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Abstract It has become well-established that software will never become bug-
free, which has spurred research in mechanisms to contain faults and recover
from them. Since such mechanisms deal with faults, fault injection is neces-
sary to evaluate their effectiveness. However, little thought has been put into
the question whether fault injection experiments faithfully represent the fault
model designed by the user. Correspondence with the fault model is crucial to
be able to draw strong and general conclusions from experimental results. The
aim of this paper is twofold: to make a case for carefully evaluating whether
activated faults match the fault model and to gain a better understanding of
which parameters affect the deviation of the activated faults from the fault
model. To achieve the latter, we instrumented a number of programs with our
LLVM-based fault injection framework. We investigated the biases introduced
by limited coverage, parts of the program executed more often than others and
the nature of the workload. We evaluated the key factors that cause activated
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faults to deviate from the model and from these results provide recommenda-
tions on how to reduce such deviations.

1 Introduction

Despite decades of advances in software engineering and program verification
tools, many software systems are still plagued by critical software bugs. Several
studies have shown that the number of bugs is roughly linear with the program
size [38] even in mature software. Formal methods proposed to address such
bugs, such as used by seL4 [27], require a heroic effort. seL4’s correctness proof
alone, for example, required around 20 person years for 9,300 lines of code.
To scale to software that is hundreds to thousands of times larger would not
currently be realistic. Furthermore, formal specifications can contain bugs or
in turn rely on the correctness of other components (i.e., compilers, hardware,
documentation, etc.). As a result, fault containment and recovery mechanisms
still play a pivotal role in the design of highly reliable systems.

To validate such mechanisms, it is often necessary to evaluate the behavior
of a system under faults. Identifying a sufficiently large number of real software
faults is normally not an option because it requires considerable manual work.
Therefore, fault injection techniques have been devised to artificially inject
faults and compare the run time behavior of the system during fault-free and
faulty execution.

Several fault injection tools are described in the literature, with injection
strategies emulating simple hardware faults (e.g., bit flips or intermittent er-
rors) [4, 24], faults at the component interfaces (e.g., unexpected error con-
ditions generated by the libraries) [28, 33, 34], or real-world software faults
introduced by programmers [11,37,44]. Each injection strategy reflects a par-
ticular fault scenario and serves a unique purpose in the reliability testing
process.

Although the principles outlined here are more general, our focus is specif-
ically on injection of realistic software bugs. Such injections are particularly
critical to evaluate the effectiveness of fault containment mechanisms (i.e.,
preventing faults in one component from affecting other components), fault
detection techniques (i.e., identifying the occurrence of faults during execu-
tion), and fault recovery mechanisms (i.e., mitigating service disruption after
the occurrence of faults).

To rigorously conduct fault injection experiments, an important step is to
define an appropriate fault model. The fault model specifies what kinds of
faults should be tested. This model includes at least the types of faults to be
injected and the locations selected for injection, but possibly also other factors
such as fault triggers [33, 34]. Prior work has investigated how to accurately
construct a representative fault model, for example by considering which fault
types occur in which frequencies in real software [11] and at which locations
faults are most likely to occur in production [35,36].
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Nevertheless, defining a representative fault model and configuring a fault
injection tool to follow that model is not sufficient to thoroughly assess the
quality of fault injection results. To show why, we must first understand how
the fault model is instantiated by the fault injection tool into an input and
output fault load. The input fault load consists of the faults that the tool
inserts into the code of the program. Generally, an effort is made to configure
the fault injection tool such that the input fault load carefully reflects the
original fault model. Suppose, for example, that the fault model specifies that
10% of faults should be branch condition flips in a location that is executed by
no more than two different tests. In this case, in an input fault load consisting
of 100 faults one would expect approximately 10 such faults.

The output fault load consists of the subset of faults activated during the
experiment, accounting for multiple activations. Multiple activations are im-
portant because some faults only have an impact in particular circumstances,
such as a memory leak only affecting the results when already low on memory.
Some faults may be activated only once, others very often, yet others may not
be activated at all.

It should not be assumed that all faults in the output fault load cause
actual failures, as it is possible for an activated fault not to affect any relevant
state. For example, a buffer overflow might corrupt only data that is not read
before being overwritten again or a memory leak might not be severe enough to
cause later allocations to fail. Whether faults cause failures is important, but
strongly depends on what types of failures one is interested in. For example,
one might consider only crashes or one might go as far as to consider even
spelling errors in displayed messages or differences in timing. In this paper we
only look at distortion introduced by nonactivation and multiple activations,
which is an important factor regardless of the exact types of failures being
considered.

The output fault load may differ considerably from the input fault load.
Even if the fault model is representative of real-world faults and the input
fault load accurately instantiates the original fault model, it is possible for
the output fault load to not represent a realistic fault model at all. We will
refer to the difference between input and output fault load as distortion. If the
distortion is biased towards particular fault types or locations, activated faults
do not faithfully reflect the original fault model even if many experiments are
carefully run. We will use the term fidelity to refer to the degree to which
the output fault load reflects the original fault model with no distortion. The
introduction of the new terminology is justified by our focus on the quality
of the output fault load generated by the fault injection tool. This is in stark
contrast with prior approaches described in the literature, which are solely
focused on representativeness and accuracy of the input fault load [11,35,36].
We will provide a formal definition of fidelity and the other relevant terms in
Section 3.

To demonstrate the concepts we introduced and indicate why fidelity is
important, we have included a small code example in Fig. 1. The first step is
to identify fault candidates. In working out the example we will use the same
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1  char *clear(char *buf, size_t size) {
2    if (!buf) {
3      buf = malloc(size);
4    }
5    while (size > 0) {
6      buf[--size] = 0;
7    }
8    return buf;
9  }

Fig. 1 Example function to demonstrate distortion

fault types used in our experiment. These are listed in Table 1. For illustration,
we will point out the fault candidates on the first line. Both the ‘flip-branch’
and the ‘stuck-at-branch’ fault types can be injected in the if statement. If
the former is injected, the branch is taken when it should not be taken and
vice versa, a common programmer mistake. If the latter is injected, the branch
is either always or never taken. This corresponds with omission of either the
entire if statement or just the part that makes it conditional. As this example
shows, it is possible for multiple fault types to be applicable to a single code
location. Both of these are considered individual fault candidates, although
only one of them can be injected at a time. The controlling expression of the
if statement is also subject to several fault types. For example, a programmer
could accidentally invert the boolean operation (‘flip-bool’), use the wrong
unary operator (‘corrupt-operator’) or use the wrong variable (‘no-load’ and
‘random-load’). In total, there are as many as 46 fault candidates of 9 different
fault types in this small code snippet.

The control flow of the code example can serve as an example for two
elements of distortion that we will consider. First, the memory allocation on
line 2 (the only fault candidate of the ‘dangling-pointer’ in the example) is
executed only in case buf equals NULL. Depending on the context in which
this function is called that might happen on every run, it might never happen
or it may depend on the workload that is used to test the program. In the last
case, the distribution of fault types of accessible fault candidates is different
between workloads that do reach this statement and workloads that do not.
Now let us assume that fault model specifies that a certain fraction of the
faults tested must be of the ‘dangling-pointer’ type and this fault candidate
was selected for injection of such a fault. This means that the fault candidate is
part of the input fault load. If, however, the workload never activates this part
of the code, it is not part of the output fault load. This does not necessarily
mean that the output fault load is skewed with regard to the fault model
and the input fault load. This depends on the question whether specific fault
types or locations are significantly more or less likely to be activated by the
workload when considering the program as a whole. Without testing, it is hard



Finding fault with fault injection 5

Table 1 Fault types

name description applicability

buffer-overflow size too large in memory operation
call to memcpy, memmove,
memset, strcpy or strncpy

corrupt-index off-by-one error in array index array element access

corrupt-integer off-by-one error in integer operand
operation with integer ar-
guments

corrupt-operator
replace binary operator with random
operator

binary operator

corrupt-pointer
replace pointer operand with random
value

pointer operation

dangling-pointer size too small in memory allocation call to malloc
flip-bool negate result of boolean operation boolean operation

flip-branch
negate controlling value for conditional
branch

conditional branch

mem-leak remove memory de-allocation call to free or munmap
no-load load zero instead of intended value memory load
no-store remove store operation memory store

random-load
load random number instead of in-
tended value

memory load

stuck-at-branch
fixed controlling value for conditional
branch

conditional branch

stuck-at-loop fixed controlling value for loop
conditional branch part of
loop construct

swap swap operands of binary operation binary operator

to tell whether the numbers will average out at the larger scale or there is a
systematic bias.

