
A Wide-Area Distribution Network
for Free Software

ARNO BAKKER, MAARTEN VAN STEEN, and ANDREW S. TANENBAUM

Vrije Universiteit, Amsterdam

The Globe Distribution Network (GDN) is an application for the efficient, worldwide distribution of

freely redistributable software packages. Distribution is made efficient by encapsulating the soft-

ware into special distributed objects which efficiently replicate themselves near to the downloading

clients. The Globe Distribution Network takes a novel, optimistic approach to stop the illegal distri-

bution of copyrighted and illicit material via the network. Instead of having moderators check the

packages at upload time, illegal content is removed and its uploader’s access to the network perma-

nently revoked only when the violation is discovered. Other protective measures defend the GDN

against internal and external attacks to its availability. By exploiting the replication of the software

and using fault-tolerant server software, the Globe Distribution Network achieves high availability.

A prototype implementation of the GDN is available from http://www.cs.vu.nl/globe/.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed

Systems—Distributed applications; H.3.5 [Information Storage and Retrieval]: Online Infor-

mation Services—Data sharing; K.4.1 [Computers and Society]: Public Policy Issues—Abuse
and crime involving computers; intellectual property rights

General Terms: Design, Legal Aspects, Management, Performance, Security, Reliability

Additional Key Words and Phrases: Distributed objects, middleware, software distribution, file

sharing, traceable content, copyright, wide-area networks

1. INTRODUCTION

The scale of distributed applications can be classified along three dimensions
[Neuman 1994]. Numerically large applications have many users or many com-
ponents. Geographically large applications have their users or components dis-
tributed over a large geographical area (e.g. worldwide), and an administra-
tively large application entails that many organizations are involved in the
application as users or as administrators of its components.

Developing an Internet application that is large in any of the three dimen-
sions is difficult. Dealing with millions of users and components introduces
many engineering and management issues. It requires the extensive use of

Author’s address: A. Bakker, Department of Computer Science, Faculty of Science, Vrije Univer-

siteit, De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands; email: arno@cs.vu.nl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1533-5399/06/0800-0259 $5.00

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006, Pages 259–281.

260 • A. Bakker et al.

techniques such as caching, replication, and distribution of functionality to re-
duce and distribute the load over the available infrastructure [Neuman 1994].
These techniques, in turn, introduce technical and managerial problems of their
own, such as maintaining consistency of caches and replicas and how to keep
track of a (replicated) component’s current location(s). Large geographical dis-
tances introduce unavoidable and significant communication delays whose im-
pact again have to be minimized by caching, replication, and distribution of
functionality. Having to deal with many organizations makes it hard to admin-
ister and secure the application, particularly, if these organizations operate in
different parts of the world. In addition to the problems introduced by the large
scale of the applications, a developer also has to deal with machine and network
failures and heterogeneity in hardware and (system) software.

The key to making large-scale application development easier is therefore to
provide the developer with the means for dealing with these complex (extrafunc-
tional) aspects and required techniques in a comprehensive manner. In addition
to comprehensiveness, flexibility is particularly important for a development
platform. To build an application with hundreds of millions of users operat-
ing on a worldwide scale, it is necessary that the development platform allows
the developer to employ the techniques, protocols, and policies that are best
suited for the application [Agha 2002]. This implies that the platform should
support many different mechanisms and policies, and it should also allow new
ones to be introduced easily. In short, to accommodate large-scale applications,
a platform should allow application-specific optimizations of the middleware
itself.

The Globe project is aimed at designing and building such a comprehensive
and flexible middleware platform [Van Steen et al. 1999]. Flexibility is achieved
by basing the middleware platform on a new model of distributed objects, called
the distributed shared object model. A distributed shared object is in control of
all aspects of its implementation, including extrafunctional aspects such as
replication and security. A distributed shared object can therefore be said to
bring its own middleware to the machines it uses, and thus enables a developer
to also apply application- or even object-specific solutions in the extrafunctional
aspects of the object’s implementation.

