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ABSTRACT

With the advent of large-scale parallel computing systems, making
parallel programs fault-tolerant becomes an important problem, be-
cause the probability of a failure increases with the number of proces-
sors. In this paper, we describe a very simple scheme for rendering a
class of parallel Orca programs fault-tolerant. Also, we discuss our
experience with implementing this scheme on Amoeba.

Our approach works for parallel applications that are not in-
teractive. The approach is based on making a globally consistent
checkpoint from time to time and rolling back to the last checkpoint
when a processor fails. Making a consistent global checkpoint is easy
in Orca, because its implementation is based on reliable broadcast.
The advantages of our approach are its simplicity, ease of implemen-
tation, low overhead, and transparency to the Orca programmer.

1. INTRODUCTION
Designers of parallel languages frequently ignore fault tolerance. If one of the proces-
sors on which a parallel program runs crashes, the entire program fails and must be run
again. For a small-scale parallel system with few processors, this may be acceptable,
since processor crashes are unlikely. The execution-time overhead of fault tolerance
and its implementation costs may not be worth the extra convenience. After all, the
goal of parallelizing a program is to reduce the execution time.

Consider, however, a parallel program that runs on a thousand CPUs for 12 hours
to predict tomorrow’s weather. If the mean-time-between-failure of a CPU is a few
years, the chances of one of them crashing can no longer be neglected. Moreover, if a
processor crashes when the computation is almost finished, the whole program has to
be started all over again, thus doubling its execution time. In general, the larger the
scale of the parallel system, the more important fault tolerance becomes. Future large-
scale parallel systems will have to take failures into account.



An obvious question is: Who will deal with processor crashes? There are two
options. One is to have the programmer deal with them explicitly. Unfortunately,
parallel programming is hard enough as it is, and fault tolerance will certainly add even
more complexity. The alternative is to let the system (i.e., compiler, language run time
system, and operating system) make programs fault-tolerant automatically, in a way
transparent to programmers. The latter option is clearly preferable, but, in general, it is
also hard to implement efficiently.

In this paper, we will discuss how transparent fault tolerance has been imple-
mented in the Orca parallel language [Bal 1990]. Orca is a language for running paral-
lel programs on distributed systems, such as the Amoeba system [Tanenbaum et al.
1990]. The failures that we consider are transient failures such as hardware errors.

The problem we have tried to solve is modest: to avoid having to restart long-
running parallel Orca programs from scratch after each crash. The goal is to do this
without bothering the programmer and without incurring significant overhead. We
have not tried to solve the more general class of problems of making all distributed sys-
tems fault-tolerant. Instead, we consider only the class of parallel programs that take
some input, compute for a long time, and then yield a result. Such programs, for exam-
ple, do not interact with users or update files.

Our solution is simple: make global checkpoints of the global state of the paral-
lel program using reliable broadcasting. If one of the processors crashes, the whole
parallel program is restarted from the checkpoint rather than from the beginning. Users
can specify the frequency of the checkpoints, but otherwise are relieved from any de-
tails in making their programs fault-tolerant.

The key issue is how to make a global checkpoint that is consistent, preferably
without temporarily halting the entire program. It turns out that this problem can be
solved in a surprisingly simple way in Orca.

The outline of the rest of the paper is as follows. We first give some information
about the Orca language and its implementation on Amoeba. Next, Section 3 describes
the design of a fault-tolerant Orca run time system. Section 4 gives the implementation
details and the problems we encountered with Amoeba. In Section 5, we give some in-
itial performance measurements. In particular, we show how much time it takes to
make a checkpoint and to restart a program after a crash. In addition, we measure the
overhead of checkpoints on example Orca programs. Section 6 compares our method
with related approaches, such as explicit fault-tolerant parallel programming, message
logging, and others. Finally, in Section 7, we present some conclusions and see how
our work can be applied to other systems.

2. THE ORCA LANGUAGE AND ITS IMPLEMENTATION
In this section we give a brief description of the Orca language and its implementation.
The goal is just to give enough detail to make the rest of the paper understandable.
More detailed descriptions are given elsewhere [Bal 1990; Bal et al. 1990, 1992].



2.1. Orca
Orca is a language for running parallel programs on distributed systems. Although
Orca is intended for systems without physical shared memory, its programming model
is based on shared data. Processes in Orca communicate through shared data-objects,
which are variables of abstract data types. Processes can share objects even if they run
on different machines. The objects are accessed solely through the operations defined
by the abstract data type.

