
Towards a Flexible, Lightweight Virtualization Alternative

David C. van Moolenbroek
VU University Amsterdam

david@minix3.org

Raja Appuswamy
VU University Amsterdam

raja@minix3.org

Andrew S. Tanenbaum
VU University Amsterdam

ast@cs.vu.nl

ABSTRACT
In recent times, two virtualization approaches have become
dominant: hardware-level and operating system-level virtu-
alization. They differ by where they draw the virtualization
boundary between the virtualizing and the virtualized part
of the system, resulting in vastly different properties. We ar-
gue that these two approaches are extremes in a continuum,
and that boundaries in between the extremes may combine
several good properties of both. We propose abstractions
to make up one such new virtualization boundary, which
combines hardware-level flexibility with OS-level resource
sharing. We implement and evaluate a first prototype.

Categories and Subject Descriptors
D.4.0 [Operating Systems]: General

General Terms
Design, Performance, Reliability, Security

1. INTRODUCTION
The concept of virtualization in computer systems has

been around for a long time, but it has gained widespread
adoption only in the last fifteen years. It is used to save on
hardware and energy costs by consolidating multiple work-
loads onto a single system without compromising on isola-
tion, as well as to create host-independent environments for
users and applications.

In these recent times, two virtualization approaches have
established themselves as dominant: hardware-level and op-
erating system-level (OS-level) virtualization. The two are
fundamentally different in where they draw the virtualiza-
tion boundary : the abstraction level at which the virtualized
part of the system is separated from the virtualizing infras-
tructure. The boundary for hardware-level virtualization is
low in the system stack, at the machine hardware interface

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
ACM SYSTOR ’14, June 10-12 2014, Haifa, Israel
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-2920-0/14/06 ...$15.00.
DOI 10.1145/2611354.2611369

level. For OS-level virtualization it is relatively high, at the
operating system application interface level. This boundary
determines important properties of the virtualization sys-
tem: the former is generally thought of as more flexible and
better isolated; the latter as faster and more lightweight.

In this paper, we take a top-down look at the virtualiza-
tion boundary. We argue that the two existing approaches
are extremes in a continuum with a relatively unexplored yet
promising middle ground. This middle ground offers the po-
tential to combine several of the good properties from both
sides. We propose a set of “mid-level” abstractions to form a
new virtualization boundary, where the virtualizing infras-
tructure provides object-based storage, page caching and
mapping, memory management, and scheduling, whereas
any higher-level abstractions are implemented within each
virtual environment. We argue that this approach offers a
viable alternative, providing flexible, lightweight virtual en-
vironments for users and applications. We implement the
core of our ideas in a microkernel-based prototype.

The rest of the paper is laid out as follows. In Sec. 2 we
describe virtualization boundaries as a continuum. In Sec. 3
we propose and discuss a new alternative. We describe our
prototype in Sec. 4 and its evaluation in Sec. 5. Sec. 6 lists
related work. We conclude in Sec. 7.

2. VIRTUALIZATION AS A CONTINUUM
Reduced to its most basic form, any virtualization system

consists of two parts. The domains are the environments
being virtualized, with (at least) user applications in them.
The host comprises all system components facilitating the
virtualization of such domains. We refer to the abstraction
level defining the separation between these parts as the vir-
tualization boundary.

In this paper, we consider only virtualization in which un-
changed applications can run using machine-native instruc-
tions (as opposed to e.g. Java [19] and NaCl [60]), and in
which domains are considered untrusted. In this space, two
approaches have become dominant: hardware-level virtual-
ization (Sec. 2.1) and OS-level virtualization (Sec. 2.2). We
argue that these are extremes in a continuum of virtualiza-
tion boundaries, in which new alternatives have the potential
to combine good properties of both (Sec. 2.3).

2.1 Hardware-level virtualization
Hardware-level virtualization [4,6,17,58] places the virtu-

alization boundary as low in the system stack as practically
feasible. A host layer (virtual machine monitor or hypervi-
sor) provides its domains (virtual machines) with abstrac-

tions that are either equal to a real machine or very close to
it: privileged CPU operations, memory page tables, virtual
storage and network devices, etc. The low boundary allows
a full software stack (OS and applications) to run inside a
domain with minimal or no changes. The result is strong
isolation, and full freedom for the OS in each domain to
implement arbitrary high-level abstractions.

However, the OS adds to the domain’s footprint, while
typically exploiting only a part of its flexibility. Several fun-
damental abstractions are common across OSes: processes,
storage caches, memory regions, etc. Reimplementing these
in isolation leads to duplication and missed opportunities
for global optimization. Only the host side can solve these
issues, but the low boundary creates a semantic gap [8]: the
host lacks necessary knowledge about the higher-level ab-
stractions within the domains. Many ad-hoc techniques have
been proposed to work around this gap [14,26,35,39,40,55].

