Simple Crash Recovery in a Wide-Area Location Service

G. C. Ballintijn
Fac. of Sciences
Vrije Universiteit
Amsterdam
The Netherlands

Abstract

We are building a wide-area location service that
tracks the current location of mobile objects. The
location service is distributed over multiple nodes to
support 10'2 objects on a worldwide scale. Chang-
ing information in the location service usually involves
multiple nodes. If any of these nodes crashes while
the information is modified, information can be lost
and the location service can become inconsistent. To
recover the lost information and resolve these incon-
sistencies, we invented a crash recovery method. The
method consists of executing lost operations a second
time. We show that if we focus on creating a new
consistent state, instead of completely restoring the
state before the crash, recovery becomes simple and
efficient.

Keywords: crash recovery, fault-tolerance, wide-area
distributed systems.

1 Introduction

Mobility has become increasingly prominent in in-
formation networks [1]. We use the term mobile ob-
ject to refer to a hardware or software component in
a network that changes its location. Since the loca-
tion of a mobile object may change often, an efficient
way is needed to obtain its current location. A loca-
tion service is a directory service that is designed to
track the location of mobile objects, and provide this
information efficiently.

A location service in a wide-area network is likely to
be distributed across multiple nodes. Updating the in-
formation on an object might therefore involve several
nodes. This makes a global modification algorithm
susceptible to node crashes, which in turn could intro-
duce inconsistencies between those nodes.

As part of our research on a worldwide distributed
system called Globe [2], we are building a wide-area
location service. The global modification algorithm

M. van Steen
Fac. of Sciences
Vrije Universiteit

Amsterdam
The Netherlands

A. S. Tanenbaum
Fac. of Sciences
Vrije Universiteit
Amsterdam
The Netherlands

used by our location service always succeeds in modi-
fying the (distributed) state, even if one or more of the
nodes involved in the modification crash. In this pa-
per, we show that by designing our service to use oper-
ations that are idempotent, commutative, and atomic,
we can eagily solve consistency problems due to node
crashes. In particular, crash recovery generally does
not require extra accesses to disk, and only a little
extra communication is needed in the recovery phase.
The focus of this paper is on dealing with inconsistent
distributed state; we intend to use existing techniques
to deal with media failures and other problems with
persistent storage.

The rest of this paper is organized as follows. Sec-
tion 2 provides an overview of our location service.
Section 3 describes how location information is up-
dated in the location service. Section 4 then explains
how the update algorithms deal with node crashes.
Section 5 compares our approach to the work of oth-
ers. We draw our conclusions in Section 6.

2 A Wide-Area Location Service

Globe uses object handles to refer to objects. An
object handle refers to an object throughout the ob-
ject’s entire life time. It is location independent, and
therefore does not change when the designated object
moves to a different location or when the object is
replicated. However, we need to know an object’s con-
tact address to communicate with it. Since objects
are often replicated to increase availability and per-
formance, a single object can have multiple contact
addresses at the same time, one for each replica. A
traditional naming service can be used to bind human
friendly names to object handles.

Our location service is used to map an object handle
to one or more contact addresses [3]. Our current de-
sign goal is to support 10'2? objects owned by 10° users,
and still allow large numbers of update and look-up

requests to be handled. Since the location service is
distributed across a wide-area network, it should deal
gracefully with node failures, network partitions, and
(long) communication delays.

To efficiently update and look-up contact addresses,
we organize the underlying wide-area network as a hi-
erarchy of domains, similar to the organization of
DNS. For example, a lowest level domain may rep-
resent a campus-wide network of a university, whereas
the next higher level domain represents the city where
that campus is located. Each domain is represented in
the location service by a directory node. Together
the directory nodes form a worldwide search tree.

A directory node has a contact record for every
object in its domain. A contact record contains a num-
ber of contact fields, one for each child node. A
contact field stores either a forwarding pointer or
the actual contact addresses. A stored contact address
corresponds to a contact point in the child’s domain.
A forwarding pointer indicates that contact addresses
can be found at the child node. The contact addresses
in the contact field are stored in a set. Every con-
tact address is therefore unique in the contact field. A
leaf node has only one contact field storing the contact
addresses from the leaf domain.

Every contact address has a path of forwarding
pointers from the root down, pointing to it. We can
always locate a contact address by following this path.
In the normal case, contact addresses are stored in the
leaf node. However, storing addresses at higher level
nodes may, in the case of high mobility, lead to con-
siderably more efficient look-ups, as we explain in [3].