Another issue that can be illustrated with this code example is the impact
of execution count. The assignment on line 6 is executed on every iteration
of the while loop. There are various faults that could be injected here. One
example target for fault injection is the unary pre-decrement operator, which
provides a fault candidate for the ‘corrupt-operator’ fault type. If the operator
is mistakenly changed by the programmer into a post-decrement operator, the
result is an off-by-one error that overwrites a single byte past the end of the
buffer. If, on the other hand, it is changed to the unary minus operator, it
overwrites size bytes before the start of the buffer. As a result, the extent
of the damage it can do depends on the number of loop iterations. Since the
number of loop iterations might depend on the workload (if, for example, it is
the size of a user-provided file), the potential for the fault to do damage also
depends on the workload. In this case it has more potential to do damage than
other instances of the same fault type that are executed only once. Again, we
cannot a priori make any assumptions on the question whether this averages
out or introduces bias that gives some fault type more potential of doing harm
because they are in loops more often. Therefore it is important to consider the
issue of multiple activation with an empirical test.

These examples demonstrate that it is important to determine whether
these factors have an impact in practice. If they do, the output fault load
cannot be assumed to always accurately instantiate the fault model. This then
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needs to be taken into account when designing fault injection experiments and
workloads to compensate for the biases identified. Our experiment is designed
to determine whether this is indeed necessary.

These considerations yield the following research question: “When perform-
ing fault injection experiments, how faithful is the output fault load observed
with respect to the specified fault model and which factors affect its fidelity?”
This question is important for a number of reasons. First, if there is substantial
distortion, the experiment is no longer consistent with what the user intended
to measure. Suppose, for example, that one wants to measure the probability
of a recovery solution being able to successfully recover state. If the output
fault load is biased towards bugs that are easier to recover from, the solution
appears to be more effective than it would be in reality. Second, fault injection
experiments can be performed more efficiently if they follow the fault model.
As the output fault load differs more from the fault model, more injections
are needed to achieve the same rigor with regard to testing those faults spec-
ified by the model. Third, it is harder to compare experiments when there is
distortion. If two experiments inject the same number of faults but it is not
known how faithful they are to the fault model, it is possible that they differ
greatly in their effectiveness in finding faults even though they both inject
the same number of faults. Fourth, as fidelity is coupled with the behavior of
the test workload, a high level of distortion may indicate that the workload
is not properly designed for the experiment and may have to be reconsidered.
These issues show that it is crucial to consider the distortion between input
and output fault loads and identify the originating factors.

The main contributions of this paper are (1) providing a definition of fault
injection fidelity and showing its relevance in fault injection campaigns, (2)
performing the first large-scale evaluation of fidelity on a number of programs
and workloads to evaluate the impact of distortion problems in real-world
fault injection experiments, and (3) analyzing the key factors that can help
predict and control distortion problems in fault injection experiments. Please
note that this is an extended version of the earlier conference paper [29], which
shares these contributions. Amongst others, this version has a more complete
empirical evaluation and discusses the methodology and its limitations in more
depth.

After this introduction, we continue with a description of relevant related
work. Then, we define the term ‘fidelity’ and introduce a number of factors that
influence the fidelity of a fault injection experiment. In the approach section we
elaborate on the experiments we performed to determine whether distortion is
an important factor to consider. In the next section, we describe the programs
and workloads used in these experiments and explain how we have selected
and constructed them. In the results section, we present the outcomes of our
experiments. Since we investigate a number of different factors that play a role
in distortion, it is split in several subsections, each dealing with one of these
factors. The subsections provide the relevant results and an analysis of their
impact, as well as a consideration of the factors that may threaten the validity
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and generalizability of these results. Finally, the conclusion summarizes our
main findings.

2 Related work

Fault injection is a popular technique to evaluate the impact of unforeseen
faults on a running software system. When compared to alternative strategies
that aim to uncover real software bugs (e.g., symbolic execution [5]), fault
injection is relatively inexpensive, scales efficiently to large and complex pro-
grams, and allows users to emulate special conditions not necessarily present
in the original program code. Fault injection is used to benchmark the de-
pendability of several classes of software, such as: device drivers [17,41,44], file
caches [37], operating systems [14,28], user programs [3,33,34], and distributed
systems [15, 23]. Typical evaluation scenarios entail analyzing the behavior of
a system under faults [14, 28], conducting high-coverage testing experiments
for existing error recovery code paths [3,15,23], or evaluating the effectiveness
and containment properties of fault-tolerance techniques [17,41,44].

While fault injection can theoretically be used to explore all the possible
combinations of faults in a given piece of software, in practice this strategy is
computationally infeasible for any nontrivial program. To address this prob-
lem, prior work has proposed either using efficient fault space exploration
strategies [3, 15, 23] or relying on a well-defined fault model tailored to the
particular fault scenario of interest.

Several possible fault models are described in the literature, with fault
injection strategies emulating (i) hardware faults in hardware [2, 16, 26, 32] or
software [4,24], (ii) software faults [11,37,44], (iii) interface faults at the library
level [33, 34] or (iv) at the system call level [28]. Injection techniques range
from static program mutations—using simulation-based strategies [7, 20, 40],
compiler-based strategies [18,44], or binary rewriting [4,11,24,37]—to run time
strategies that periodically interrupt the execution—using timers [6,24,43] or
predetermined hardware or software traps [6, 24,25,43].

When selecting a fault model, an important question prior work has sought
to address is whether the model is representative for the fault scenario of
interest. Representativity is important for the validity and comparability of the
final results. In particular, much research on fault model representativeness is
devoted to emulating realistic software faults found in the field. In this context,
a number of studies consider the problem of how accurately artificially injected
fault types represent real-world fault types introduced by programmers [11,12,
37,44]. The G-SWFIT tool [11], for instance, injects fault types based on real-
world bugs found in existing software. Other studies focus on the accuracy
of the different injection strategies. For example, Cotroneo et al. [9] consider
the accuracy problems of binary-level injection strategies when compared to
source-level program mutations. Christmansson et al. [19] compare location-
based injection strategies with timer-based approaches. Madeira et al. [31]
investigate general limitations of traditional fault injection strategies when
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compared to real faults found in the field. In another direction, Natella et
al. [35, 36] consider the problem of fault location representativeness, arguing
that so-called residual faults are most representative of real-world bugs that
escape software testing and can be found in production systems in the field.

Unlike fault model representativeness, research on fidelity of fault injection
to the original fault model has received much less attention in the literature.
A number of prior approaches have considered the impact of code coverage
on fault injection experiments [21, 22, 42], but their focus is limited to ensur-
ing reasonable fault activation. Unfortunately, fault activation itself is a poor
metric to evaluate how the nature of the program or workload can degrade
the quality of the final fault injection results. Our notion of fault injection fi-
delity, in contrast, is much more rigorous and able to capture the full dynamics
of both the test program and the workload. Our investigation, in particular,
provides a thorough analysis of the impact of code coverage on fault injec-
tion experiments, while determining how low coverage distorts the original
fault model. This analysis is particularly crucial to quantify the validity and
comparability of fault injection results.