Initially, an Orca program consists of a single process, but new processes can be
created explicitly through a fork statement. The parent process can pass any of its
data-objects as a shared parameter to the child. In this case, the data-object will be
shared between the parent and the child. The parent and child can communicate
through this shared object, by executing the operations defined by the object’s type.

The semantics of the model are very simple. All operations are applied to single
objects, and all operations are executed indivisibly. The latter property simplifies pro-
gramming, since users do not have to worry about what happens if two operations are
applied simultaneously to the same object. In other words, mutual exclusion synchron-
ization is done automatically.

The first property is a restriction, since it rules out atomic operations on collec-
tions of objects. This restriction, however, makes the model efficient to implement, be-
cause no complicated two-phase update protocols are needed. As it turns out, parallel
applications seldom need atomic operations on multiple objects [Bal 1990]. If needed,
however, they can be constructed in Orca, by building them as sequences of simple
operations. In this case, the programmer must explicitly deal with synchronization.

Orca is perhaps best thought of as a programming language approach to Distri-
buted Shared Memory (DSM). Other systems (e.g., IVY [Li and Hudak 1989] ) try to
simulate physical shared memory on a distributed system and provide the same opera-
tions (read/write words) as real memory. Orca provides a DSM programming model,
but the operations on the shared memory are defined by the programmer through
abstract data types. Also note that Orca is not an object-oriented language; it is a pro-
cedural language with abstract data types. Unlike in concurrent object-oriented
languages, objects in Orca are purely passive (hence the name data-objects). Further-
more Orca does not support inheritance.

2.2. A distributed implementation of Orca
Orca can be implemented efficiently on a distributed system using a run time system
(RTS) that replicates shared objects in the local memories of the processors [Bal et al.
1989]. If a processor has a local copy of an object, it can do read-operations locally,
without doing any communication. A read-operation is an operation that does not
modify the object’s local data; read-operations are distinguished from write-operations
by the Orca compiler.

After a write-operation, the copies of the object will no longer be up-to-date.
There are many ways of dealing with this situation. In the implementation described
here, write-operations are broadcast to all nodes containing a copy. All these nodes up-
date their copy by applying the write-operation to the copy.



A key problem is how to update all the copies of an object in a consistent way.
We solve this problem using an indivisible reliable broadcast protocol. With such a
protocol, all messages are delivered reliably at all receivers. In addition, the protocol
guarantees that, if two processes P1 and P2 simultaneously try to broadcast two mes-
sages (say M1 and M2), then either all receivers get M1 first or all receivers get M2
first. Because the broadcast is indivisible, it is not possible that some processes will
see M1 first while others get M2 first. Our protocol in fact assigns consecutive se-
quence numbers to the broadcast messages; each receiver handles the incoming mes-
sages exactly in the order of their sequence numbers. Due to space limit the protocol,
its implementation, and its performance cannot be discussed in detail here, but readers
are referred to [Kaashoek and Tanenbaum 1991; Tanenbaum et al. 1992].

2.3. Running Orca programs on Amoeba
The Orca implementation runs on the Amoeba distributed operating system [Tanen-
baum et al. 1990; Mullender et al. 1990]. Amoeba is based on the processor pool
model. Each user has his or her own workstation, but the real computing power is lo-
cated in a pool of processors shared among all users. These processors are connected
through a LAN and are allocated on demand. Processes can communicate with each
other using at-most-once Remote Procedure Call (RPC) [Birrell and Nelson 1984] or
using group communication [Kaashoek and Tanenbaum 1991]. The group communica-
tion primitives implement the broadcast protocol mentioned above.

Parallel Orca programs are run on the processor pool. An Orca application is
started by the program gax (Group Amoeba eXecute). Gax asks the directory server
for the capability for the program, and with the capability it fetches the Orca executable
(Orca program linked with the Orca RTS) from the file server. Next, gax allocates the
requested number of processors in the processor pool and starts the executable program
(see Fig 1) on each processor. These Orca processes together form one process group.
A message sent to the group is received in the same order by all processes (including
the sending process), even in the presence of communication failures.
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Fig. 1. An Amoeba system with an Orca application running on 3 processors. The
Orca processes together form one process group.