To validate its design, we have built several applications on top of the Globe
middleware. One such application is the Globe Distribution Network (GDN), the
design of which is the topic of this article. The Globe Distribution Network is
an application for the efficient, worldwide distribution of freely redistributable
software packages, such as the GNU C compiler, the Apache Web server, Linux
distributions and a great deal of shareware [Bakker et al. 2000; Bakker 2002].
The distribution is made efficient by encapsulating the free software in Globe
distributed shared objects that automatically replicate themselves to areas with
many downloaders. The use of distributed shared objects to replicate software
not only makes its distribution efficient, it also allows us to remedy some of
the problems of FTP- and HTTP-based software distribution. In particular,
distributed shared objects allow transparent fail-over to other replicas and
can guarantee strong replica consistency unlike many pull-based mirroring
solutions.

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

A Wide-Area Distribution Network for Free Software • 261

In addition to efficiency and fault tolerance, the design of the Globe Distri-
bution Network pays particular attention to the security aspects of software
distribution. One of the most pressing legal problems concerning the Internet
today is the illegal distribution of copyrighted works, such as digitized audio
and video, and illicit content, such as child pornography. As the GDN is aimed
at legitimate large-scale file sharing and is intended to be open to many free-
software publishers, it takes measures to prevent illegal distribution. What
complicates matters is our design goal which is to allow a group of volunteers
to operate the GDN: the server and network resources should be donated and
the application should be managed by volunteers, as in the current FTP-based
infrastructure. These people cannot be expected to vet content that thousands
of content providers wish to distribute via GDN.

Our approach to inhibiting illegal distribution is therefore novel and neces-
sarily optimistic (in the sense of optimistic concurrency control). Rather than
preventing illegal distribution of content by moderation beforehand, we make
content traceable to its publisher, and remove content and block its publisher
only after the publication has proven illegal. This optimistic approach is neces-
sary to minimize the amount of work for the volunteers. Other security aspects
that are taken into account in the design of the GDN are authenticity and in-
tegrity of the software being distributed and denial-of-service attacks by exter-
nal and internal attackers. A prototype of the GDN implementing a considerable
part of these features can be downloaded from http://www.cs.vu.nl/globe/.

The remainder of this article is structured as follows. Section 2 describes
the architecture of the Globe Distribution Network and how it uses distributed
shared objects to make software distribution efficient. In Section 3, we present
our approach to preventing illegal distribution. Section 4 describes how we
guarantee the availability of the GDN despite attacks by insiders and outsiders,
and Section 5 presents the fault tolerance measures of the GDN. Related work
is discussed in Section 6. We conclude in Section 7.

2. ARCHITECTURE

The architecture of the Globe Distribution Network is shown in Figure 1. The
GDN consists of a large number of distributed shared objects (DSOs) encap-
sulating the software that is being distributed. The distributed shared objects
are replicated over a collection of user-level object servers located throughout
the Internet. The clients, distributed shared objects, and object servers are sup-
ported by a number of middleware services. The architecture of GDN and Globe
is described in detail in Bakker et al. [2003].

2.1 Downloading Software

To download software from a distributed shared object, the client first asks the
Globe Name Service (GNS) to resolve the symbolic name of the object to the
object’s object handle which is the object’s permanent, location-independent
(binary) identifier. Second, the client resolves the object handle of the object to
a contact address of a replica of the object. The contact address contains the
network address of the replica and information on how to contact it (i.e., which

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

262 • A. Bakker et al.

Fig. 1. The architecture of the Globe Distribution Network. A circle represents a replica of a

distributed shared object; a rectangle represents a machine; a diamond represents a service, im-

plemented by one or more machines; a dashed rounded box represents a collection.

protocols to use in communication). In particular, the object handle is resolved to
a contact address using the Globe Location Service (GLS). The GLS returns the
contact address of the geographically or network-topologically nearest replica,
depending on the setup of the GLS. It has been specifically designed to track
replicas for billions of objects and has lookup costs that are proportional to the
distance between the lookup requester and the nearest replica [Van Steen et al.
1998; Ballintijn et al. 2001].