Figure 1 shows an example of a tree for one specific
object. In this example, leaf node N3 stores contact
addresses. A path of forwarding pointers therefore
exists from root node NO, via N1, to leaf node N3.
Node N1 stores, besides the forwarding pointer, also
addresses from the domain of leaf node N2.

D Empty contact field

Contact field with forwarding
pointer

[«]

. Contact field with
address(es)

Figure 1: The organization of contact records in the
tree for a specific object

To ensure the proper operation of the location ser-
vice, the distributed search tree must adhere to cer-
tain consistency rules. Every update operation must
transform a consistent tree into a new consistent tree.
For our discussion here, the following rules must be
obeyed:

1. A contact field must never store both a contact
address and a forwarding pointer.

2. Every forwarding pointer must point to a child
node which stores contact addresses or forwarding
pointers.

3. If a node stores contact addresses or forward-
ing pointers, its parent must store a forwarding
pointer pointing to that node.

The implication of the first and third rule is that on
a path from the root to a leaf there is only one node
where contact addresses are stored. The third rule en-
sures that a contact address can always be found by
following a path of forwarding pointers. Both implica-
tions apply, however, only if no update operations are
in progress in the tree.

Communication between between nodes, and be-
tween clients and leaf nodes is based on Remote Proce-
dure Calls (RPC). We use a special form of concurrent
RPCs that allows new operations to be started while
waiting for the current operation to finish. The exe-
cution of an RPC usually involves performing another
RPC at the parent, which leads to a chain of RPCs
from the leaf upwards, possibly to the root. Problems
arise when any node in the chain of RPCs crashes. The
update operation will have been performed only by
some nodes, which produces inconsistencies between
nodes.

The focus of this paper is how our location service
deals with this problem. It shows how global update
operations continue after a node crash, and upon com-
pletion leave the tree in a consistent state with the op-
eration performed. Look-up operations do not affect
the consistency of the tree. We have therefore only to
ensure progress for look-up operations in the face of
broken links and node crashes. In practice, this prob-
lem is easy to solve, for which reason we omit further
discussion.

3 Update Operations

To explain the crash recovery of update operations
in the location service, we first need an understanding
of the update operations themselves.

3.1 Update Operation Structure

The insert operation is illustrated in Figure 2 and
3. It consists of an upward phase in which the proper
level to store the contact address is decided (Figure
2), and a downward phase in which the path of for-
warding pointers is created and the contact address is
inserted (Figure 3). Deciding where to store the con-
tact address is itself distributed over the nodes on the
path from the leaf to the root. The general mecha-
nism is that a node decides for itself whether it should
store the contact address, and asks its parent to agree.
The parent then agrees with or overturns the node’s
decision.

The upward phase starts at the leaf node of the do-
main to which the contact address belongs. The leaf
node makes a preliminary decision whether it wants
to store the contact address, and informs its parent
of its decision. This process is recursively repeated
at every node on the path to the root. An interme-
diate node makes its preliminary decision based upon
on its child’s request and its own desire to store the
contact address. The recursion stops as soon as a node
is reached that already stores contact addresses or for-
warding pointers, or otherwise at the root.

(2 Request arrivesat
node with nonempty
contact record

Both nodes want to
store the address

N

I [0 [W

(@ ! Requesttoinsert contact
address at leaf node

Figure 2: Insert operation upward phase

The downward phase starts at the node at which the
recursion stopped. This node stores either the contact
address or a forwarding pointer, and informs its child
what was stored. The child node decides what to do
itself using its parent’s reply and its own preliminary
decision. If the contact address was stored higher up
in the tree, the child stores nothing. If the child wants
to store the contact address itself, it inserts the contact
address. Otherwise, the contact address is to be stored
in the subtree rooted by the child’s child, and the child

inserts a forwarding pointer. The child node then, in
turn, informs its own child what was stored. This
process is repeated at every node on the path to the
leaf. The insert operation is completed after the leaf
node has performed its action.

