top of message passing platforms such as MPI [6].
Compilers for data-parallel languages, such as the FORTRAN D compiler [7]
and Ptran II [11], use message vectorization and message coalescing to reduce
communication latency and consistency checks. Using these techniques, a
compiler detects remote data dependencies and places communication state-
ments in the target programs to fetch or send remote data using the least
possible number of messages. Some compilers carry out a data-flow analysis
of programs, in addition to dependence analysis, to overlap communication and
computation [13]. They pull communication statements out of loops whenever
possible and use nonblacking communication to transfer data. These tech-
niques are the most efficient when used with statically allocated distributed
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structures so that the compiler knows the exact shape of the objects, t
distribution, and the number of processors that will execute the applicatic

For dynamically allocated distributed arrays and irregular communica
patterns, there exist techniques such as inspectors/executors [19,21,22]. F
for each data-parallel computation, an inspector analyzes access pattern
generate communication schedules. These schedules reduce communica
overhead by aggregating messages and eliminating redundant transfer:
elements. Before carrying out the computation, an executor uses the comm
cation schedules to move data-elements between processors and then perfc
the computation. Inspectors/executors are similar to the PDG constructors
traversal procedures supported by Hawk. However, because the granuli
of data transfer in our system is a partition (as opposed to an elem
Hawk allows more flexible execution strategies for parallel operations
less overhead. For example, it is easier to tune the overlapping of com
nication and computation by simply modifying the size of the partitions
the application) or the order in which partitions are updated (in the F
(see [9] for a more detailed description of the operation execution mode
Hawk). To the best of our knowledge, reordering the execution of a par
statement on elements of an array to improve the overlap of computation
communication has not been implemented in other systems. On the c¢
hand, to use our RTS, compile-time optimizers or parallelizing comp
would have to automatically find suitable partitioning and distribution st
gies of arrays to exploit this potential if directives are not provided by
‘user. This can easily be done for applications with static access pattern:
our model, when access patterns are dynamic, the programmer may spe
data-dependencies.

7 CONCLUSIONS AND FUTURE WORK

‘We have described partitioned objects and PDGs, a model and a runtime m
anism used to reduce the overhead for handling communication and co:
tency in parallel programming systems. The partitioning of objects incre
the granularity of data consistency management. PDGs help optimizing co:
tency checks and data transfers transparently to the user while hiding con
nication latency by prefetching data.

We have described Hawk, a runtime system for partitioned objects. U
two applications, we have shown that our prefetching mechanism is effec
We obtained a performance gain of 5% to 30% for SOR and over 9%
FFT. From the experiments presented in this paper, we conclude tha



DATA PARALLELISM 229

effectiveness of prefetching during the execution of an operation depends on
three factors: the amount of computation, the amount of communication, and
the bandwidth requirement. For communication intensive applications, full
prefetching may not be as effective as partial prefetching if the additional
bandwidth required by full prefetching is not available.

As mentioned in the introduction, our goal is to integrate the partitioned
object model with the Orca shared object model to support mixed task- and
data-parallelism in a single programming model and system [10]. The Orca
compiler has been modified to support partitioned objects and generate PDG
constructors for applications with static access patterns. In the future, we will
look at how the compiler can generate efficient PDG constructors for dynamic
access patterns as well.
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