There is some literature on the estimation of coverage of the fault space in
the context of hardware fault injection, such as for example [10]. This work has
similar goals as ours—determining how thorough fault injection experiments
are—but the different context means that they focus on different issues than
the ones considered here, which are specific to software fault injection.

3 Fidelity

The first step in our research is to formally define the concept of fidelity.
Fidelity is defined as the extent to which the output fault load reflects the
original fault model. Here, the fault model is a model defined in advance of
the experiment that specifies which faults would be expected in a realistic
setting. It specifies fault types and their relative frequencies as well as the
relative frequency of faults occurring per code location. The output fault load is
defined as the set of faults actually activated, considering multiple activation.
It is important to stress that this research does not consider whether the
faults actually have an impact, which would require a different methodology
involving the injection of actual faults. Investigating the impact of this effect
is left for future research.

Although not directly referenced in the definition of fidelity, the input
fault load is also important in the analysis of fidelity. We define the input
fault load as the set of faults actually injected in the target program. One
of the main goals of this paper is to make clear that there can be meaningful
differences between the input and output fault loads. We refer to this difference
as distortion. To the extent that distortion introduces bias in the faults actually
activated, it threatens the fidelity of the experiment if nothing is done to
compensate for it.
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It should be noted that our current definition of fidelity is qualitative, not
quantitative. This paper aims to identify the issue and empirically show that
distortion occurs in commonly used fault injection settings. Our investigation
of circumstances that may influence whether distortion is an issue should be
considered preliminary. The definition of a quantitative metric to measure
fidelity and using that definition to reach stronger conclusions on the circum-
stances causing distortion is out of scope for this paper and is left for future
work.

To research fault injection fidelity, we investigate how the input fault load
(faults injected in the program) relates to the output fault load (faults ac-
tually executed). The factors that influence the transformation from input
fault load to output fault load make up the dependent variable of our re-
search. Independent variables we investigate include program types, program
implementations, workloads, and compiler settings (in particular, optimiza-
tion level). Although more factors could influence fidelity, we selected those
that are intuitively important and easily controlled by the researcher. To find
the impact of the program and the workload independently, we include some
programs with multiple workload generators as well as workloads that can be
used across multiple programs.

The first factor we consider is coverage, defined as the fraction of the pro-
gram that gets executed when the test workloads are run. It can be measured
in several units, commonly lines of code, but alternatively in terms of machine
instructions or basic blocks (a basic block being a part of the code which has
a single entry point and a single exit point). In the context of fault injection,
an alternative is to consider which fraction of the fault candidates—that is,
program locations that are suitable to inject a fault of a particular type—is
covered. This way of measuring coverage has a clear relationship with distor-
tion because the more fault candidates are left out, the more difference is to
be expected between the input and output fault loads (both of which are also
expressed in terms of fault candidates). Unfortunately, coverage is rarely re-
ported when performing fault injection experiments in research papers–with
some notable exceptions [33–35,42]. In general, higher coverage is better as it
allows a larger part of the program to be tested. We address a new concern,
namely whether lack of coverage introduces bias that threatens the fidelity of
the experiment. Uncovered locations are not a random subset of all locations
but rather those that are hard to reach, like for example code that deals with
error conditions. Not just fault locations, but also fault types may be biased
as uncovered code often performs a different role than covered code.

The second factor is the distribution of the execution count per basic block.
It is expected that most of the run time of a program is spent executing only
a small part of the code. Faults injected in this part of the code get activated
over and over, whereas some other fault locations are activated only once per
run. Execution count is relevant in cases where the impact of the fault depends
on the context. For example, it might corrupt the state only in some particular
context, it might affect different parts of the state on each activation, or prior
deviations in the local context may affect the global state only after a subse-
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quent activation. A typical example is a memory leak, which does not have a
visible impact on the initial execution. However, as it is executed over and over
again it might eventually deplete available memory completely, resulting in a
crash. Our question is to what extent differences in execution count introduce
bias, affecting the fidelity of the experiment. Code executed multiple times is
not a random subset of the program. Most likely, it is the functional core of
the program, which has been tested extensively. In particular, it seems likely
that when injecting residual faults [35] the locations less likely to be triggered
are also triggered less often. Assuming that activated faults may or may not
propagate depending on the context, faults activated more often have a higher
chance of causing anomalous behavior in excess of the impact of being acti-
vated by more of the workloads. This introduces distortion with regard to the
intended fault model.

It cannot be assumed that coverage and execution count of a basic block
are independent from the number and types of fault candidates present in the
basic block. Fault candidate types occurring more commonly in blocks likely
to be executed are another source of bias. In the case that some fault types are
over- or underrepresented in the part of the code covered by the workloads,
it is still possible to make the output fault load faithfully reflect the fault
model. However, the effect must be measured to allow the input fault load to
be altered to compensate for the bias introduced. A second issue is whether
the execution count is the same between fault types. Again, this is expected
not to be the case. Backward branches, for example, are almost always part of
a loop hence more likely to get executed often than other types of instructions.
A fault type that is specific to branches is likely to have candidates in such
places, again introducing bias. In this case it is harder to compensate because
the impact of multiple activations depends not just on the fault type and
location, but also on the context. Still, it is important to know that multiple
activations introduce distortion into the experiment.

4 Approach

We aim to find and explain differences between the input and output fault
loads. To gather information on the behavior of the test program, we use
compiler-based instrumentation implemented using the LLVM (Low-Level Vir-
tual Machine) compiler framework [30] (version 3.2). LLVM is a modular com-
piler that can write object files in its intermediate format (also referred to as
LLVM bitcode) and allows for linking at that level. It provides an API that
can be used to implement new compiler passes directly operating at the bit-
code level. Such passes are independent of both the front-end and the back-
end of the compiler and hence portable between all supported programming
languages and target architectures. Because linking can be performed at the
bitcode level, compiler passes can also get an overall view of the program while
still having access to the extensive source-level information present in the bit-
code format. Our analysis operates at the LLVM bitcode level because the
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availability of source-level information (in contrast to approaches using the
binary where this information is lost) is required for fault type representative-
ness [9, 13].

For our investigation, we chose the standard software fault types commonly
used in the literature [8, 11, 39]. The selected fault types are listed in Table
1. While compiling each program, we identify all fault candidates and regis-
ter in which basic block they occur. It is convenient to do this at the basic
block level, because normally a basic block is either executed in its entirety
or not at all. The exception here are signals and exceptions, which should
be uncommon enough not to interfere with the research as long as only a
single fault is injected on each run. Without injecting any actual faults, we
apply our instrumentation to measure execution counts for each basic block
while running one or more workload generator scripts for each test program.
This allows us to efficiently compute the output fault load for any input fault
load. The main disadvantage is that it is not possible to consider interactions
between faults. However, it should be noted that it is not possible to draw
general conclusions about the impact of interactions between faults regardless
because the interactions depend not just on the fault types and locations but
also on the context. Interactions may introduce additional distortions, such
as faults activated early being more likely to occur than faults activated late.
However, these distortions are mostly a problem if many faults are injected
per run, which is quite unrealistic to begin with. Our approach allows us to
use a few real runs (multiple to capture random workload variations) for each
program/workload generator and use the statistics collected to efficiently con-
sider all possible single injections. Interactions would however be a good topic
for future research.