2.2 Operating system-level virtualization
In contrast, with OS-level virtualization [28,42,44,48,61],

the operating system itself has been modified to be the vir-
tualization host. The domains (containers) consist of appli-
cation processes only–all system functionality is in the OS.
Each domain gets a virtualized view of the OS resources: the
file system hierarchy, process identifiers, network addresses,
etc. Since the OS doubles as the host, there is no redundancy
between domains and resources can be optimized globally.
Thus, OS-level virtualization is relatively lightweight.

However, merging the host role into the OS has down-
sides as well. First, it eliminates all the flexibility found in
hardware-level virtualization: the domains have to make do
with the abstractions offered by the OS. Second, the merge
removes an isolation boundary; failures and security prob-
lems in the OS may now affect the entire system rather than
a single domain.

2.3 The case for new alternatives
The placement of the virtualization boundary in the soft-

ware stack clearly has important consequences. However, we
argue that the two described approaches are extremes in a
continuum. With the boundary as low in the software stack
as possible, hardware-level virtualization represents one end
of the spectrum. OS-level virtualization represents the other
end, with the boundary as high as possible without affecting
applications. That leaves a wide range of choices in between
these extremes.

In a middle-ground approach, the host layer provides ab-

(a)

app app

hypervisor

OS

app app

system

OS
host

app app

(b) (c)

Figure 1: A schematic diagram of (a) hardware-level
virtualization, (c) OS-level virtualization, and (b)
our new alternative. The dashed line shows the vir-
tualization boundary.

stractions to its domains that are higher-level than those
of hardware, and yet lower-level than those of OSes. Each
domain then contains a system layer which uses those “mid-
level” abstractions to construct the desired interface for its
applications, as illustrated in Fig. 1. This way, we have the
potential to reduce the footprint of the domains while retain-
ing much of their flexibility and isolation. The only point
that we must compromise on, is the ability to run existing
operating systems.

3. A NEW VIRTUALIZATION DESIGN
In this section, we present the design of a new point in

the virtualization continuum. We first state our design goals
(Sec. 3.1). We then present the abstractions making up the
new virtualization boundary (Sec. 3.2). Finally, we discuss
the properties of our design (Sec. 3.3).

3.1 Design goals
Our goal is to establish a new set of abstractions imple-

mented in the host system and exposed to the domains.
Each domain’s system layer may use those abstractions to
construct an interface for its applications. In principle, the
domain should be able to achieve binary compatibility with
existing applications. With that constraint as a given, we
set the following subgoals.

First, the abstraction level should be high enough to bridge
the semantic gap. In particular, the new abstractions should
allow for lightweight domains, mainly by reducing re-
source duplication. In many cases, the domains running
on a single host will bear great similarity, because they im-
plement the same application interface, and thus can share
programs, libraries, and data, both in memory and on disk.
The abstractions should make sharing of such resources a
natural result rather than an afterthought, but with copy-
on-write (CoW) semantics to retain full isolation. Bridging
the semantic gap should also allow for other global opti-
mizations generally found in OS-level virtualization only.

Second, the new abstractions should be sufficiently low-
level to give the system layer in each domain substantial
flexibility in implementing (or omitting) high-level abstrac-
tions for its applications. The host system should expose
only abstractions that are well established as fundamental
building blocks for operating systems and thus practically
used in all domains.

Third, it should be possible to provide the new abstrac-
tions through a minimal interface. The virtualization
boundary doubles as a boundary for fault and security iso-
lation. A simple, narrow interface reduces complexity and
security risks in the host system.

3.2 Abstractions
Based on these goals, we propose the following abstrac-

tions, starting with storage and going from there.

3.2.1 Object-level storage
For storage, hardware-level virtualization typically exposes

a block-level virtual disk abstraction, while OS-level virtual-
ization typically exposes a full-blown file system abstraction.
We argue that neither is optimal.

Block-level storage again suffers from a semantic gap. Since
algorithms at the block level lack filesystem-level informa-
tion, block-level storage is plagued by fundamental relia-
bility issues [33] and missed opportunities for optimization

[10, 27], also in the context of virtualization [51]. In addi-
tion, virtual disks are intrinsically heavyweight: they are
statically sized and the smallest unit of content sharing be-
tween domains is the whole virtual disk.

However, file systems represent the other end of the spec-
trum. They impose a specific naming structure and con-
straints, thus adding host complexity while taking away flex-
ibility from the domain, in terms of semantics (e.g., posix vs
Win32 file deletion), configuration (e.g., access time updates
or not), and the ability to optimize metadata management
for application needs [52].