(3 Forwarding pointer
isinstalled

(@ Node decidesto
store address

0 [0J [0 M

(5 Contact record at |eaf
node remains empty

Figure 3: Insert operation downward phase

The delete operation consists of finding the node
where the contact address is stored, deleting the con-
tact address, and deleting the path of forwarding
pointers. A delete operation starts at the leaf node
of the basic domain where the contact address was in-
serted. It searches the contact address at the nodes
on the path to the root. When the delete operation
finds the contact address, it removes the contact ad-
dress from the contact record. If the contact record no
longer contains contact addresses or forwarding point-
ers, the path of forwarding pointers to it is recursively
removed upwards. The delete operation is completed
after a node is reached that also contains other contact
addresses or forwarding pointers, or otherwise at the
root.

Each update operation at a node consists of three
phases.

1. Modify the contact record in main memory only.
This modification is called tentative.

2. Inform the parent of the modification. This allows
the parent to make its own modifications.

3. Make the modification permanent or discard it.
Making the modification permanent or discarding
it, makes the contact record authoritative.

Only the insert operation decides whether to make
its modification permanent or to discard it. The delete
operation always makes its modification permanent.
The node informs the parent of its tentative modifi-
cation by requesting the parent to insert either a for-

warding pointer or the contact address. However, if
the parent decides to store the contact address itself,
the node is forced to discard its tentative modification
in the third phase.

After the third phase, the node sends the RPC reply
which locally completes the operation. However, we
need not wait until an update operation is completed
before making the tentative result available to look-up
operations. The modification made in the first phase
concerning the contact address is valid; it may just be
tentatively stored at the wrong level.

3.2 Concurrency

A node can receive concurrently multiple update
requests from its children. If these requests use dif-
ferent object handles, the requests can be handled in-
dependently, as every object handle has its own con-
tact record independent of all other object handles.
However, if requests use the same object handle, some
form of mutual exclusion is needed. The location ser-
vice uses a special form of mutual exclusion, described
below. The method behaves differently, depending on
whether the requests came from the same child or from
different children.

If the update requests came from the same child
node, the child node sent them in some specific order.
This order needs to be maintained for the tree to re-
main consistent. If, for example, a delete is followed
by an insert request, the result is (generally) that a
forwarding pointer is inserted. Changing the order
would result in inserting a forwarding pointer which is
then immediately deleted, possibly violating the third
consistency rule.

Nodes maintain the order of updates by adding a
sequence number to every RPC request. The receiving
node schedules the requested operations in sequence.
During the execution of an operation, the operation
holds a lock on the contact record used. The opera-
tion, however, is required to release this lock when it
blocks while performing an RPC. This allows the next
operation to be run. When the RPC is finished, the
blocked operation can continue after acquiring the lock
again. Operations continue after an RPC in the same
order as they started the operation. The operations
thus run concurrently in a pipelined fashion.

If the update requests came from different child
nodes, a random ordering is used. This does not affect
consistency, since the update operations modify differ-
ent contact fields. It can however influence the final
state of the tree, as shown in Figure 4.

3.3 Availability

The location service is highly available in the face
of network partitions and unavailable (crashed) nodes.
This availability comes from its use of concurrent
RPCs and the use of tentative results in update oper-
ation. If, for instance, a subtree is cut off from the rest
of the search tree, operations in the subtree can still
continue. Update operations are effectively queued at
the root node of the subtree, while waiting for the
connection to be restored. Tentative results will, how-
ever, be available for look-up operations from the sub-
tree. Availability for look-up operations can easily be
improved further by using a form of primary-backup
replication analogous to DNS.

4 Crash Recovery

The purpose of the recovery mechanism is twofold:
(1) it corrects the inconsistencies created by a node
crash during an update operation, (2) it allows up-
date operations to complete, even though nodes crash
during the execution. The recovery mechanism must
deal with lost RPC requests and replies, and with RPC
chains severed when the node crashed after having sent
update requests to its parent. The node loses all ten-
tative changes, but the parent (unaware of the crash)
still modifies its own contact record. The severed chain
of RPCs thus results in some nodes performing their
part of the update operation, while other nodes do not.
This may result in inconsistencies in the tree. Figure 5
shows how a partly executed delete operation creates
such an inconsistency.

4.1 Assumptions

Our model assumes a fail-silent system [4]. That is,
a faulty node just stops sending messages and crashes;
no erroneous messages are sent before the crash. The
node is rebooted after a finite amount of time. Since
the focus of this research is on resolving inconsistencies
in the distributed search tree, we assume disk writes
are atomic and that disks are not affected by a node
crash. A node crash therefore results only in the per-
manent loss of main memory, and thus all tentative
modifications. We intend to use existing techniques to
implement this model.