In the third step, the contact address of the replica is used to construct a
proxy of the object in the client’s address space. The code for the proxy and the
protocols used is dynamically loaded from a trusted implementation repository
(IR). In the final step, the client downloads the software from the object by
invoking methods on the proxy which are then shipped to and executed at the
nearby replica. This replica reads the software from local storage and returns
it to the client.

Software uploads proceed in a similar manner. An uploading client in-
stalls a proxy in its address space and subsequently invokes the object’s
startFileAddition, putFileContent, and endFileAddition methods to upload
the file containing the free software into the object. These state-modifying meth-
ods are executed by all replicas of the object which write the file to local storage.

To the end user, downloading software is similar to downloading files from
a FTP or Web site. The GDN supports an HTTP-to-GDN gateway that allows
Web browsers to directly download files from distributed shared objects. For
uploading software into the GDN, we have a FTP client-like tool that simplifies
the regular tasks of a software publisher, handling the interaction with objects,
object servers, and middleware services.

2.2 The Structure of Distributed Shared Objects

The proxies and replicas of a distributed shared object are composed of subob-
jects, modules that take care of a particular aspect of the object’s implementa-
tion. A replica of an object minimally consists of five subobjects as illustrated
in Figure 2. The replication subobject (labeled R in the figure) contains the

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

A Wide-Area Distribution Network for Free Software • 263

Fig. 2. The structure of distributed shared objects.

implementation of the replication protocol used by this object. The security
subobject (labeled Se in the figure) implements the object’s security policy and
protocols used. The communication subobject (Co in the figure) satisfies the
replication and security subobjects’ communication needs, for example, by offer-
ing reliable group communication primitives. The semantics subobject (labeled
S in the figure) contains the actual implementation of the object’s methods and
(logically) holds the state of the object. Finally, the control subobject (labeled
Ct) manages the interaction between the replication protocol and the object
implementation; it bridges the gap between the application-defined interfaces
of the semantics subobject and the standardized interface of the replication
subobject. More sophisticated proxies and replicas also contain subobjects for
handling fault-tolerance aspects.

The modular structure enables the application developer to change the sub-
objects that handle replication or other extrafunctional aspects on a per-object
basis. In other words, it allows the developer to select different protocols, tech-
niques, and policies for different objects, thus achieving our middleware’s goal
of being able to select the solutions best suited for each application. The stan-
dardized interfaces of these subobjects furthermore allow us to build a large
library of subobjects that are reusable by other applications.

Our Java prototype implementation of Globe includes robust implementa-
tions of all the Globe middleware services and run-time system, a number
of replication protocols, and a security subobject that uses multiple security
protocols.

2.3 Efficient Distribution via DSOs

In the GDN, the distributed shared objects use a replication protocol that avoids
frequent communication over wide-area network links where bandwidth is as-
sumed to be scarce. To avoid wide-area links, the replication protocol monitors
access patterns and replicates the object in areas with many downloads, thus
bringing the software near to the clients.

More specifically, when a client invokes a method on the object, the client
reports its location to the nearby replica. The replica aggregates the location

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

264 • A. Bakker et al.

statistics and periodically reports these to the trusted core replicas which co-
ordinate global operations (such as state updates) in the object. The core repli-
cas determine which regions are generating many requests and place new
replicas there. Replicas not only report their load periodically, they also de-
tect flash crowds, that is, sudden sharp increases in the number of accesses
which are common on the Internet [Nielsen 1995]. In such an event, they can
autonomously create extra replicas in the busy regions.

To find available object servers to create replicas on, the replicas query the
Globe Infrastructure Directory Service (GIDS). This middleware service is used
to register the object servers participating in the GDN and can locate an object
server with specific properties in a particular region of the Internet [Kuz et al.
2002]. To this extent, the GIDS divides the world into a set of base regions
(typically the size of a LAN), which are organized into a hierarchy currently
based on their geographical location. The location of clients and object servers
are expressed as base regions in this hierarchy.