Instead, we propose an object storage model [12,16,54], in
which the host exposes an abstraction of objects: variable-
size byte containers, each with a unique identifier and a set
of associated attributes. An object can be created, deleted,
read from, written to, truncated, and have its attributes
be retrieved and manipulated. This small set of operations
makes up the core of the storage interface implemented by
an object store in the host.

The object model imposes no structure between objects.
It is left to the system layer in each domain to tie together its
objects into a namespace. The basic approach is to use one
object per file in the file system. Directories may be imple-
mented as one object each, or with centralized objects [52],
for example. With no hierarchy or metadata management
defined at the object level, each domain may implement the
file system abstractions appropriate for its user applications.

The details of storage management are left to the cen-
tralized object store. This store maintains and persists the
global set of objects, on local or possibly networked storage.
It gives each domain its own virtualized view of the set of
objects, by keeping a per-domain mapping of local object
identifiers to global objects.

The mapping facilitates storage space sharing similar to
block-level CoW storage. The object store can map several
per-domain identifiers to a single underlying object. Upon
creation, a domain’s initial mapping typically points to a set
of preexisting objects. Such objects remain shared until a
domain changes them, at which point it gets a private copy,
thus retaining full isolation. As a result, the domains’ object
spaces will only ever diverge; to overcome this, the store
can employ lightweight object-level deduplication to merge
objects that become identical later. It can also implement
finer-grained sharing and deduplication, for which it can use
object-level hints.

Thus, overall, the object-based storage abstraction en-
ables both per-domain metadata management flexibility and
fine-grained cross-domain storage sharing. At the same time,
the storage implementation details are fully confined to the
host side, where the object-level information can be used to
improve global decisions.

3.2.2 Object page caching and mapping
Next, we propose to extend the consolidation of shared

storage objects to memory, in the form of a centralized page
cache. Positioning the page cache in the host’s object store
yields several advantages. First, cache pages can be associ-
ated with their underlying global object, thus avoiding in-
memory duplication of cached data between domains alto-
gether. Second, a centralized page cache can employ global
optimization strategies such as domain working set size esti-
mation [26,30,37,38] and exclusive caching on a second-level
SSD cache.

With the page cache on the host side, the final step is to
allow the cached pages to be CoW-mapped into domains, so
as to let domains implement support for memory-mapped
files. As a result, if multiple domains map pages from the
same underlying global objects, these domains all end up
with a copy-on-write mapping to the same physical page.
This allows memory sharing of application and library code
in particular.

Overall, the caching and sharing eliminates a substantial
fraction of interdomain memory redundancy [7, 31] without
the expense of explicit deduplication.

3.2.3 Address spaces, threads, and IPC
As supporting infrastructure, we propose that the host ex-

pose a number of microkernel-inspired abstractions: address
spaces, threads of execution, and interprocess communica-
tion (IPC) [22,50].

Thus, the host side becomes fully responsible for main-
taining virtual memory and scheduling. It exposes an inter-
face that allows for memory mapping, unmapping, granting,
sharing, and copying, as well as creation and manipulation of
threads. Centralized memory management not only simpli-
fies the interface to our proposed memory mapping abstrac-
tion, but also facilitates centralized page fault and swap han-
dling without the problem of double paging [18]. Centralized
scheduling allows for global optimizations as well [29,34,49].

From the perspective of the host, each domain now con-
sists of one or more processes making up its system layer,
and a set of processes making up its application layer. In
order to let these entities communicate, the host exposes
IPC primitives, with access restricted as appropriate. The
IPC primitives may also be used to implement additional
required functionality for the domain system layer, such as
timers and exceptions. We refrain from defining the exact
primitives; such choices should be driven by low-level per-
formance considerations and may be platform dependent.

3.2.4 Other abstractions
Physical resources typically require a driver and appropri-

ate multiplexing functionality in the host. The main remain-
ing resource is networking. Because of the state complexity
of networking protocols, we believe the TCP/IP stack should
be inside the domains. The abstractions exposed by the host
can therefore simply be in terms of “send packet” and “re-
ceive packet,” implemented by a host-side network packet
multiplexer.

3.3 Properties
We now discuss several properties of our proposed virtu-

alization approach and its implementations.

3.3.1 Flexibility and security
The system layer of each domain is free to implement

any abstractions not exposed by the host. For a typical
posix domain, this would include abstractions such as: pro-
cess identifiers and hierarchies; signals; file descriptors; the
file system hierarchy; pseudoterminals; sockets; network and
pseudo file systems. A domain may implement the minimal
subset needed by its applications to minimize the domain’s
footprint and its system layer’s attack surface, or a set of ex-
perimental abstractions to cater to an esoteric application’s
needs, or a specific set of abstractions for compatibility with
a legacy application, etc.