4.2 Recovery Mechanism

The central notion of the recovery mechanism is
that the children of the recovering node have all the
information required for the recovery. The problem of
lost messages and inconsistencies is solved by having

delete N insert

'
' \

2| i L] |]
' '

delete Fequ&st insert Fequ&st
a) Initial situation

b) Insert executesfirst

|]]

c) Delete executesfirst

Figure 4: Race condition between a delete and an insert operation.

the children retransmit their outstanding requests and
the recovering node perform the requested operations,
possibly again. No separate correction phase is used.
The recovery mechanism is in essence a form of sender-
based message logging [5].

After the crash, the recovering node enters the re-
covery phase, and informs its children it is recovering
from a crash. Each child then retransmits its outstand-
ing requests in their original order. These requests will
be executed (almost) normally by the parent, as we
describe below. After all children have retransmitted
their old requests, they continue with sending new re-
quests. The recovery phase is finished when all incon-
sistencies have been resolved, which we also describe
below.

4.3 Resolving Inconsistency

The recovering node resolves inconsistencies by sim-
ply executing the operations again that created the
inconsistencies. The important thing to note is that
these operations are not treated as something special.
Instead, the recovering node informs its parent of its
intended modification as it would normally do, and
awaits the parent’s answer. The parent, in turn, will
use its current version of the contact record, and report
back to the recovering node as usual. In other words,
by simply replaying the lost operations, as if nothing
had happened, we can show that the tree eventually
enters a consistent state again.

How can this be? Basically, we force the recover-
ing node and its parent to become mutually consistent
again. Consider first the situation of re-executing an

insert operation at the recovering node. If its associ-
ated contact field at the parent already stores contact
addresses, the parent will store the new contact ad-
dress, and the parent will tell the recovering node to
discard its modification. If the contact field already
stores a forwarding pointer, the parent will tell the
recovering child to store the contact address. If the
contact field is empty, the parent can choose what to
do, and subsequently tell the recovering node what it
should do.

Now consider the situation when the recovering
node re-executes a delete operation. If the delete oper-
ation was already executed by the parent, the parent
will find the associated contact field empty. In that
case, the parent can simply tell the recovering node it
has completed its part of the operation, as usual. If
the parent did not receive the delete request before, it
will simply perform the delete operation as usual.

Unfortunately, during the recovery phase the re-
transmitted operations have to deal with the incon-
sistencies between the two contact records. These in-
consistencies are violations of consistency rules two (a
forwarding pointer pointing to an empty child node)
and three (a nonempty contact record without a for-
warding pointer at the parent). Consistency rule one
applies to the local contact record only, and therefore
can be violated by a node crash.

The delete operation behaves correctly when faced
with these inconsistencies. The correct execution of
the insert operation is, however, threatened. Nor-
mally, a node decides to inform its parent of an inser-
tion using information from its own contact record. If

Tentative state

AN /

o [601] [40]

N1 .

Authoritative state

(3 Node NO deletes

pointer —

(2 NodeN1deletes /
pointer '

(1) Leaf N2deletes

Delete operation
a) Initial situation

(4) Node NO makes delete
authoritative e

(6) Replyislost

(5 Node crash

0] (O{0]

¢) Node N1 crashes, losing its tentative state

address /

I
'

0] [O0]

b) The nodes have a tentative result

— @

Inconsistency

(7) Node N1 restores l

authoritative state

0] (O0){0]

d) Inconsistency between nodes NO and N1

Figure 5: Occurrence of inconsistency

the contact record already contains contact addresses
or forwarding pointers, the parent is assumed to have
a forwarding pointer, and the node does not contact
its parent. However, if the two contact records are not
consistent (as shown in Figure 5d), the insert opera-
tion would incorrectly assume the forwarding pointer
exists, and stop prematurely.

To deal with this kind of inconsistency, the recov-
ering node behaves differently in the recovery phase
in the following way: The node always forwards insert
requests to its parent, instead of only when the node
inserts the first contact address or forwarding pointer
in the contact record. It is possible that the parent in-

serts the forwarding pointer for the second time, but
this is not a problem given the idempotent nature of
inserting a forwarding pointer: only one forwarding
pointer is stored.