Full details on the (active) replication protocol, such as how it balances load,
can be found in Bakker [2002]. We have implemented a simplified version with a
single core replica in our GDN prototype. Our research into intelligent protocols
is continued in the Globule project [Pierre et al. 2002; Sivasubramanian et al.
2003].

3. ILLEGAL DISTRIBUTION

Software is generally considered a literary work and hence protected by copy-
right [World Intellectual Property Organization 1996].1 Allowing free redistri-
bution of software therefore requires the legal consent of the copyright holder,
generally the author. For software, standard licenses have emerged under which
authors can publish their software and which permit free distribution amongs
other things. A well-known license is the GNU General Public License (GPL)
[Free Software Foundation, Inc. 1991].

The preceeding suggests that legal distribution of free software can be de-
fined as the distribution of software that has been made freely redistributable
by its copyright holder. This definition is, however, too broad because not all
types of software can be legally owned and distributed. We define controversial
free software as software that

(1) uses patented technology,

(2) can be used to circumvent copyright-protection measures,

(3) employs strong cryptography, or

(4) contains racist or potentially offensive material (e.g. Nazi symbols, nudity).

Whether or not instances of this class of software can be legally owned and
distributed differs from country to country. The GDN does not at present ad-
dress these national differences as these issues require further investigation.
In the meantime, we define our own global policy of what can be distributed via

1For an interesting discussion about whether software should be protected under copyright law,

patent law, or free speech legislation, see Burk [2001].

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

A Wide-Area Distribution Network for Free Software • 265

the GDN. Given that the GDN is to be used for the distribution of free software,
we consider inappropriate content as anything that is not freely redistributable
software or part thereof.

3.1 Prevention Schemes

The GDN is intended to support a large number of software publishers. This
design goal has important consequences, as it implies that a powerful distribu-
tion channel is made available to many people, some (or many) of whom will
attempt to abuse this channel to illegally distribute copyrighted or illicit con-
tent. The actions of these abusers can create liabilities for the operators of the
distribution network, in particular, for the owners of the object servers storing
and serving the GDN’s contents. For example, in the United States, the owner
of a computer himself is liable for copyright infringement when copyrighted
content is served from his computer rather than the person who put it there
[United States Government 1998]. A similar risk exists for pornography and
other illicit materials. If there is a risk of liability, people and organizations
may not volunteer their time and resources to the GDN. This conflicts with our
design goal of wanting the server and network resources to be donated and the
management of the application to be performed by volunteers as in the current
FTP-based infrastructure.

3.1.1 Content Moderation. The most obvious solution to preventing illegal
distribution is to check content before it is uploaded onto the distribution net-
work. We call this solution content moderation. In content moderation, one or
more people, called moderators, manually check all content before it is uploaded.
Manual checking is required because a computer cannot tell copyrighted from
noncopyrighted content or illicit from legal content.

We deemed content moderation inappropriate for the GDN. Finding a group
of moderators that are willing to devote their time to tedious and time consum-
ing work will probably be hard. Also, content moderation introduces a (poten-
tially long) delay between the initial submission for publication and the actual
publication in the distribution network. Finally, the moderators may be legally
liable for inadvertently approving copyrighted material.

3.1.2 Reputation. The reputation of a software publisher can also be used
as a method for preventing illegal distribution. Currently, people who want to
setup a mirror of free software often select a collection of software packages or
distributions based on the good reputation of the author/publisher and configure
their servers to directly mirror the primary publication sites. This method is
applied, for example, for the Linux kernel and for well-known distributions such
as RedHat and FreeBSD. The disadvantage of the current practice is, however,
that each site owner has to monitor the reputation of software publishers to see
who deserves to be mirrored. This method can be improved upon by introducing
a group of reviewers who maintain a list of trusted publishers. Assuming some
form of dynamic replication as in the GDN, site owners would then configure
their servers to automatically accept content but only from the publishers on
the list.