Compared to OS-level virtualization, our approach shares
two advantages with hardware-level virtualization. First, a
privileged user gets full administrative control over her do-
main, including the ability to load arbitrary extensions into
the domain’s system layer. Second, the host abstractions are
available only to the domain’s system layer, resulting in two-
level security isolation: in order for an unprivileged attacker
to escape from her domain, she would first have to compro-
mise the domain’s system layer, and then compromise the
host system from there.

3.3.2 Performance versus subsystem isolation
Our design imposes no internal structure on the system

layers on either side of the virtualization boundary. The host
side may be implemented as a single kernel, or as a micro-
kernel with several isolated user-mode subsystems. Indepen-
dently, the system layer of each domain may be implemented
as a single user-mode process, or as multiple isolated subsys-
tems. On both sides this is a tradeoff between performance
and fault isolation.

We leave open whether a monolithic implementation on
both sides can achieve low-level performance on par with
other virtualization architectures. For example, since the
page cache is in the host system, an application has to go
through its domain’s system layer to the page cache in order
to access cached data. In a straightforward implementation,
this would several extra context switches compared to the
other architectures. Future research will have to reveal to
which extent any resulting overheads can be alleviated, for
example with a small domain-local cache, memory mapping
based approaches, or asynchronous operations [24,41,47].

For the host system, the resulting size of the trusted com-
puting base (TCB) will be somewhere between that of hardware-
level and OS-level virtualization. A microkernel implemen-
tation would allow for a minimal TCB for security-sensitive
domains by isolating them from unneeded host subsystems,
similar to Härtig et al [21].

3.3.3 Resource accounting and isolation
A proper virtualization system must give each domain a

share of the system resources and prevent interference be-
tween domains [4, 20, 36, 48]. This problem is smaller when
the host side provides fewer services: any resources used
within a domain can easily be accounted to that domain,
but the host must account its own resource usage to the
appropriate domain explicitly. Our approach takes a mid-
dle ground: explicit accounting is needed for the object store
and the memory manager, but not for higher-level resources.
We expect to be able to leverage existing OS-level virtual-
ization algorithms.

3.3.4 Checkpointing and migration
For common virtualization functionality such as check-

point/restart and live migration [9,42], our solution benefits
from the middle ground. Compared to OS-level virtualiza-
tion, our host system provides fewer abstractions, and there-
fore less state to extract and restore explicitly. Compared
to hardware-level virtualization, our central memory and
storage management simplify the solution. The domains do
not manage their own free memory, and any domain-specific
pages in the page cache can be evicted at any time. Thus,
the footprint of a domain can be minimized by the host at
any time, obviating the need for ballooning [55].

naming

cache

logical

physical

disk drv

net mux

net drv

VM

sched

microkernel

TCP/IP

VFSPM

...

app appinit

U
ser

S
ystem

D
om

ain
H

ost

Figure 2: The components of our prototype.

4. OUR PROTOTYPE
We have built an initial prototype on the Minix 3 micro-

kernel operating system [50]. Minix 3’s microkernel imple-
ments a small set of privileged operations. This set includes
low-level IPC facilities, which identify processes by global
endpoint numbers. On top of the microkernel, posix ab-
stractions are implemented in isolated user-mode processes
called services. The most important services are: VM, the
virtual memory service, which manages physical memory
and creates page tables; sched, a scheduling policy service;
PM, the process manager, which manages process IDs and
signals; and VFS, the virtual file system service, which man-
ages open file descriptors, working directories, and mounted
file systems. PM and VFS provide the main posix abstrac-
tions to application processes, whereas VM and sched are
not exposed to applications directly. Other services pro-
vide file systems, a TCP/IP stack, pseudoterminals, SysV
IPC, etc. Hardware interaction is made possible with device
driver services.

In prior work, we have developed a new object-based stor-
age stack called Loris [2], which replaces the traditional file
system and RAID layers positioned between VFS and disk
drivers with four new, separate layers. Below VFS, the nam-
ing layer implements VFS requests, file naming, directories,
and attributes. It stores files and directories as objects, us-
ing the object store implemented in the layers below: the
cache layer, an object-based page cache; the logical layer,
which adds RAID-like per-object redundancy; and, the phys-
ical layer, which manages the layout of underlying devices
on a per-device basis and converts object operations to block
operations. The object store uses the model and operations
from Sec. 3.2.1.

We modified Minix 3 and Loris to implement our virtu-
alization concept. A virtualization boundary is drawn be-
tween the system services such that the host system consists
of the microkernel, the VM and sched services, the lower
three Loris layers, and all hardware driver services. Each
domain has a system layer consisting of a private instance
of PM, VFS, the Loris naming layer, and any of the other
posix services as needed by its applications. The user appli-
cation layer of the domain consists of a copy of the init user
process and any actual application processes. The result is
shown in Fig. 2.