3. DESIGN OF A FAULT-TOLERANT ORCA RUN TIME SYSTEM
There are many ways of making Orca programs fault-tolerant. One approach is to ask
a special server to keep an eye on Orca applications and start them again if they fail.
(In Amoeba such a server is available and is called the boot server). Unfortunately,
this does not win much, since the application would have to start all over. For applica-
tions that have a deadline this is not appropriate.

Another approach is to use a message logging and playback scheme, such as op-
timistic recovery [Strom and Yemini 1985; Johnson 1989]. Message logging is
designed for general distributed applications rather than just parallel applications, and
may be too expensive for parallel applications. Optimistic recovery, for example, can
deal with interactive programs. Programs using optimistic recovery will not ask for the
same input twice or produce the same output twice. While this property is useful, it is
not essential for most parallel programs, which frequently are not interactive. For
those programs, the message logging solution is overkill. A cheaper and simpler form
of fault tolerance is desired.

The method we use is to periodically make a global checkpoint of all the Orca
processes. After a crash, all processes continue from the last checkpoint. Since parts
of the program may be executed multiple times, the method cannot be used for interac-
tive programs.

The most important design issue is how to obtain a consistent global checkpoint.
As an example, assume a process P1 makes a checkpoint at time T1 and then sends a
message to process P2. (Although Orca programs do not send messages, their run time
systems do.) Assume that process P2 receives this message and then makes a check-
point, at time T2. Obviously, the two checkpoints are not consistent. If both processes
are set back to their state of their checkpoint, P1 would again send the message, but P2
would be in a state where it had already accepted the message. So, P2 would receive
the message twice.

As explained in [Koo and Toueg 1987], checkpointing should be done consistent-
ly relative to communication. It certainly is not necessary to have all processors make
checkpoints at exactly the same time, but messages must not cross checkpoints.

Based on this observation, one could envision making a consistent checkpoint by
first telling each processor to stop sending messages. When the whole system is quiet,
each processor is instructed to make its local checkpoint; all these checkpoints will then
be consistent, since no interprocess communication takes place during checkpointing.
We will not go into the details of how such a design might work. Suffice it to say that
this solution would not be very attractive. The reason is that it may take a lot of time
and overhead to bring the whole (distributed) system to a halt. Also, the more proces-
sors there are, the more time is wasted.

In the Orca run time system based on reliable broadcasting it is almost trivial to
make consistent checkpoints. As we explained in Section 2, the Orca run time systems
communicate through reliable indivisible broadcasting. All processes receive all
broadcast messages in the same order. Therefore, to make the global checkpoint con-
sistent, all that is needed is to broadcast one make-checkpoint message. This message
will be inserted somewhere in the global order of broadcast messages. Assume that the



make-checkpoint message gets sequence number N in this global ordering. Then, at the
time a process makes its local checkpoint, it will have received and handled messages 1
to N−1, but not messages N+1 and higher. This applies to all processes. Therefore the
checkpoints are all consistent.

To recover from a processor crash all processes synchronously roll back to their
last checkpoint. No process will send a message before all processes have been rolled
back. Thus, when a process sends a message, all processes will receive it with the
same sequence number. Because all processes roll back and synchronize before they
continue running, they will start in a consistent state.

For some applications checkpoints clearly are not going to be cheap. Each pro-
cess must save its local data (or, at the very least, the difference with the previous
checkpoint). For some processes, this may easily involve writing several hundred kilo-
bytes to a remote file server. Even with the Amoeba Bullet file server [Van Renesse et
al. 1989], this may take a substantial fraction of a second.

With multiple processes, things will get worse. The time to make a global check-
point will depend on the configuration of the distributed system and on the network.
Clearly, having a single centralized Bullet server for a thousand pool processors will
not be a good idea. However, the Bullet server can be (and is) replicated, so different
pool processors can use different instantiations of this server.

The main advantage of our algorithm is that it is extremely simple and easy to
implement. It is not an optimal algorithm, but it is still useful. In particular, for long-
running parallel applications, the overhead of making a checkpoint every few minutes
will be quite acceptable. An advantage of our scheme is that the frequency of the
checkpointing can easily be changed. Using a lower frequency will decrease the over-
head, but increases the average amount of re-execution due to crashes. We will get
back to this performance issue in Section 5, where we give initial performance results.