Although we have conducted all our experiments on x86 Linux, testing
programs written in the C programming language, our approach is more gen-
erally applicable. Our tools are built on top of LLVM and make no assump-
tions about the programming language or back-end used. This means that
they should work with any programming language for which an LLVM front-
end is available, on any operating system that can be targeted by LLVM and
on any CPU architecture for which an LLVM back-end is available. In other
cases, our tools cannot be used but it is still possible to apply our approach.
To perform an analysis like ours, the main requirements are a profiler that
provides information at the basic block level and a fault injector that can
identify a relevant set of fault candidates in the programs. Depending on the
programming language, it may be necessary to select a different set of fault
types. For example, the memory leak fault type included in our tests would
not apply for garbage-collected languages such as Java. For future work, it
would be interesting to apply our approach in such different environments to
determine whether our findings also hold there.
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5 Programs and workloads

We selected a number of programs that is reasonably diverse, while also con-
taining several sets of programs that are functionally similar. The latter can
be used to compare different programs running the same workload. We pref-
erentially chose programs that offer their own regression test suite to have a
‘neutral’ workload, but wrote our own workload generators for programs that
do not offer regression tests. We selected three compression programs (bzip2,
gzip and xz), two implementations of sort (GNU Coreutils and Busybox)
and two implementations of od (same sources). Busybox is normally compiled
into a single binary containing all tools, but we configured it to provide each
tool as a separate binary. In addition we selected the bash shell because it
does a lot of parsing and hence may encounter error conditions in the input,
gnuchess because the control flow of its artificial intelligence is expected to be
relatively complex and the vim editor to have an interactive program that has
a good regression test suite. Because we also wanted to have a systems-related
program, we included ntfs-3g, which is a user-space implementation of the
NTFS file system.

Having a good workload with high coverage is desirable for fault injection
experiments. For this reason, regression tests are generally more suitable than
performance benchmarks and we have used these wherever they were available.
We have not attempted to increase the coverage in these cases as our aim
is not to perform the best fault injection experiments possible, but rather
get an impression of the biases present in commonly performed experiments.
However, we did randomly select a subset of the tests to ensure some variation.
We ran enough runs to prevent this from negatively impacting coverage.

Where regression tests were not available or where we wanted comparability
between different programs with the same benchmark, we generated workloads
that randomly combine the available commands and options as specified by the
documentation and randomly generate input files where needed. Some erro-
neous inputs are also generated, but no attempt is made to test all anomalous
conditions so as to keep the results comparable with other experiments.

For the compression programs bzip2, gzip and xz we used the manual
pages to generate a random combination of supported flags on each run. The
input file is randomly generated using a Markov chain approach, randomly
picking a transition matrix from several types of files, including binaries as
well as text in several languages. We test compression, testing, decompression
and if supported also listing. After compression, the result is sometimes cor-
rupted by changing a byte, zeroing out an aligned 512-byte block or truncating
the file. Files are corrupted to trigger some of the error handling code. These
workloads are listed as bzip2-man, gzip-man, and xz-man. For purposes of com-
parison, a common test script using only features supported by all tools was
also made (listed as bzip2-common, gzip-common, and xz-common). For xz we
also included a variant that uses the LZMA compression method rather than
the default (listed as xz-common-lzma). In addition, to allow for comparison
with the same program and a different workload generator, we have included
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the regression tests included with the bzip2 and gzip programs (listed as
bzip2-rtest and gzip-rtest).

For sort (from both GNU Coreutils and Busybox) and od (from the same
sources) a similar approach was used. Here, flags were taken from the POSIX
specification rather than the man-pages. Some parts had to be left out because
Busybox od did not implement them.

bash and vim come with extensive regression test suites. To introduce
variation, on each run we executed a random subset of these regression tests.
Each test has a probability of 0.5 of being selected. Introducing variation
is crucial to mimic the behavior of real-world workloads. This strategy is in
stark contrast with prior approaches, which often resort to the assumption of
deterministic workload behavior [21].

For gnuchess and ntfs-3g, we made a list of operations and selected a ran-
dom one on each iteration with random (but generally sensible) parameters.
This list consists of commands from the manual for gnuchess and operations
from the POSIX specification operating on the subtree where the file system
was mounted for ntfs-3g. For ntfs-3g, eight processes simultaneously per-
formed operations to trigger any code dealing with concurrency.

6 Results

The results section has been split in subsections, each representing a factor
causing distortion that our experiments can shed some light on. Each subsec-
tion provides the relevant results and an analysis of their impact.

6.1 Coverage

Coverage is a major concern for fidelity because parts of the code that are never
executed when a test workload is run can never activate any faults. Any fault
model in which these particular locations are important requires substantial
effort to maximize coverage if any degree of fidelity is to be achieved. For this
research, the goal is not to maximize coverage but rather to evaluate a range
of coverage levels that might realistically occur in fault injection research.

6.1.1 Number of runs needed to measure coverage

Whenever the workload generator contains a degree of randomness, the cover-
age increases as more runs are tested. Each random input has some chance to
trigger basic blocks that have not been triggered yet in previous runs. However,
there are strongly diminishing returns because the higher the level coverage
was before, the lower the chance of reaching a block that has not been reached
previously. Hence, as more runs are performed the coverage will eventually
grow to some maximum coverage for that particular workload generator. Fig.
2 shows the total coverage as a function of the number of times the workload
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Fig. 2 Coverage in basic blocks as a function of the number of runs with -O4 optimization

generator is executed with optimization enabled. The number shown for run
n is the percentage of basic blocks that has been executed in any of the first n
runs of the workload generator script. It should be noted that each invocation
of the workload generator consists of multiple executions of the tested pro-
gram. This number is chosen in such a way that the per-run execution time is
comparable between the programs. For example, the compression utilities are
used to compress, test and decompress 500 times in each run, while the sort
utility sorts 50 files on each run.

The graph confirms the idea that, while it is important to have a sufficient
number of runs, there are strongly diminishing returns. After only 18 runs,
all programs and workloads are within 1% of the final coverage at 50 runs,
gnuchess being the last to reach that point. We have performed the same
analysis without optimization and the shapes of the graphs are very similar,
with 21 runs needed for each workload to be within 1% of the final coverage
(again, gnuchess being the last). The graph suggests that 50 runs is easily
enough to get a good impression of the maximum coverage that the the work-
load generators can achieve for all programs and workloads we test. Given that
up to some point increasing the number of runs is effective in increasing cover-
age, we recommend fault injection experiments to systematically consider this
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factor by measuring the number of runs needed before the maximum coverage
is reached.

6.1.2 Units for measuring coverage

Coverage is the percentage of a program that is executed while running a
workload. There are multiple ways to measure this. A commonly seen metric
is the percentage of the lines of code in the program that are executed. This
has the advantage of being intuitive because it considers the code written
by programmers rather than the (mostly invisible) compiler output. It has
the disadvantage that some lines may be much more complicated (and hence
prone to bugs) than others. To address this, one could instead consider what
percentage of the machine instructions generated by the compiler is executed.
This way, complex code has more weight. Another consideration is how easy
or hard it would be to increase coverage. If many machine instructions are on
the same code path, it would be easy to exercise them by adding an input to
the workload that causes this code path to run. If, on the other hand, they
are all in conditional branches, many inputs might be needed to reach the
same number of instructions. If this is what counts, it is more convenient to
measure code coverage in terms of basic blocks, because usually each basic
block is either executed or skipped over in its entirety. One final consideration
is how many opportunities there are for bugs. Fault injectors identify fault
candidates, code locations where the bugs of the types known to the injector
can be introduced. This means it may also be a good idea to consider how many
of these fault candidates can be activated by the workload as a coverage metric.
Given that there are so many ways to measure coverage, it is important to find
out how large the impact of the choice of metric is and, if there is a substantial
difference, which one is most suitable in the context of fault injection.

Fig. 3 shows the level of coverage we reached for each program using 50
runs using all four metrics of coverage discussed in the previous paragraph.
When considering the differences between programs and workloads, it is clear
that there is considerable diversity. This is the case even when using the same
workload on different programs. For example, bzip2-common and gzip-common
are identical workloads used on the different programs, but the former reaches
71.4% of basic block coverage while the latter only activates 40.0% of basic
blocks. The regression tests included by the authors of these programs show
a similar difference. This suggests that program organization can have a large
impact on coverage. We investigated gzip’s poor coverage and found that
much of the uncovered code is in reimplementations of functions normally im-
ported from the C library such as printf. Many features of these functions
are never used, resulting in code that the compiler does not know is unreach-
able. Unreachable code makes it harder to get meaningful information about
coverage. Ideally, such code should be removed by the authors or disabled by
the researcher before performing any experiments.