Since endpoints were both global and hardcoded (e.g., PM

has endpoint 0), we modified the kernel to virtualize end-
points using a mapping between global and domain-local
endpoints. Thus, each PM instance has a domain-local end-
point of 0, but all PM instances have different global end-
points. The mapping also determines which host services are
visible to each domain. We note that a microkernel with rel-
ativity of reference for IPC (e.g., object capabilities) would
not require such a change.

We modified the Loris cache layer to support object-granular
copy-on-write. To this end, we added per-domain mappings
from domain-local to global object identifiers, as explained
in Sec. 3.2.1, and global-object reference count tracking. An
out-of-band interface is used to create and delete mappings
for domains. We did not change the VM service in a similar
way, as it already had support for copy-on-write memory.

We did change VM, sched, and the Loris cache to be
domain-aware. These host services use a shared kernel page
to look up any caller’s domain by endpoint. In addition, we
wrote a virtual LAN network multiplexer and a multiplexing
console driver for the host system. We have not implemented
support for resource isolation, checkpointing, migration, or
storage deduplication at this time.

For implementation simplicity, there is an administrative
domain which is able to set up other domains. Creating a
domain consists of loading an initial object mapping into
the Loris cache. Starting a domain consists of allocating
a domain in the kernel, loading a bootstrapping subset of
system services and init, mapping these processes into the
new domain, and starting them.

5. EVALUATION
For now, we believe that publishing microbenchmarks is

not useful: neither Minix 3 nor our new changes have been
optimized for low-level performance. Instead, we provide
statistics on memory usage and sharing, startup times, and
storage macrobenchmark results. We used an Intel Core 2
Duo E8600 PC with 4 GB of RAM and a 500 GB 7200RPM
Western Digital Caviar Blue SATA disk.

We tested our system with 250 full posix domains at once.
Each domain consists of 13 service processes that make up
the domain’s system layer, plus init, a login daemon, and
an OpenSSH daemon. The domains can all access (only) the
following host services: VM, sched, the Loris cache layer,
the virtual LAN driver, and the console multiplexing driver.

Each of these domains uses 3148 KB of data memory,
which includes process heaps and stacks in the domain as
well as host-side memory such as kernel process structures
and page tables. In addition, the domains use 2944 KB of
text memory, which is shared between all domains. Even
with only around 3.7 GB of the machine’s total memory
being usable due to device mappings in 32-bit mode, the
described setup leaves around 3.0 GB of memory available
for additional applications and caching.

Creating and loading a CoW object mapping for a new
domain, based on a subtree of the administrative domain’s
file tree (emulating chroot), takes 32 ms. Starting a do-
main to its login prompt, including OpenSSH, takes 53 ms.
Shutting down a domain takes 4 ms.

We used storage macrobenchmarks to evaluate the perfor-
mance impact of our main changes. Table 1 shows absolute
performance numbers for unmodified Minix 3, and relative
numbers for the kernel’s new endpoint virtualization (EV)
and EV combined with CoW support in the Loris cache

Table 1: Macrobenchmark results
Benchmark Unit Baseline EV EV,C
OpenSSH seconds 393 1.01 1.02
AppLevel seconds 621 1.01 1.01
FileServer ops/sec 1178 0.98 0.98
WebServer ops/sec 13717 0.97 0.96

(EV,C). For the OpenSSH and AppLevel (Minix 3) build
benchmarks, lower is better. For FileBench’s fileserver and
webserver, higher is better. The exact configurations are
described elsewhere [54].

The benchmarks show some overhead, caused mainly by
new CPU cache and TLB misses. Optimizations should re-
duce these; all algorithms are constant-time.

6. RELATED WORK
Roscoe et al [46] argue in favor of revisiting the hardware-

level virtualization boundary. However, so far, proposals to
expose higher-level abstractions [11,43,45,59] generally keep
the low-level boundary in order to support existing OSes.
Decomposing monolithic OSes [15, 41] may eventually help
port them to our architecture.

One exception is Zoochory [25], a proposal for a middle-
ground split of the storage stack in virtualized environments.
However, the proposal focuses on virtualization-unrelated
advantages of rearranging the storage stack–ground we have
covered in previous work as well [2, 3, 52]. They propose
that the host system’s storage interface be based on content-
addressable storage (CAS); our object interface would allow
but not enforce that the host side of the storage stack imple-
ment CAS. However, our redesign goes beyond the storage
interface alone, and thus requires more invasive changes.