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

266 • A. Bakker et al.

With this method, gaining access to the network with the intention of abusing
it is nearly impossible. To have software published by other sites, a malicious
publisher not only has to establish a good reputation, but he also has to cre-
ate a large user base such that the reviewers start considering the software as
a candidate for replication. Unfortunately, this simple approach does not give
equal access to all publishers. We would like each publisher to be able to im-
mediately benefit from the GDN’s resources and facilities when demand for his
software grows. This reputation scheme can, however, be employed in the GDN
as explained in Section 3.3.

3.1.3 Cease-and-Desist. Our solution to preventing illegal distribution in
the GDN is called cease-and-desist [Bakker et al. 2001]. In the cease-and-desist
scheme, users of the distribution network can freely publish content, but the
content a user publishes remains traceable to that user. If content is suspected
of having been published illegally, its presence in the network is reported to
a group of moderators. This group of moderators checks whether or not the
content was published illegally, and if so, blocks the publishing user’s access
to the distribution network and has his publications removed. The cease-and-
desist scheme tries to limit illegal distribution by banning provably malicious
users from the distribution network.

This scheme is in line with current legal developments. For example, in
the United States legislators have recognized that it is often not feasible to
moderate content beforehand. Hence, in the recent changes to copyright law
“provider[s] of online services,” such as Internet Service Providers can request
legal protection from copyright infringements by their users [United States
Government 1998]. If a user publishes other people’s copyrighted works on the
ISP’s servers, the ISP cannot be held liable and is required only to remove
the copyrighted content once they have been notified by the copyright holders.
France has similar legislation [Oram 2001].

The scheme works under three conditions.

(1) A small amount of illegal distribution must be tolerated.

(2) Persons banned from the distribution network must not be able to easily
regain access.

(3) The number of reports of illegal content to the moderators must be low
when abuse is low.

As illegal content will be removed from the distribution network only after it
has been detected, there will always be a certain amount of illegal content avail-
able via the network. We argue that the law will have to accept this situation
and allow a certain level of abuse, since there is no possibility to keep out all il-
legal content in any scheme. Even content moderation, which is the best scheme
for limiting the amount of illegal content, cannot filter out all illegal content.
The reason is that detecting illegal content requires manual checks which are
error prone and, furthermore, may be defeated by cleverly encoding illicit con-
tent into inconspicuous content, a process called steganography [Katzenbeisser
and Petitcolas 1999]. A powerful example supporting this latter argument is
the so-called “first known illegal prime number” [Carmody 2002], which when

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

A Wide-Area Distribution Network for Free Software • 267

represented as bytes is a GZIP-ed version of the DeCSS source code. The DeCSS
source code can be used to circumvent copyright protection on digital video discs.

The second condition is that it should be impossible or at least difficult for a
violator to regain access to the distribution network after he has been blocked.
The following method was chosen to satisfy this requirement. Candidate users
are required to prove their real-world identity which is published on a blacklist
when the user is found guilty of illegal distribution. This blacklist is checked
at each application for access to the distribution network, thus keeping out
violators reapplying for access.

The advantage of the cease-and-desist scheme over content moderation is
that the amount of work for moderators is small when the level of abuse is low.
In this situation, the work of the moderators is always useful and will not be
perceived as superfluous. Cease-and-desist is therefore an optimistic scheme
(in the sense of optimistic concurrency control) that is more labor efficient at
low abuse levels, whereas content moderation is pessimistic and is thus more
effective when abuse is high. To achieve the laborefficient situation when abuse
is low, there should be few false reports which is the third condition specified.

False reports are not expected to be a problem. At present, in the United
States, it is the responsibility of the copyright holder to report the illegal dis-
tribution of his content to those managing the violating servers. In case of the
GDN, the copyright holders would report to the group of moderators via an
official procedure who would then determine the legitimacy of the complaint
and take action. Likewise, it could be the legal responsibility of law enforce-
ment agencies to report illicit content. In both cases, reporting procedures are
expected to discourage false reports.