4. IMPLEMENTATION ON AMOEBA
In this section, we will describe the problems encountered with implementing a fault-
tolerant run time system for Orca on Amoeba. To understand the implementation we
have to take a closer look at how process management is done in Amoeba. Each
Amoeba kernel contains a simple process server. When gax starts an Orca application
on a processor, it sends to the processor’s process server a descriptor containing capa-
bilities for the text, data, and stack segment. The process server fetches the segments
from the file server, builds a process from the segments, and starts the process. The ca-
pability for the new process, called the owner capability, is returned to gax.

To checkpoint a single process, gax sends a stun signal to the process server that
manages the process. The process server stops the signaled process when it is in a safe
state, that is, when it is not in the middle of an RPC. (Interrupting a process while do-
ing a RPC would break the at-most-once semantics.) When the process has stopped, the
process server sends the process descriptor to the owner (gax in this case) and asks it
what do to with the process. Using the capabilities in the processor descriptor, gax can
copy the process state to the file server. After having copied the state, gax tells the pro-
cess server to resume the process.

Making a global checkpoint of the complete Orca application now works in the
following way. Every s seconds, a thread in the RTS of one of the machines broadcasts



a make-checkpoint message to all other processes in the application. When a process
receives this globally ordered message, it asks gax to make a checkpoint of it, as
described above. When all processes of the application have made a checkpoint, gax
stores the capabilities for the checkpoints with the directory server. Other Amoeba
servers will make replicas on multiple file servers using the capabilities stored with the
directory server.

Rolling back to a previous checkpoint works as follows. If a member of the
group that runs the Orca application crashes, the group communication primitives re-
turn an error after some period of time. When a process sees such an error, it asks gax
to roll the application back. Gax starts by killing any surviving members and then
starts the application again. Instead of using the original executable, it uses the check-
points of the processes.

The actual implementation is more complicated due to a number of problems.
The first problem is that by using gax we have introduced a single point of failure: if
gax crashes, the Orca application cannot make any checkpoints or recover. To prevent
this from happening, gax is registered with the boot service. The boot service checks at
regular intervals whether gax is still there. If it is not there, the boot service starts gax
over. (When gax starts running again, it kills the remaining processes and rolls the ap-
plication back to the last checkpoint.) The boot service itself consists of multiple
servers that check each other. As long as the number of failures at any point in time is
smaller than the number of boot servers, the Orca application will continue running.

A second problem is that the checkpoints made by the process server do not con-
tain all the state information about the parallel program. In particular, the kernel state
information about process groups is not saved.

As an example, suppose the RTS initiates a global checkpoint by broadcasting a
make-checkpoint message. At about the same time, a user process executes a write-
operation on a shared object. As a result, its local RTS will send an update broadcast
message and block the Orca process until this message has been handled. Assume that
the broadcast protocol orders the update message just after the make-checkpoint mes-
sage. The broadcast protocol will buffer this message in the kernel and it will be
delivered after the checkpoint is made. If after a crash a process has been rolled back
to this checkpoint, all the kernel information about the group is gone, including the buf-
fered message.

Fortunately, detecting that a message has been sent and not received by any pro-
cess when the checkpoint was made is easy. After a thread has sent a broadcast mes-
sage, it is blocked until the message is received and processed by another thread in the
same process. If after recovery there are any threads blocked waiting for such events,
they are unblocked and send the message again.

The problem that the kernel information about the group is not included in a
checkpoint is harder. We have solved this problem by having gax maintain a state file,
in which it keeps track of additional status information. This file contains the current
members of the process group, as well as the port names to which the restart messages
(discussed below) are to be sent, the number of checkpoints made so far, and other mis-
cellaneous information.

As a consequence of this approach, gax must read the status file during recovery
and rebuild the process group. To rebuild the group, gax needs the help of the



processes that are being rolled back. These processes must actively join the newly
formed process group. Clearly, all this activity is only needed during recovery and not
after making a checkpoint. The problem is, it is difficult for the processes to distin-
guish between these two cases (i.e., resuming after making a checkpoint and resuming
after recovery). After all, the state of the parallel program after recovery is the same as
the state of the latest checkpoint.

Our solution to this problem is as follows. After making a checkpoint, a check-
point server does not continue the process immediately, but it first waits for a continue
message from gax. If it receives this message, it simply continues. On the other hand,
if a processor has crashed and the program has just recovered, gax sends a restart mes-
sage instead of the usual continue. If the checkpoint server receives a restart, it first
participates in rebuilding the group state, before continuing the application.