Fig. 3 also shows that the way coverage is measured can make a substantial
difference. In almost all cases, coverage in terms of fault candidates is highest,
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Fig. 3 Coverage per program and workload generator with -O4 optimization

followed by coverage in terms of instructions and then lines of code. Expressing
coverage in terms of basic blocks tends to yield the lowest number. The clearest
deviation from this pattern is seen for xz-common and xz-common-lzma, where
coverage in terms of basic blocks is relatively high.

We computed correlations between the different metrics and found that
correlation was strongest between instructions and lines of code (0.991), in-
structions and fault candidates (0.990), and basic blocks and lines of code
(also 0.990). Correlation is weakest between basic blocks and fault candidates
(though still 0.954). All these correlations are highly significant, which is to
be expected since they measure the same quantity even though they do so in
different ways.

The fact that some coverage metrics are systematically higher than others
supports our idea that uncovered code is not representative of all code. Hence,
not testing this part of the code introduces a bias that makes the output
fault load a more distorted view of the input fault load and hence the fault
model. In particular, the fact that coverage in terms of basic blocks is lower
than the other measures means that the larger basic blocks (in terms of lines,
instructions and fault candidates) are more likely to get executed than smaller
basic blocks. We think this may be due to error handling code being tested
less thoroughly, with regression tests mostly focusing on the program working
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correctly on valid inputs. It seems reasonable to assume that error handling
code has smaller basic blocks when a common response to errors is simply to
print a message and terminate the program. We will consider this hypothesis
in more depth in Section 6.1.3.

Despite the strong correlations, the graph makes clear that there are cases
where the choice of metric has a substantial impact on how the coverage num-
bers compare between programs and workloads. A clear example can be seen
with the sort utility. Even though the programs implement the same speci-
fication, the same workload is used and coverage is very similar in terms of
basic blocks (30.6% versus 31.1%), lines of code (29.3% versus 30.3%) and
instructions (33.1% versus 31.0%), coverage of fault candidates is much higher
for the Busybox implementation (41.3% versus 29.8%). Therefore, fault injec-
tion experiments using Busybox are expected to be more faithful to the fault
model. A similar situation is found with gzip-common and xz-common, which
have similar basic block coverage (40.0% versus 41.6%) but a large difference
in fault candidate coverage (50.5% versus 41.9%). A comparison of bzip2-rtest
and bzip2-common shows that such situations can exist even with the same
programs when running different workloads. Although bzip2-common reaches
substantially more basic blocks (71.4% versus 60.7%) and lines of code (74.8%
versus 64.5%), its lead in terms of fault candidates is not nearly as large (80.0%
versus 77.9%). It has become clear that the choice of metric makes a substantial
difference, even when the same program or workload is used. Such differences
are visible in cases with very low coverage as well as with reasonably high
coverage.

Given that the coverage metrics we discussed show small but meaningful
differences, care must be taken to measure coverage in the right way. In case
of fault injection experiments we believe coverage in terms of fault candidates
to be most appropriate because reaching fewer fault candidates increases dis-
tortion. This is especially relevant because our experiments have also shown
that covered locations are not representative of all code locations.

In addition to the comparison between programs and workloads, we have
investigated the impact of optimization level on coverage by comparing the
optimized programs discussed before with unoptimized versions. In LLVM 3.2,
-O4 is the highest level of optimization possible, combining maximal compiler
optimization (-O3) with link-time optimization (-flto), so we are comparing
the two extremes. Although optimization allows for the elimination of more
dead code, it may also increase code size due to inlining. Therefore, it is a
priori unclear whether optimization should have an impact on coverage.

Fig. 4 shows coverage when optimization is disabled. When taking the
average over all program/workload combinations, optimization only makes
a minor difference. Coverage in terms of fault candidates is most affected,
with coverage being slightly higher with optimization (54.9% versus 54.0%).
This difference is mostly caused by gzip, which is the program for which
optimization has most impact. For example, the gzip-man test has 53.8% fault
candidate coverage with optimization and 49.7% without. To investigate why
this program stands out, we listed the coverage per function in the program
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Fig. 4 Coverage per program and workload generator without optimization

to find where this impact of optimization comes from. It turns out that it is
mostly due to reimplemented C library functions with poor coverage being
optimized more aggressively than the rest of the code.

We have not found evidence that optimization has a meaningful impact on
coverage. This does not rule out that it could be a factor in other cases and it
is possible that the impact may also depend on which specific optimizations
are enabled. Unfortunately we were unable to test levels between unoptimized
and -O4 because of technical limitations of the version of LLVM used for the
experiment when bitcode linking is enabled. Based on these results we cannot
give a general recommendation on the preferred optimization level. In addition
is should be considered that the exact meaning of the optimization switches
changes over time as more optimizations are added. Hence, the most prudent
approach would be to measure the impact of various levels of optimization in
the context where it is being used and base a decision on this. If the cover-
age differences are minimal as in this case, we would recommend using the
same compiler settings as in production settings to bring the fault injection
experiment as close as possible to the way the software is used in production
environment.
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Table 2 Classification of basic blocks in bzip2

Basic block type % of Total % of LoC Lines/bb Coverage
average average at least once

Normal execution 78.1% 83.0% 1.7 39.7% 83.7%
Data errors 5.6% 4.2% 1.2 3.7% 34.0%
User errors 1.8% 2.6% 2.3 1.8% 15.2%
OS errors 3.2% 2.4% 1.2 0.0% 0.0%
Unreachable 4.2% 4.9% 1.8 0.0% 0.0%
Panic 4.2% 2.9% 1.1 0.0% 0.0%
No line info 2.9% 0.0% 0.0 43.3% 90.8%
Total 100.0% 100.0% 1.6 32.5% 70.1%

6.1.3 Relationship between code location and coverage

The claims that low coverage is caused in part by unreachable code and that
error handling code has different characteristics than other code need to be
verified. To check whether these are the plausible we analyzed bzip2 program,
classifying each basic block. This program has high coverage compared to the
others (74.1% of basic blocks) so it should give a good impression of the nature
of the hard-to-reach parts. Also, its control flow is relatively simple, making
mistakes less likely. It should not be taken as a representative sample, but
rather as a proof of concept that our ideas are plausible.

We classified basic blocks in the bzip2 program based on the circumstances
under which they are invoked. We then used out bzip2-man workload script to
invoke the program 600 times and used our instrumentation to keep track of
how often each basic block was executed. This allows us to determine coverage
for each class of block. The result is shown in Table 2. Basic blocks that are
reachable without error conditions are classified as ‘normal execution.’ ‘Data
errors’ refers to code dealing with corrupted input files. ‘User errors’ refers to
code run due to invalid user input. The ‘OS errors’ class deals with unexpected
error conditions, including error codes returned from system calls as well as
signal handling. ‘Unreachable’ code can never be executed. In bzip2, most
unreachable code consists of functions in a library that may be used from
other programs but that bzip2 itself does not use. Note that our classification
of basic blocks is based on the binary, which means that any code the compiler
eliminates because it can prove it to be unreachable is not included. The ‘panic’
category refers to error conditions that should never occur, such as assertion
failures. A few basic blocks did not include line number information, so we
could not classify them.

Two of the columns in Table 2 specify coverage. The ‘average’ column
specifies the percentage of basic blocks in this class executed per run, averaged
over all the runs. The ‘at least once’ column specifies the percentage of basic
blocks executed in at least one of the runs. This means that the ‘normal
execution’ class of basic blocks, the basic blocks that can be reached by some
input are on average reached in half the runs. The ‘data errors’ and ‘user errors’
classes that are exercised by the workload, on the other hand, are activated
in only one in ten of the runs on average. These findings are consistent with
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expectations, as it means that a relatively small fraction of the test cases in
the workload attempt to trigger error handling code.