For completeness, the cease-and-desist scheme also addresses the case where
the users of the distribution network themselves are expected to regulate their
own network. In that exceptional case, false reports do pose a problem. Ma-
licious people can try to undermine the prevention scheme by swamping the
moderators in unnecessary work. We argue that to keep the number of false
reports at bay, there must a threshold for a user to submit a report.

In the next section, we explain how cease-and-desist is implemented in the
Globe Distribution Network.

3.2 Cease-and-Desist in the GDN

The cornerstone of the cease-and-desist scheme is that the published software
remains traceable to its uploader which we refer to as the producer of the
software. Content traceability is implemented in the GDN as follows. When a
producer wants to start publishing his software through the GDN he has to
contact one of the so-called access-granting organizations. An access-granting
organization (AGO) verifies the candidate’s identity by checking his passport or
other formal means of identification. In addition, the organization checks if this
person has been banned from the GDN by any of the other AGOs by consulting
a central blacklist.

If the candidate is clean, the access-granting organization creates a certifi-
cate linking the identity of the candidate to a candidate-supplied public key and

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

268 • A. Bakker et al.

Fig. 3. Basic operation of the GDN with traceable content.

digitally signs this certificate. This certificate is called the trace certificate and
the key pair of which the public key on the certificate is one part is called the
trace key pair. In addition to creating a trace certificate, the AGO supplies the
producer with Globe security credentials that allow him to access the GDN. As
an AGO also processes reports of illicit content, it is different from certification
authorities like VeriSign. An AGO can, however, choose to accept certificates
by certain CAs as a proper means of identification.

An owner of an object server specifies which producers it wants to allow to
access his object server. In principle, access is granted at AGO-granularity: the
server owner specifies which AGOs it trusts to do a proper identity and blacklist
check, and only producers that have credentials and certificates signed by those
AGOs will be allowed to place content on that owner’s object server. Owners can
also give access to or block individual producers.

3.2.1 Uploading Content. The application and upload procedure is shown
in Figure 3. In Step 1, a software producer identifies himself to an AGO and
receives a trace certificate and Globe credentials in return. In Step 2, the pro-
ducer requests an object server that trusts the AGO that the producer got his
credentials from to create a distributed shared object (arrow 2). Next, the pro-
ducer creates a digital signature for the file to be published using the trace key
pair. This signature is referred to as the trace signature. The trace signature
and associated trace certificate are uploaded into the DSO, along with the file,
by invoking the DSO’s upload methods (arrow 3 in Figure 3).

When the upload is finished, the DSO verifies the trace signature. If the
signature is false, either because the certificate did not contain the right public
key, the file did not match the digital signature, or the producer has been banned
from the GDN, the object removes the uploaded file from its state. As only those
files are allowed that are provided by an active (i.e., nonblocked) producer and
that carry a valid signature, all content in the GDN is always traceable. Multiple
files can be uploaded into a single DSO using this procedure. Finally, a user
downloads the file, the trace certificate and the trace signature from the DSO,
and subsequently verifies that they match (arrow 4).

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

A Wide-Area Distribution Network for Free Software • 269

3.2.2 Blocking Illegal Publishers. To ban a producer from the GDN when
a copyright holder or law enforcement officer finds illicit content that is trace-
able to that producer, the following procedure is executed. The finder notifies all
object-server owners and the access-granting organization that gave the sus-
pected producer access for the publication of illicit content by the suspect. The
access-granting organization, in addition, receives a copy of the signed illicit
content and verifies that this content is indeed inappropriate and is digitally
signed by the violator. If this is the case, the producer’s credentials are revoked
and the violator is placed on the central blacklist shared by all AGOs. In effect,
the violator is thus banned from the GDN. In the case of self regulation, a reg-
ular user that finds illicit content in the GDN must contact a GDN producer
who will make the accusation on his behalf. It is assumed that governments
will not make false allegations (e.g., through their law enforcement officers).