Yet another performance issue concerns the text segment of a process. It is not
necessary to dump the text (code) segment of each process, since text segments do not
change and can be obtained by reading the executable file containing the process’s im-
age. At the expense of writing some more code, our prototype implementation avoids
saving the text segment of a process after the first checkpoint.

Another important issue is the scalability of our implementation. The cost of
broadcasting the make-checkpoint message is almost independent of the number of re-
ceivers [Tanenbaum et al. 1992], and therefore scales well. However, gax and the bul-
let server are likely to become a bottleneck as the number of processors increases. This
could be avoided by using a distributed algorithm for making checkpoints, for example,
by sending the checkpoints to a neighbour instead of to the bullet service.

Although the implementation is more complicated than we expected, only minor
modifications were required to existing software. We added 324 lines of C-code (in-
cluding 84 lines of comments) to the Orca RTS, bringing the total number of lines of
C-code for the RTS at 6196. To the sources of gax we added 779 lines. No changes
were made to the Amoeba kernel.

5. PERFORMANCE
We have measured the performance of the implementation described in the previous
section. The Orca programs run on a collection of MC68030s. The directory server and
the file server are duplicated. They run on Sun 3/60 and use a SCSI-3 controller and a
WREN IV SCSI disk. All processors are connected by a 10 Mbit/s Ethernet. Given
this environment, an Orca program running on n pool processors can tolerate 1 failure
of the directory server or file server and n −1 concurrent processor pool failures. If
both directory or both file servers crash, the Orca program will block until one of each
is back up. If n concurrent failures happen, the Orca program will be restarted from the
latest checkpoint by the boot server. Because all processors are connected by one net-
work, the system will not operate if the network fails. If the system would have con-
tained multiple networks we could have tolerated network failures, because the Amoe-
ba routing protocol is based on dynamic routing tables [Kaashoek et al. 1991].

We have measured the overhead of checkpointing and recovery for a toy Orca
program called pingpong. Pingpong consists of processes running on different proces-
sors and sharing one integer object. Each process in turn increments the shared integer
and blocks until it is its turn to increment it again. This program is interesting because



it sends a large number of messages: for each increment of the shared integer the RTS
sends one message. If this program were to run on a system based on message logging,
it would experience a large overhead.

We ran pingpong with and without checkpointing and computed the time for
making one checkpoint. The results are given in Fig. 2. Each process has 7 segments:
one text segment of 91 Kbytes, one data segment of 56 Kbytes, and 5 stack segments of
11 Kbytes each. The state file is 3670 bytes large. The first checkpoint with text seg-
ment consists of 202 Kbytes and subsequent checkpoints (without text segment) are
111 Kbytes. If pingpong is running on 10 processors, taking a global checkpoint will
involve writing 1.11 Mbytes to the file server. With 8 or more processors, the bullet
service becomes a bottleneck, because it is only duplicated.
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Fig. 2. The cost of making a checkpoint.

The time to recover from a processor crash is equal to the time to detect the pro-
cessor crash plus the time to start n processes. The time to detect a processor crash is
tunable by the user. The user can specify how often the other members in the group
should be checked. The time to start a new process on Amoeba is 58 msec [Douglis et
al. 1992]. Thus, most of the time for making a global checkpoint is spent in transfer-
ring segments from each processor to the file server.

For any application the total overhead (the difference between execution time
with and without checkpointing) introduced by our scheme depends on 3 factors:

1) The cost of making a checkpoint (dependent on the number of processors and the
size of the process’s image);

2) The cost of a roll back;



3) The mean time to failure (MTTF) of the system (hardware and software).

If one wants to minimize the average run time of the application, then given the
numbers for these factors, one can compute the optimal computing interval (the time
between two checkpoints such that the average run time is minimized) and thus the
overhead introduced by checkpointing (see Appendix):

overhead =
Tcomp

Tcp
� ��������� +

TMTTF

(Tcomp + Tcp) / 2 + Trb
������������������������������������� ,

where Tcomp is the computing interval, Tcp is the mean time to make a checkpoint, Trb
is the mean time to recover from a crash.

If, for example, an application runs for 24 hours using 32 processors, the cost for
a checkpoint is 15 seconds, time to roll back is 115 seconds, and the MTTF is 24 hours,
then the optimal checkpoint interval is 27 minutes. In this case the overhead is 1.6 per-
cent. If the MTTF is 7 days, then the optimal checkpoint interval is 71 minutes and the
overhead is 0.7 percent.