The recovery phase is implemented by distinguish-
ing the RPC requests resent after a node crash as re-
covery requests. A child node sends a special end-
recovery-phase message to signal the end of its re-
covery requests. If the recovering node has received
end-recovery-phase messages from all it children, it
knows that when all currently running operation are
finished, its contact records are consistent with the
ones at its parent.

4.4 Correctness

This scheme works for three reasons: the modifi-
cation due to an update operation is made perma-
nent atomically, the modification is idempotent,
and modifications from different child nodes are com-
mutative.

The modified contact record is saved to disk in an
atomic fashion. The node has either saved the modi-
fied contact record in the last phase of the update op-
eration, or it crashed before saving. Contact records
on disk are therefore never corrupted by a node crash.
Since a contact record is saved to disk with one atomic
write operation, the recovery mechanism does not have
to worry about inconsistencies within a node.

The modifications to the contact record are idem-
potent, since contact fields use sets to store contact ad-
dresses, and a forwarding pointer is basically a boolean
value. Inserting a contact address in or deleting it from
the contact field for a second time does not change
the contact field. Setting or clearing the forwarding
pointer a second time does not change the contact field
either. Being idempotent allows the modifications to
be redone without adverse effects. The idempotency
also applies to groups of operations, since the update
operations are retransmitted in the original order and
for every contact address or forwarding pointer only
the last operation (insert or delete) really matters.

The modifications requested by different child
nodes are commutative, since the different children
operate on different contact fields. Requests retrans-
mitted by different child nodes therefore do not inter-
fere. However, the final result can be different than ex-
pected before the crash, since the ordering of request
of two children can be different during the recovery.
This is not a problem, since the issue is not whether
we restore the original state, but instead, that we end
in a consistent state. As shown in [6] our scheme also
works for multiple node crashes.

4.5 Leaf Nodes

Every leaf node has a persistent message log to store
incoming update requests from clients of the location
service. This is needed, since we do not want to place
the responsibility of retransmitting lost requests on the
clients of the location service. The RPC mechanism
saves every incoming request to the log before handling
it. When the operation is completed, the request is
deleted from the log. A possible way to minimize the
overhead of logging is the use of non-volatile RAM. A
leaf node replays its message log during the recovery
phase after a crash.

5 Conclusion

The use of sender-based message logging provides a
way to easily implement crash recovery in our location
service. Based on inherent properties of the system,
such as idempotent and commutative set-like opera-
tions, the crash recovery basically comes for free. In
contrast to a more heavy-weight general crash recov-
ery mechanisms [7], which attempt to restore the lost
state, no special correction phase is needed. The same
operations that have to be executed anyway, are used
for recovery. Our simple solution allows for efficient
and scalable update operations. To validate our ideas
we have built a prototype of our location service. Fu-
ture work will consist of performing measurements on
this prototype.

References

[1] G. Forman and J. Zahorjan, ”The Challenges of
Mobile Computing,” Computer, vol. 27, nr. 4, pp.
38-47, Apr. 1994.

[2] M. van Steen, P. Homburg, and A. S. Tanenbaum,
?Globe: A Wide-Area Distributed System,” IEEE
Concurrency, pp- 70-78, Jan. 1999.

[3] M. van Steen, F. J. Hauck, P. Homburg, and A. S.
Tanenbaum, ”Locating Objects in Wide-Area Sys-
tems,” IEEE Communications Magazine, pp. 104-
109, Jan. 1998.

[4] J.-C. Laprie, ”Dependability — Its Attributes, Im-
pairments and Means,” In B. Randell, J.-C. La-
prie, H. Kopetz, and B. Littlewood (ed.), Pre-
dictably Dependable Computing Systems, pp. 3-24,
Springer-Verlag, Berlin, 1995.

[5] D.B. Johnson and W. Zwaenepoel, ”Sender-Based
Message Logging,” Proc. of the 17th Annual Inter-
national Symposium on Fault- Tolerant Computing:
Digest of Papers, pp. 14-19, Pittsburgh, PA, July
1987. IEEE.

[6] G.Ballintijn, M. van Steen, and A. S. Tanenbaum,
?Lightweight Crash Recovery in a Wide-area Lo-
cation Service,” Technical Report IR-451, Vrije
Universiteit, Amsterdam, Oct. 1998.

[7] L. Alvisi and K. Marzullo, ” Message Logging: Pes-
simistic, Optimistic, Causal, and Optimal,” IFEFE
Trans. on Software Engineering, vol. 24, nr. 2, pp.
149-159, Feb. 1998.