The actions taken by the object-server owners upon notification depend on
their content-removal policy. They may destroy their replicas of all objects that
contain content signed by the violator or delete the replicas of only the objects
mentioned in the allegation. They may do so immediately upon notification by
the accuser or only after the allegation has been verified by the AGO. Object-
server owners can also decide not to remove the content but instead temporarily
block accused producers from their server.

Which policy object-server owners will adopt depends on the requirements
imposed by the local jurisdiction. In principle, object-server owners are au-
tonomous and can decide for themselves which policy they adopt. However, the
GDN may also impose a global policy to guarantee certain system-wide proper-
ties with respect to illegal distribution. We currently require object servers to
follow a global policy by which all content published by a violator is deleted, but
only after verification of the evidence by the moderators. This policy provides
protection against malicious producers trying to remove well-known software
packages from the GDN.

3.2.3 Appeals Process. There are three potential problems with access-
granting organizations.

(1) Due to sloppiness or forged identification means, an AGO may grant a trace
certificate to the wrong person.

(2) A malicious or sloppy AGO may blacklist the right person for the wrong
reason.

(3) An AGO may refuse to blacklist a person, although the software he pub-
lished is illegal to distribute.

The first problem is solved by introducing an appeals process. When a person
A discovers that a trace certificate has been handed to the wrong person B, and
B has not yet been placed on the central blacklist, A contacts the AGO that
issued the certificate. When B has abused its rights and is blocked, A contacts
the GDN Administration. The GDN Administration is the central authority
that governs the GDN, and, in particular, controls which organizations can be
access-granting organizations for the GDN. In both cases, the appeals commit-
tee of either AGO or GDN Administration does an extra thorough check of the

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

270 • A. Bakker et al.

identity of the appealer. If the appealer shows its identity to satisfaction, the
appeals committee attempts to contact the current holder of the trace certifi-
cate. To this extent, when a producer registers with an AGO, he also supplies a
contact address. If the holder cannot be contacted, the original certificate is re-
voked and a new one is issued to the appealer. If the holder is reachable, he will
be asked to reidentify himself. Assuming any fraud will be revealed when com-
paring identification means, the appealer or the holder will be granted a (new)
trace certificate. We consider sloppiness the main cause of this problem as we
assume formal identification means are not easily forged. To prevent identity
theft, formal identification is necessary and weaker authentication schemes are
deemed unsuitable.

If identity theft because of sloppy AGOs becomes too frequent, the GDN can
delegate the AGO’s function of establishing identity to well-known Certification
Authorities such as VeriSign. AGOs would then only have to issue trace certifi-
cates and Globe security credentials. An additional advantage of this solution
would be the costs associated with obtaining a CA-certified identity certifi-
cate since this creates a threshold for malicious persons wanting to join. This
threshold may also deter legitimate producers, but we expect that people will
appreciate the properties of the GDN (such as automatic fail-over) and that
those people who really need a more powerful distribution channel will not be
deterred. Experience in the Debian Project shows that software publishers will
go to great lengths to join a convenient publication system (see Section 6).

The second problem is also solved by allowing appeals. A person blacklisted
incorrectly can ask the GDN Administration to reinvestigate the accusation.
The AGO involved is required to show the evidence to the GDN Administra-
tion. This possibility for appeal can also be used in cases where initially illegal
software is ruled to be legal at a later time (e.g., the DeCSS code [Simons 2000]).
If an AGO refuses to blacklist a certain software publisher (the third problem),
the distribution of his illegal software will cease automatically as the object-
server owners will no longer allow producers from that AGO on their systems.

We offer no solution to the problem of stolen trace key pairs. Producers who
fear their keys are at risk from viruses or worms should take appropriate mea-
sures to protect them such as creating trace signatures and object-pedigree
chains (see Section 4) on a separate, non-networked computer.

Our GDN prototype contains a complete implementation of cease-and-desist
which is described in Bakker [2002, Chapter 5].