When considering what percentage of the code is in each class, it is note-
worthy that 10.6% of the basic blocks can only be reached by triggering error
conditions in the workload while 8.4% cannot or should not be reached at all.
It is important when constructing high-coverage workloads as well regression
tests that triggering error conditions is essential and also that 100% coverage
is not realistic. When considering the size of each class in terms of lines of
code rather than basic blocks, these numbers are 9.2% and 7.8% respectively.
This further supports our previous finding that using the de facto standard
measure of lines of code tends to underrepresent parts of the code that are
particularly relevant in reliability research.

Previously, we have argued that the differences between the various cover-
age metrics we discussed may be caused by error handling code having rela-
tively low coverage as well as relatively small basic blocks. This hypothesis is
clearly supported by our data for bzip2, with the ‘at least once’ coverage per
basic block averaging only 20.5% over all classes of error handling code, while
it is more than four times as high for the ‘normal execution’ code class. The
idea that error handling code consists of smaller basic blocks is also supported
overall, but there are differences between the classes of error handling code.
While code handling data and operating system errors does indeed consist of
small basic blocks, code handling user errors tends to have larger basic blocks.
We have looked into the code to find an explanation for this unexpected result
and found that this is because user errors tend to give more verbose error
messages so that more code is needed to print them. Because user errors make
up a relatively small part of the error handling code, our hypothesis is still
firmly supported. More generally speaking, our results show that code struc-
ture differs between the classes we identified. Although we do not claim these
results are representative of other programs, it is clearly shown that this issue
should not be ignored when evaluating coverage.

6.2 Execution count

The degree to which some parts of the code execute more often than others
is rarely considered in fault injection experiments. Given that the impact of
an activated fault may depend on the context, it is reasonable to expect that
a fault being activated over and over again is more likely to have an impact
than a fault activated only once each run. Although this would probably not
make a difference when dereferencing an invalid pointer (which would lead to
a segmentation fault on the first attempt), it is very relevant in the case of
for example a memory leak (where available memory gradually runs out with
subsequent activations). Therefore, it is prudent to consider whether repeated
activation could introduce bias in fault injection experiments.

Which parts of a program are executed often is mostly determined by the
control flow. Loops and recursion allow sections of the code to be executed ar-
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bitrary numbers of times. However, the workload often determines the bounds
of loop counters and the depth of recursion. We aim to determine whether the
distribution of execution counts is affected mostly by the program or mostly
by other factors such as the workload. In the former case there is no difference
between fault injection experiments and production, so no bias is introduced.
In the latter case this factor must be carefully considered.

To investigate the distribution of execution counts, we have plotted his-
tograms showing the number of basic blocks with particular execution counts.
These graphs are shown in Fig. 5. Both axes are logarithmic because of the
extreme ranges of values they take. Both bash and vim (the programs with
the most extensive regression test suites) show a more-or-less linear decline
in frequencies as the execution count goes up. The regression test suite for
bzip2 is similar, though more ragged because of the smaller workload. This
shape in a log-log histogram is typical of power law distributions [1], where
the probability of each value k is proportional to k−α. Some other plots show
a graph that increases, reaches a peak and then decreases linearly. This is the
case for bzip2, gzip and xz with the workloads we constructed, as well as
the gzip regression test suite, ntfs-3g and to some extent gnuchess. These
are still good candidates for a power law-like distribution as the tail (higher
values) is most important. Finally, both implementations of sort and od have
distributions with two peaks. Such a graph suggests that part of the program
is independent of input size, whereas another part runs a fixed number of times
for each byte/line of input. This graph as a whole does not fit any commonly
used probability distribution, but the behavior of the tail is still similar to a
power law distribution.

The fact that execution counts of basic blocks are distributed roughly ac-
cording to a power law and have fat tails means that the differences in execu-
tion counts between basic blocks are huge. This effect can readily be seen from
the ranges of values in Fig. 5. Faults injected in the most executed locations
get activated incomparably more often than those injected in other places.

Our aim is to find which factors influence this behavior. It is hard to find out
directly from the graphs and an attempt to do so would be highly inaccurate.
Since the execution count is generally either power law distributed or the tail
can be approximated by such a distribution, we estimate the exponent of the
distribution. Higher values of the exponent indicate that the frequencies go
to zero faster, the tail is less fat and the distortion introduced less extreme.
Hence, the exponent is a suitable way to characterize the execution count
distributions. We assume the execution count follows a zeta distribution, a
discrete power law distribution where the probability of the execution count
being k is k−α/ζ(α). Here α is the exponent we want to estimate and ζ is
the Riemann zeta function. The exponent can be estimated by performing a
maximum likelihood fit [1].

The average estimated exponents (over 50 experiments) and the standard
errors are shown in Fig. 6. The standard errors are all very low, which is
an indication that 50 experiments are enough to get an accurate estimate of
the value of the exponent. We have also considered the standard deviation,
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Fig. 5 Log-log histograms of execution count (median over 50 runs) per basic block; the
x-axis shows the number of times a block was executed and the y axis how many basic
blocks have been executed that often

which is slightly over seven times the standard deviation (
√

50 to be exact).
In almost all cases, even the standard deviations are very low. This indicates
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Fig. 6 Estimation of the distribution exponent; lines indicate standard errors

that the estimated parameter does not strongly depend on the random seed
used to generate the workload. The main exception here is the Coreutils sort
implementation, which has a standard deviation of 0.056 in the optimized
case and 0.066 without optimization. The high standard deviations indicate
that the random seed has considerable impact on distribution of execution
counts for this program. Considering the numbers for the individual runs, they
can be partitioned in two groups. The larger group (about 78% of the runs)
has an average exponent of 1.141 (standard error 0.003, standard deviation
0.019) while the remainder averages at 1.291 (standard error 0.008, standard
deviation 0.025). Considering these numbers, our workload and the Coreutils
sort source code, it seems the difference is caused by the difference between
merge operations and full sorts, with the merge operations resulting in less
extreme execution counts. This suggests that the exponent of the execution
count distribution provides a meaningful idea of what the program is doing.

It is noteworthy that the exponents are all close to one, which is the min-
imum for the exponent of the zeta distribution. These exponents suggest that
all distributions are very fat-tailed and extreme execution counts are quite
common.

The graph shows the impact of implementation and workload. The expo-
nents for the two implementations of od and sort are not even close to each
other, even though they run exactly the same workloads. The bzip2 and gzip
programs show that the workload also has a large impact. Although the dif-
ference is smaller than between programs, it is much higher than the standard
deviation. This is consistent with the different shapes in Fig. 5. It is clear
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that both different implementations of the same functionality and different
workloads on the same program can result in different distributions.

We also tested the impact of the level of optimization on the distribution
of execution counts. However, even though the programs tend to have more
blocks when optimization is disabled, the distribution exponent barely changes
in almost all cases. This similarity suggests that it is the structure of the
original program code that matters, with the compiler having little influence.
Only the regression test suite for gzip shows a substantial difference between
the optimized and non-optimized case. The exponent is clearly higher for the
non-optimized version, which means the fat tail is less extreme in this case. To
find out why this is the case we investigated the raw per basic block execution
counts and found that a number of basic blocks is executed approximately
twice as often for the optimized version as the non-optimized version. This
includes code in the cyclic redundancy check (CRC) and deflate algorithms,
which are amongst the most often executed code sections. Considering the
code locations where this happens it seems that the optimizer moves the place
where the condition for while loops is checked, causing part of these loops to
be executed an additional time. This should not be an issue for fault injection
at the source code because the optimizer will check the code for side effects that
make this optimization impossible. However, the modified code structure could
have an impact on binary-level fault injection, causing injected faults to be
executed a different number of times than was originally intended. For bitcode-
level injection, this problem is only experienced if optimization is performed
before fault injection. We used this approach here to be able to find the impact
of optimization.