Our work shows similarity to several microkernel-based
projects. L4Linux uses task and memory region abstrac-
tions to separate virtualized processes from a virtualized
Linux kernel [22]. Several L4-based projects combine micro-
kernel features with virtualization without further changing
the virtualization boundary [21, 23, 56]. The Hurd OS has
“subhurds” [1]: virtual environments with long-term plans
similar to ours [5]. Fluke [13] shares several goals with
our approach, but its support for recursion requires high-
level abstractions to be defined at the lowest level. New
microkernel-based abstractions are also used for multicore
scalability [32,57].

We have previously presented an early sketch of our idea
[53], focusing instead on its potential to improve reliability.

7. CONCLUSION
In this paper, we have established a new point in the spec-

trum of virtualization boundaries. Our alternative appears
to have sufficiently interesting properties to warrant further
exploration. However, with respect to virtualization archi-
tectures, we believe that the final word has not been said,
and we encourage research into other alternatives in this
design space.

8. ACKNOWLEDGMENTS
This research was supported in part by European Re-

search Council Advanced Grant 227874.

9. REFERENCES
[1] GNU Hurd – subhurds.

http://www.gnu.org/software/hurd/hurd/subhurd.html.
[2] R. Appuswamy, D. C. van Moolenbroek, and A. S.

Tanenbaum. Loris - A Dependable, Modular
File-Based Storage Stack. In Dependable Computing
(PRDC), 2010 IEEE 16th Pacific Rim International
Symposium on, pages 165–174. IEEE, 2010.

[3] R. Appuswamy, D. C. van Moolenbroek, and A. S.
Tanenbaum. Flexible, modular file volume
virtualization in Loris. In Mass Storage Systems and
Technologies (MSST), 2011 IEEE 27th Symposium on,
pages 1–14. IEEE, 2011.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. In
Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, SOSP ’03, pages
164–177, 2003.

[5] O. Buddenhagen. Advanced Lightweight
Virtualization.
http://tri-ceps.blogspot.com/2007/10/advanced-
lightweight-virtualization.html,
2007.

[6] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum.
Disco: Running Commodity Operating Systems on
Scalable Multiprocessors. ACM Trans. Comput. Syst.,
15(4):412–447, Nov. 1997.

[7] C.-R. Chang, J.-J. Wu, and P. Liu. An empirical
study on memory sharing of virtual machines for
server consolidation. In Parallel and Distributed
Processing with Applications (ISPA), 2011 IEEE 9th
International Symposium on, pages 244–249. IEEE,
2011.

[8] P. M. Chen and B. D. Noble. When virtual is better
than real. In Proceedings of the Eighth Workshop on
Hot Topics in Operating Systems, HotOS ’01, pages
133–, 2001.

[9] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migration
of Virtual Machines. In Proceedings of the 2Nd
Conference on Symposium on Networked Systems
Design & Implementation - Volume 2, NSDI’05, pages
273–286, 2005.

[10] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Bridging the Information Gap in
Storage Protocol Stacks. In The Proc. of the USENIX
Ann. Tech. Conf. (USENIX ’02), pages 177–190, June
2002.

[11] H. Eiraku, Y. Shinjo, C. Pu, Y. Koh, and K. Kato.
Fast networking with socket-outsourcing in hosted
virtual machine environments. In Proceedings of the
2009 ACM symposium on Applied Computing, pages
310–317. ACM, 2009.

[12] M. Factor, K. Meth, D. Naor, O. Rodeh, and
J. Satran. Object storage: The future building block
for storage systems. In Proceedings of the 2005 IEEE
International Symposium on Mass Storage Systems
and Technology, LGDI ’05, pages 119–123, 2005.

[13] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back,
and S. Clawson. Microkernels meet recursive virtual
machines. In Proc. of the second USENIX symposium
on Operating systems design and implementation,
OSDI’96, pages 137–151, 1996.

[14] T. Garfinkel and M. Rosenblum. A Virtual Machine
Introspection Based Architecture for Intrusion
Detection. In Proc. Network and Distributed Systems
Security Symposium, pages 191–206, 2003.

[15] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. J.
Elphinstone, V. Uhlig, J. E. Tidswell, L. Deller, and
L. Reuther. The SawMill multiserver approach. In
Proceedings of the 9th workshop on ACM SIGOPS

European workshop, pages 109–114. ACM, 2000.
[16] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W.

Chang, H. Gobioff, C. Hardin, E. Riedel, D. Rochberg,
and J. Zelenka. A cost-effective, high-bandwidth
storage architecture. In Proceedings of the Eighth
International Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS VIII, pages 92–103, 1998.

[17] R. P. Goldberg. Survey of Virtual Machine Research.
IEEE Computer, 7(6):34–45, 1974.

[18] R. P. Goldberg and R. Hassinger. The double paging
anomaly. In Proceedings of the May 6-10, 1974,
national computer conference and exposition, pages
195–199. ACM, 1974.