6. COMPARISON
Although considerable research has been done both on parallel programming and on
fault tolerance, few researchers have looked at fault-tolerant parallel programming. In
this section, we will look at some of this work and also at more general techniques for
fault tolerance.

6.1. Fault-tolerant parallel programming
An alternative to our approach is to let programmers deal with processor crashes. We
have described our own experiences with explicit fault-tolerant parallel programming
in a separate paper [Bal 1992]. The language used for these experiments was Argus
[Liskov 1988]. Below we will first compare our work on Argus and Orca.

The Argus model is based on guardians, remote procedure calls (RPC), atomic
transactions, and stable storage. A guardian is a collection of processes and data locat-
ed on the same processor. Processes communicate through RPC. Programmers can de-
fine atomic objects, which are manipulated in atomic transactions (consisting of multi-
ple RPC calls, possibly involving many different guardians). If a transaction commits,
the new state of the atomic objects changed by the transaction is saved on stable
storage. After a guardian crashes, it is recovered (possibly on a different processor) by
first restoring its atomic objects and then executing a user-defined recovery procedure.

Our parallel Argus programs use multiple guardians, typically one per processor.
Each guardian does part of the work and all guardians run in parallel. Guardians occa-
sionally checkpoint important status information, by storing this information in atomic
objects.

An important advantage of letting the programmer deal with fault tolerance is the
increased efficiency. Our Argus programs, for example, only save those bits of state
information that are essential for recovering the program after a failure. They do not
checkpoint data structures that the programmer knows will not change, nor do they



save temporary (e.g., intermediate) results. In addition, it is frequently possible to re-
cover only the guardian that failed, rather than all guardians (and processes) in the pro-
gram. Finally, the programmer can control when checkpoints are made. For example,
if a process has just computed important information that will be needed by other
processes, it can write this information to stable storage immediately.

In Orca, programmers do not have these options. On the other hand, program-
ming in Orca is much simpler, because fault tolerance is handled transparently by the
system. For the parallel Argus programs, the extra programming effort varied signifi-
cantly between applications. Some applications were very easy to handle. For exam-
ple, a program using replicated worker style parallelism [Carriero et al. 1986] merely
needs to write the jobs (tasks) of the workers to stable storage. If a worker crashes, the
job it was working on is simply given to someone else, similar to the scheme described
in [Bakken and Schlichting 1991]. Other applications, however, require much more ef-
fort. For parallel sorting, for example, a lot of coordination among the parallel
processes is needed to obtain fault tolerance [Bal 1992].

Of course, there are many other language constructs that could be used for fault-
tolerant parallel programming. Examples are: exception handlers, fault-tolerant Tuple
Space [Xu 1988] and atomic broadcasts. The Amoeba broadcast protocol, for example,
can tolerate processor crashes, so it can be used for building fault-tolerant applications
[Kaashoek and Tanenbaum 1990]. Little experience in using these mechanisms for
parallel programs is reported in the literature, however.

6.2. Other mechanisms providing transparent fault tolerance
Several other systems provide fault tolerance in a transparent way [Strom and Yemini
1985; Sistla and Welch 1989; Johnson 1989; Koo and Toueg 1987]. Most of these
schemes are based on message logging and playback, usually in combination with
periodic checkpoints. They are much more general than the method we described, in
that they can also handle interactive distributed programs and sometimes can even give
real-time guarantees about the system.

We compare our approach in more detail with one of the message logging ap-
proaches. We have chosen to compare it with Johnson’s work [Johnson 1989], because
it is implemented on the V system [Cheriton 1988], a system comparable to Amoeba,
and he gives performance figures of his implementation. Johnson’s approach is much
more general than our approach (it can deal with interactions with the outside world)
but is also much more complicated and harder to implement. It requires, for example,
extensive modifications to the V kernel. Furthermore, it logs every message. This in-
creases the cost for communication substantially (between 22 and 36 percent) and this
introduces a fixed overhead for all applications. Using our scheme the overhead
depends on the frequency of making checkpoints and is independent of the number of
messages that an application sends. For parallel programs, this property is important,
since such programs usually communicate a lot.