Our findings show that execution counts are affected by workload and have
a large potential introducing distortion due to their fat-tailed distribution.
High-fidelity fault injection requires execution counts similar to those in the
production environment. Since the number of iterations of loops in the program
is an important factor, care should be taken to select a realistic distribution of
input sizes. In addition, the fact that the optimizer may modify the structure of
loops in a way that affects execution counts suggests that binary-level injection
may suffer from additional optimization-induced distortion.

6.3 Relationship between execution count and coverage

Residual faults are activated only by a small fraction of the tests [35]. This
definition is based on the idea that such faults are likely to elude testing and
are therefore more representative of real-world faults than other faults. To
evaluate the impact of selection of residual faults on distortion, it is important
to know whether residual fault locations are repeatedly executed to a similar
degree as other locations.

Fig. 7 classifies basic blocks based on the fraction of runs triggering them
(coverage) and shows geometric means of the maximum execution counts for
the basic blocks in each coverage group. We use the maximum rather than the
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Fig. 7 Geometric mean of maximum execution count per basic block depending on coverage

mean or median for each basic block to prevent the zero execution counts from
automatically introducing the effect of lower execution counts for residual lo-
cations. We use the geometric mean because we do not want to ignore extreme
values (as the median would do) but we also do not want them to dominate
all other values (as the arithmetic mean would do). Nevertheless, using either
of these other measures the pattern is still the same. Standard errors are not
directly applicable to geometric means, but we computed the standard error of
the mean of the natural logarithm for each data point. This is at most 0.745,
corresponding with a factor of 2.106. This shows that the effects shown are far
larger than the errors. Some of the programs and workloads had either zero
or very few basic blocks in some of the coverage groups. It is not possible to
include these cases in the graph in a meaningful way, so unfortunately we had
to leave them out.

Fig. 7 shows that basic blocks where residual faults would be injected
execute far less often than other blocks, even in the workloads that activate
them. Therefore, activated residual faults are expected to cause less damage
compared to other activated faults. As a consequence, fault models that include
both types are at risk of underestimating the impact of the residual faults. If
the impact of such faults is expected to be important in production systems,
they should be tested separately.

6.4 Relationship between faults and execution

We already considered impact of coverage and execution count on fault loca-
tions, but we have not considered the fault types yet. If particular fault types
are more likely to execute or are executed more often, bias is introduced in
the activated faults, which should be compensated by adjusting the input fault
load for the experiment to be consistent with the fault model.

Our question is whether some fault types are more likely to execute than
others. For each basic block and each fault type, we compute the fraction of
faults in the block that is of that type. For each program, we compute the mean
of these fractions for covered blocks and for uncovered blocks. Fig. 8 shows the
average number of faults per basic block for each fault type, averaged over all
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Fig. 8 Number of faults per basic block for each fault type, distinguishing whether blocks
are covered by the workload and whether the program is optimized (O4) or not (O0); the
numbers are an average over all programs/workloads and the lines refer to standard errors

programs (in the ‘O4-total’ and ‘O0-total’ bars), along with the standard error
for this average. In optimized code, the corrupt-integer fault can be injected
in most places, with an average of 0.922 per basic block (for a description
of the fault types, see Table 1). For unoptimized code, the most common
fault candidate is corrupt-pointer at an average of 1.552 per basic block. The
difference can be explained by the fact that optimization tends to remove
memory operations in favor of register operations. The least common fault
candidate type is dangling-pointer, with only one in 400 basic blocks having a
fault candidate of this type. The fact that there are such large differences in
how often candidates for each fault type occur is relevant for fault injection.
When selecting fault locations at random from the set of fault candidates,
dangling-pointer faults would only be likely to be injected if a large number
of faults is injected. If testing all the different fault types is important, it may
be wise to preferentially select fault candidates of uncommon types.

There are large differences in the frequencies with which fault candidate
types occur depending on the program. The standard errors in Fig. 8 provide
some indication of the differences in how often fault types occur between the
various workloads and programs. The full table of fault types per program
is much too large to present here, instead we summarize by discussing on a
number of cases where the differences between programs are particularly large.
The corrupt-index, dangling-pointer, mem-leak and stuck-at-loop fault types
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stand out for having very high standard errors relative to the mean, in some
cases in excess of 100% of the mean. Corrupt-index is much more common
in bzip2 (0.189 per basic block) and gnuchess (0.168 per basic block) com-
pared to the other programs. This means these programs have a relatively
high number of array accesses. Dangling-pointer is relatively common in Core-
utils od (0.008 per basic block) and gzip (0.005 per basic block), suggesting
that memory allocations are relatively common for these programs. Mem-leak
especially stands out for ntfs-3g (0.031 per basic block) which means that
allocated memory is freed in many places. Finally, stuck-at-loop is exception-
ally common in Busybox od (0.075 per basic block), Busybox sort (0.059 per
basic block) and bzip2 (0.034 per basic block), indicating that these programs
have relatively many loops. These examples show that the fault candidate type
distribution differs considerably between programs. It seems reasonable to as-
sume that more fault candidates for a specific fault type would also lead to
more real bugs because it means there are more opportunities for a program-
mer to introduce a fault. The implication for fault injection is that either the
program should be considered explicitly when specifying a fault model or the
fault model should be specified in such a way that the frequency of fault types
being injected is proportional to the frequencies of fault candidates of that
type. This approach would favor a specification such as ‘inject a fault for 1%
of the candidates for a missing load fault’ over the alternative ‘10% of the
injected faults should be of the type missing load.’

In addition to the fact that the fault type distribution differs between pro-
grams, Fig. 8 shows that some fault types are relatively likely to get activated
while others are relatively unlikely to get activated. The corrupt-index and
stuck-at-loop stand out for being relatively common in code that is actually
executed. This means that array accesses and loops (the locations where these
faults can be injected) are relatively common in the part of the program that
performs the main task of the program. Dangling-pointer and mem-leak, on the
other hand, occur more frequently in parts of the code that are not executed.
This suggests that relatively many memory allocations and deallocations are
reached only for certain program inputs. These results make clear that some
fault types are more likely than others to get activated, introducing a bias in
the output fault load. This should be dealt with by considering the distortion
introduced and adjusting the input fault load accordingly to compensate for
overrepresentation of fault types more likely to get activated and underrepre-
sentation of those less likely to get activated.

It has been shown now that there is a large difference in terms of fault types
between covered code and uncovered code, but we have not considered yet how
often faults of different types get executed. The idea here is that specific types
of faults might be more likely to occur in inner loops than others. We computed
correlations between the relative fault candidate counts for each fault type and
the execution count for blocks that did actually get executed at least once. The
conclusion is that there is a significant correlation only for a few fault types
and programs. In particular, loads tend to be executed relatively often in
bzip2 while array indexing is executed more often than other types of code in
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gzip. ntfs-3g executes integer arithmetic and pointer arithmetic more often.
This difference is not as large a source of bias as for example coverage, but
it is still important to monitor fault injection experiments to find out which
faults are executed more often. In cases where strict adherence to the fault
types specified in the fault model is required, it would be wise to report on
any distortion caused by certain fault types being executed more often than
others.

7 Threats to validity

Although we have taken care to set up our experiments in the most realistic
way possible, there are several factors that may have influenced the results that
we presented and made them less realistic. In this section, we identify those
factors that apply to the experiment as a whole and explain the reasons for
choosing an approach that suffers from the issues identified. In addition there
are several factors that apply only to certain parts of the experiment presented.
Those factors have already been considered in drawing the conclusions in the
subsections presenting the results of those experiments and are not repeated
here.