[19] J. Gosling. The Java language specification.
Addison-Wesley Professional, 2000.

[20] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat.
Enforcing Performance Isolation Across Virtual
Machines in Xen. In Proceedings of the
ACM/IFIP/USENIX 2006 International Conference
on Middleware, Middleware ’06, pages 342–362, 2006.

[21] H. Härtig. Security Architectures Revisited. In
Proceedings of the 10th Workshop on ACM SIGOPS
European Workshop, EW 10, pages 16–23, 2002.

[22] H. Härtig, M. Hohmuth, J. Liedtke, J. Wolter, and
S. Schönberg. The performance of µ-kernel-based
systems. In Proceedings of the Sixteenth ACM
Symposium on Operating Systems Principles, SOSP
’97, pages 66–77, 1997.

[23] G. Heiser and B. Leslie. The OKL4 Microvisor:
Convergence Point of Microkernels and Hypervisors.
In Proceedings of the First ACM Asia-pacific
Workshop on Workshop on Systems, APSys ’10, pages
19–24, 2010.

[24] T. Hruby, D. Vogt, H. Bos, and A. S. Tanenbaum.
Keep net working-on a dependable and fast
networking stack. In Dependable Systems and
Networks (DSN), 2012 42nd Annual IEEE/IFIP
International Conference on, pages 1–12. IEEE, 2012.

[25] W. Jannen, C.-C. Tsai, and D. E. Porter. Virtualize
storage, not disks. In Proceedings of the 14th USENIX
Conference on Hot Topics in Operating Systems,
HotOS’13, pages 3–3, 2013.

[26] S. T. Jones, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Geiger: Monitoring the Buffer Cache
in a Virtual Machine Environment. In Proceedings of
the 12th International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS XII, pages 14–24, 2006.

[27] W. K. Josephson, L. A. Bongo, D. Flynn, and K. Li.
DFS: A File System for Virtualized Flash Storage. In
FAST’10: Proc. of the Eighth USENIX Conf. on File
and Storage Technologies. USENIX Association, 2010.

[28] P.-H. Kamp and R. N. Watson. Jails: Confining the
omnipotent root. In Proceedings of the 2nd
International SANE Conference, volume 43, page 116,
2000.

[29] D. Kim, H. Kim, M. Jeon, E. Seo, and J. Lee.
Guest-aware priority-based virtual machine scheduling
for highly consolidated server. In Proceedings of the
14th International Euro-Par Conference on Parallel
Processing, Euro-Par ’08, pages 285–294, 2008.

[30] H. Kim, H. Jo, and J. Lee. XHive: Efficient
Cooperative Caching for Virtual Machines. IEEE
Trans. Comput., 60(1):106–119, Jan. 2011.

[31] J. F. Kloster, J. Kristensen, and A. Mejlholm.
Determining the use of interdomain shareable pages
using kernel introspection. Technical report, Aalborg
University, 2007.

[32] K. Klues, B. Rhoden, Y. Zhu, A. Waterman, and
E. Brewer. Processes and resource management in a
scalable many-core OS. HotPar ’10, 2010.

[33] A. Krioukov, L. N. Bairavasundaram, G. R. Goodson,
K. Srinivasan, R. Thelen, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dussea. Parity lost and parity regained.
In Proc. of the Sixth USENIX conf. on File and
storage technologies, FAST’08, pages 1–15, 2008.

[34] A. Lackorzyński, A. Warg, M. Völp, and H. Härtig.
Flattening hierarchical scheduling. In Proceedings of
the Tenth ACM International Conference on
Embedded Software, EMSOFT ’12, pages 93–102, 2012.

[35] J. R. Lange and P. Dinda. SymCall: Symbiotic
Virtualization Through VMM-to-guest Upcalls. In
Proceedings of the 7th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution
Environments, VEE ’11, pages 193–204, 2011.

[36] I. M. Leslie, D. McAuley, R. Black, T. Roscoe,
P. Barham, D. Evers, R. Fairbairns, and E. Hyden.
The design and implementation of an operating
system to support distributed multimedia
applications. Selected Areas in Communications, IEEE
Journal on, 14(7):1280–1297, 1996.

[37] P. Lu and K. Shen. Virtual machine memory access
tracing with hypervisor exclusive cache. In Usenix
Annual Technical Conference, pages 29–43, 2007.

[38] D. Magenheimer, C. Mason, D. McCracken, and
K. Hackel. Paravirtualized paging. In Proceedings of
the First Conference on I/O Virtualization, WIOV’08,
pages 6–6, 2008.

[39] K. Miller, F. Franz, M. Rittinghaus, M. Hillenbrand,
and F. Bellosa. XLH: More Effective Memory
Deduplication Scanners Through Cross-layer Hints. In
Proceedings of the 2013 USENIX Conference on
Annual Technical Conference, USENIX ATC’13, pages
279–290, 2013.