An interesting system related to ours is that of Kai Li [Li et al. 1990]. This sys-
tem also makes periodic global checkpoints. Unlike ours, however, it does not delay
the processes until the checkpoint is finished. Rather, it makes clever use of the
Memory Management Unit. The idea is to make all pages that have to be dumped
read-only. After this has been done, the application program is resumed and a copier



process is started in parallel, which writes the pages to disk. Since all pages are read-
only to the application, there is no danger of losing consistency. If the application
wants to modify a page, it gets a page-fault. The page-fault handler asks the copier
process to checkpoint this page first. After this has been done, the page is made writ-
able and the application is resumed. In this way, much of the checkpointing can over-
lap with the application.

In principle, we could have used this idea for making a checkpoint of a single
process, but it would require extensive modifications to the sources of the memory
management code and the way checkpoints are made in Amoeba. As we wanted to
keep our implementation as simple as possible, we were not prepared to implement this
optimization.

Another related approach is that of [Wu and Fuchs 1990]. In this paper, the au-
thors describe a method to make a page based shared virtual memory fault-tolerant.
Like our method is their method transparent to the programmer and is intended for long
running parallel computation. In their method, the owner process of a modified page
takes a checkpoint before sending the page to the process that requests it. Therefore,
unlike our method, the frequency of checkpointing is determined by the patterns of data
sharing. Frequent checkpointing occures if two process alternately write the same
page.

7. CONCLUSION
We have described a very simple method for making parallel Orca programs fault-
tolerant. The method is fully transparent, and works for parallel programs that take in-
put, compute, and then yield a result. The method is not intended for interactive pro-
grams, nor for real-time applications.

Our method makes use of the fact that processes in the Orca implementation
communicate through indivisible reliable broadcasting. In a system based on point-to-
point message passing, it would be much harder to make a consistent checkpoint of the
global state of the program. One approach might be to simulate indivisible broadcast-
ing, for example by using the algorithm described in [Bal and Tanenbaum 1991]. This
algorithm includes timestamp vectors in each message being sent, which are used in
determining a consistent ordering. Another method might be to freeze the whole sys-
tem before a checkpoint is made, but this introduces a performance penalty.

The paper also describes an actual implementation of our system, on top of the
Amoeba distributed operating system. We have identified a number of problems with
some Amoeba services, in particular the process server. We managed to get around
these problems, but the implementation would have been much simpler if certain res-
trictions in Amoeba were removed. Finally, we have given initial performance results
of our system, using a simple parallel application.
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APPENDIX
In this section we will deduce the formula to compute the overhead of checkpointing
and the optimal computing interval given the time to make a checkpoint, the time to re-
cover from a crash, and the MTTF of the system.

For the derivation we introduce the following variables:

Ttot is the time needed to run the application without checkpointing;
Tcomp is the time between two checkpoints;
Tcp is the mean time to make a global checkpoint;
Trb is the mean time to roll back;
TMTTF is the mean time to failure.

Tcomp Tcp Tcomp Tcp Tcomp Tcp Tcomp Tcp

Fig. 3. An Orca execution without failures.

An execution of an Orca application without any failures consists of a sequence
of alternating computing intervals of length Tcomp and checkpoint intervals of length
Tcp (see Fig. 3). If a failure happens during a computing interval or a checkpoint inter-
val, an extra interval with duration equal to the recover time plus the time wasted be-
fore the crash is inserted (see Fig. 4). The mean time wasted can be estimated by
(Tcomp + Tcp) / 2.

Tcomp Tcp (Tcomp+Tcp) /2 Trb Tcomp Tcp Tcomp Tcp

Fig. 4. An Orca execution with a failure.

Let Ttot be the total computation time needed to finish the application. Then, the
number of computing intervals is equal to Ttot / Tcomp and the number of failures dur-
ing the total run time is approximately Ttot / TMTTF (assuming Tcp << Ttot and Trb <<
Ttot). Thus the average run time is:

Tcomp

Ttot
� ��������� (Tcomp + Tcp) +

TMTTF

Ttot
� ��������� (

2

Tcomp + Tcp
� ����������������� + Trb).

The overhead for checkpointing is the average run time divided by Ttot minus 1:

overhead =
Tcomp

Tcp
� ��������� +

TMTTF

2

Tcomp + Tcp
� ����������������� + Trb

� ����������������������������� .



Minimizing the overhead function gives:

optimal computing interval = √2TcpTMTTF