In our experiments, we inject artificial software faults using fault types
modeled on classifications of real faults found in the literature. Although we
have taken care to select faults that are realistic, they are not real faults
introduced by human programmers. The main alternative would be to use
real faults instead by working through the log of fixed bugs, but we are not
aware of any work using this approach in a large-scale reliability experiment.
Computer-generated faults can never perfectly mimic real faults, which is a
potential source of bias in our work. However, we feel that the use of real
faults is not widely applicable and hence not suitable for a paper that aims to
help improve practical fault injection experiments. This is due to the fact that
considerable manual work is needed for each program being tested to identify
a sufficient number of faults that have been fixed in the source control system.
As a consequence, the number of faults that can be used is far lower, limiting
the use of statistical techniques. For relatively new software, the number of
bugs identified may be too low regardless of the amount of manual work that
can be invested. In addition, the use of real faults is not without bias either
because it can only use faults that have already been identified and fixed. This
means that the most elusive bugs would not be considered if real faults were
used.

This research aims to increase understanding of the impact of distortion
on the injection of software faults that resemble bugs that programmers might
introduce. Because the programmer works with the source code, this is also
the best level to identify fault candidates and inject such bugs. We, however,
have opted to do so at the intermediate code instead. The advantages of this
approach are that our tools work with all language front-ends available for
the LLVM compiler and there is no need to interfere with the build systems
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of target programs to intercept arguments to the preprocessor. This threatens
validity because the intermediate code may not be a one-to-one mapping of
the intermediate code. Fortunately, for the LLVM compiler the intermediate
representation is semantically very close to the original C code, for example
making pointer arithmetic explicit and modeling variables rather than stack
frames. If the intermediate code were further removed from the original code,
information would be lost and fault injections would be less realistic. However,
even in the case of LLVM there is the issue of preprocessor macros. Because
preprocessor macros are expanded before compilation, they are not represented
in intermediate code. This might be an issue if a fault were injected in the code
resulting from macro expansion, because the fault would be injected in only
one instance of the macro being expanded. That said, many papers using
fault injection actually inject faults at the binary level (for example [11]),
where this issue is far more pronounced [9,13]. For example, common compiler
optimizations such as inlining and common subexpression elimination could
cause faults to incorrectly affect more or less of the code than intended. Hence,
we expect the impact on validity to be relatively low in this work.

Another factor that should be considered is the impact of the fault model.
We have seen that there are meaningful differences in the locations where the
various fault types occur. As a consequence, our own selection of fault types
has had an impact on the results as well. Our own fault model comes down
to using the fault types presented in Table 1 with the likelihood of selection
proportional to the number of fault candidates. Since the fault types used are
based on the literature on faults occurring in real software we consider this
choice to be reasonable, but it is not the only possibility and using a different
fault model or adding additional fault types could affect the results.

8 Recommendations

Throughout our evaluation, we have identified potential sources of distortion
and provided advice to either mitigate it or where that is not feasible to report
it. This section summarizes the recommendations to help readers reduce the
impact of distortion on their fault injection work.

We found that the regression tests included with some programs resulted
in lower coverage than our own tests based on the manual pages, most likely
because our tests also introduce some errors in the input data. It is important
to test not just correct input, but also incorrect input because error handling
code is a typical place for residual errors to hide. Although this recommenda-
tion should be well-known, regression tests included with common open source
programs show that such test cases are often omitted in practice. We found
that error handling code is not only less likely to be reached by the workload at
all, even the part that is activated on some runs is exercised on fewer runs. It
is also recommended to avoid or remove unreachable code where possible be-
cause it makes the results harder to interpret. To increase coverage efficiently
in case there is random variation in the workload, it may be worthwhile to
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test how many runs are needed to maximize coverage before performing the
experiment itself.

It is also very important to use the most suitable definition of coverage
and be explicit about which was chosen, because we have shown that there
can be substantial differences between them. We have tested four different
coverage metrics and found that even though they are strongly correlated,
there are meaningful differences between them. In the context of fault injection,
measuring coverage in terms of fault candidates is recommended. In particular,
definitions based on lines of code tend to downplay the importance of error-
handling code, which has relatively few lines of code per basic block but is
a particularly likely place to encounter real-world faults. Another important
finding is the fact that coverage is not independent from fault types. Therefore,
to achieve fidelity, fault injection tools should be configured to make the output
fault load rather than the input fault load match the fault model.

In addition to these findings regarding coverage, we also investigated the
distribution of basic block execution counts. The main conclusion is that this
distribution has a fat tail, which means that extreme execution counts are rel-
atively common. Since we have shown that the distribution is strongly influ-
enced by the workload, it is important to select workloads with a similar input
size distribution as would be found in a production environment. Although op-
timization has little impact in most cases, we found that optimizations may
have a substantial impact on execution counts in rare cases where they cause
parts of loops to be executed more often. A solution in this case would be to
inject faults before optimization, using source-level or bitcode-level fault in-
jection techniques. Another important consideration is the fact that execution
counts tend to be higher in code that is executed by many runs of the work-
loads. As a consequence, experiments that inject both residual faults [35] and
non-residual faults will most likely execute the non-residual fault more often,
causing them to be overrepresented in the output fault load.

Regarding model specification, it is important to note that different types of
programs differ in the distribution of fault candidate types. Assuming that each
time a programmer writes code that could be subject to one of the fault types,
there is a small chance that he/she indeed makes such a mistake. Therefore,
the distribution of real faults can be expected to also be affected. To deal with
this elegantly, it is recommended to specify the fault model in terms of the
percentage of fault candidates that will be injected rather than a percentage
of the total. However, if the goal is to test all fault types it is important
to consider that the number of injection opportunities differs widely between
fault types. In this case, it may be necessary to increase the injection rate for
fault types with few candidates.

We also investigated the impact of compiler flags, in particular optimization
levels. For most metrics, we did not find a meaningful impact of the choice of
optimization level, which means we cannot provide general recommendations
based on those experiments. However, we did show that optimization has a
non-negligible impact on the availability of fault candidates. Therefore it is
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recommended that compiler flags are set as they are in a production environ-
ment, rather than compiling code in debug mode for testing.

9 Conclusion

In this paper, we defined the concept of fidelity of a fault injection experiment
to mean that the activated faults faithfully represent the fault model We have
shown that careless fault injection experiments threaten fidelity and may not
measure what the user intended, may be less efficient, less comparable and
that problems with workload construction may remain hidden if fidelity is
not considered. We performed a large-scale empirical evaluation of fidelity,
resulting in advice on how to improve fidelity and raising awareness of the
problem of fault load distortion.

Our research should be considered a first step towards improving fault
injection fidelity. We identified the issue itself and performed experiments to
confirm that there is indeed a potential problem and to give some preliminary
guidance with regard reducing the impact on fault injection research. However,
considerable future work is needed to fully understand the issue of fidelity.
The most important step would be to define a quantitative metric for fidelity,
which would allow for easier comparisons and hence stronger conclusions to be
reached. Simple solutions such the Euclidean distance between vectors of fault
candidate activation probabilities/counts are not suitable because of the fat-
tailed distribution of execution counts we identified. Any work constructing a
metric would need to find a meaningful way to weigh execution counts without
making the extreme execution counts dominate the results. The only way to
achieve this in our opinion is to look beyond activation and also quantify
the extent to which activated faults cause any crashes or incorrect results.
This is a direction for future work in itself and could also aid in identifying
the quantitative impact of execution count. It would also allow for testing
fault interactions by injecting multiple faults per run, another area for future
research that is not possible within our exploratory methodology. Finally, it
would be valuable to determine how robust our results are with regards to
other environments, other languages and other fault types by replicating an
experiment similar to this one in different settings. Our work is far from the
last word on fidelity, but rather a starting point to encourage more research
in this direction that could eventually allow lack of fidelity to be reported,
compared and mitigated to improve the validity of software fault injection
experiments.
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