[40] G. Mi lós, D. G. Murray, S. Hand, and M. A.
Fetterman. Satori: enlightened page sharing. In
Proceedings of the 2009 conference on USENIX ATC.
USENIX Association, 2009.

[41] R. Nikolaev and G. Back. Virtuos: An operating
system with kernel virtualization. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 116–132, 2013.

[42] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The
design and implementation of Zap: A system for
migrating computing environments. In In Proceedings
of the Fifth Symposium on Operating Systems Design
and Implementation, pages 361–376, 2002.

[43] B. Pfaff, T. Garfinkel, and M. Rosenblum.
Virtualization Aware File Systems: Getting Beyond
the Limitations of Virtual Disks. In Proceedings of the
3rd Conference on Networked Systems Design &
Implementation - Volume 3, NSDI’06, pages 26–26,
2006.

[44] D. Price and A. Tucker. Solaris zones: Operating
system support for consolidating commercial
workloads. In LISA, pages 241–254, 2004.

[45] H. Raj and K. Schwan. O2S2: Enhanced Object-based
Virtualized Storage. SIGOPS Oper. Syst. Rev.,
42(6):24–29, Oct. 2008.

[46] T. Roscoe, K. Elphinstone, and G. Heiser. Hype and
virtue. In Proceedings of the 11th USENIX workshop
on Hot topics in operating systems, page 4. USENIX
Association, 2007.

[47] L. Soares and M. Stumm. FlexSC: Flexible system call
scheduling with exception-less system calls. In
Proceedings of the 9th USENIX conference on
Operating systems design and implementation, pages
1–8. USENIX Association, 2010.

[48] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and
L. Peterson. Container-based Operating System
Virtualization: A Scalable, High-performance
Alternative to Hypervisors. In Proc. of the Second
ACM SIGOPS/EuroSys European Conf. on Computer

Systems, EuroSys’07, pages 275–287, 2007.
[49] H. Tadokoro, K. Kourai, and S. Chiba. A secure

system-wide process scheduler across virtual machines.
In Dependable Computing (PRDC), 2010 IEEE 16th
Pacific Rim International Symposium on, pages 27–36.
IEEE, 2010.

[50] A. S. Tanenbaum and A. S. Woodhull. Operating
Systems Design and Implementation (Third Edition).
Prentice Hall, 2006.

[51] V. Tarasov, D. Jain, D. Hildebrand, R. Tewari,
G. Kuenning, and E. Zadok. Improving I/O
Performance Using Virtual Disk Introspection. In
Presented as part of the 5th USENIX Workshop on
Hot Topics in Storage and File Systems, 2013.

[52] R. van Heuven van Staereling, R. Appuswamy, D. C.
van Moolenbroek, and A. S. Tanenbaum. Efficient,
Modular Metadata Management with Loris. In Proc.
6th IEEE International Conference on Networking,
Architecture and Storage, pages 278–287. IEEE, 2011.

[53] D. C. van Moolenbroek, R. Appuswamy, and A. S.
Tanenbaum. Integrated End-to-End Dependability in
the Loris Storage Stack. In HotDep, 2011.

[54] D. C. van Moolenbroek, R. Appuswamy, and A. S.
Tanenbaum. Transaction-based Process Crash
Recovery of File System Namespace Modules. In
Proceedings of the 19th IEEE Pacific Rim
International Symposium on Dependable Computing,
2013.

[55] C. A. Waldspurger. Memory Resource Management in
VMware ESX Server. SIGOPS Oper. Syst. Rev.,
36(SI):181–194, Dec. 2002.

[56] C. Weinhold and H. Härtig. VPFS: Building a Virtual
Private File System with a Small Trusted Computing
Base. In Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer
Systems 2008, Eurosys ’08, pages 81–93, 2008.

[57] D. Wentzlaff and A. Agarwal. Factored operating
systems (fos): the case for a scalable operating system
for multicores. ACM SIGOPS Operating Systems
Review, 43(2):76–85, 2009.

[58] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
performance in the Denali isolation kernel. ACM
SIGOPS Operating Systems Review, 36(SI):195–209,
2002.

[59] M. Williamson. XenFS, 2009.
[60] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,

T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar.
Native client: A sandbox for portable, untrusted x86
native code. In Security and Privacy, 2009 30th IEEE
Symposium on, pages 79–93. IEEE, 2009.

[61] Y. Yu, F. Guo, S. Nanda, L.-c. Lam, and T.-c.
Chiueh. A Feather-weight Virtual Machine for
Windows Applications. In Proceedings of the 2nd
International Conference on Virtual Execution
Environments, VEE ’06, pages 24–34, 2006.