3.3 Discussion

The cease-and-desist scheme is an optimistic scheme that assumes that the
majority of producers request access to the GDN to legitimately publish their
software. If this assumption does not hold, the GDN can switch to a reputation-
based approach, as its security architecture is flexible. For example, individual
object-server owners can let specific producers get access to their system. Other
owners may delegate the access-control task to an AGO that allows only well-
known publishers. The strength of the security architecture, whichever scheme
is used, is that it forces content to be traceable so that, when producers go

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

A Wide-Area Distribution Network for Free Software • 271

astray, at least there is a simple way of removing all disputed content (unlike
the current Internet).

3.3.1 General Policy Variations. Blocking an illegal publisher for life may
seem like a harsh policy. It may be possible to adopt weaker policies where access
is regranted after some period of time. One could even consider blacklisting just
a particular software package with the threat of blacklisting the producer if he
persists. Whether or not weaker policies are possible depends on the frequency
of abuse and the law. If there are many people abusing their rights, allowing
them to reenter is not a good idea. The law may also require a lifetime block in
some cases (e.g., child pornography). We choose to be hard on violators in order
to keep the volume of illegal content down.

3.3.2 Self Regulation Policies. In the exceptional case where the users of
the GDN have to be self-regulating, the number of false reports must be kept
low for cease-and-desist to work as intended. Our initial proposal is to create
a threshold by requiring that allegations are made by or through an active
producer that will be blocked if the allegation proves false. Blocking the accuser
is harshs and may encourage entrapment of an accusing producer by someone
else. On the other hand, making sure that bad content and its publishers are
removed by making sure proper allegations are not lost in a flood of false reports
is vital for the legitimacy of the distribution network. If there is too much illicit
content, the network may be forbidden.

Our initial policy of immediate and permanent blockage of a false accuser
may be too conservative. Less conservative policies, such as blocking a producer
only after a few mistakes or revoking access for just a period of time, should
be tried in practice to see if the number of false reports remains acceptable.
Counting the mistakes a producer makes is an example of a simple reputation
system. Reputation systems are a promising new development [Lethin 2001;
Cornelli et al. 2002], and we intend to investigate their potential for the GDN.
A particularly interesting topic for future research is to see whether an effective
method for limiting false allegations can be devised based on end-user repu-
tation which would allow end users to report without intermediaries. Such an
end-user reputation system would represent another type of threshold for alle-
gations. Other possible thresholds are requiring a refundable fee to be deposited
with the accusation or requiring an accusation to be endorsed by multiple
producers.

One can also argue that immediate and permanent blockage is not conser-
vative enough. As anyone is allowed to become a producer, people could sign
up with the sole intention of making false reports and not publishing software.
As indicated earlier, cease-and-desist is an optimistic scheme that does not
hold up to such active and massive malicious behavior, and a better choice is a
reputation-based approach.

Given the right sanctions policy, we do not expect that finding a willing
producer is a problem. One can also imagine people specializing in the role of
accuser, that is, producers acting as public prosecutors and explicitly requesting
users to report illicit content to them. Finally, we believe that self-regulation is

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

272 • A. Bakker et al.

not a situation that should be encouraged. Making copyright holders and law
enforcement responsible for submitting allegations is better because it is also
more in line with most legal systems.

3.4 Ensuring Authenticity

People downloading software from a software distribution network want to
be assured of the authenticity and integrity of the software downloaded. In
the GDN, establishing the authenticity of software is the responsibility of the
downloading user. In principle, the GDN guarantees only the integrity of the
distributed software via the digital trace signature. It provides no authenticity
guarantees other than the verified identity of the uploader as it appears on the
trace certificate as discussed previously. Guarantees concerning the authen-
ticity of software should therefore come from mechanisms outside the GDN,
such as end-to-end digital signatures which is a common practice with software
distribution today.

4. GUARANTEEING AVAILABILITY

A worldwide distribution network for free software should have around-the-
clock availability. In this section, we discuss the security measures taken to
prevent external and internal attackers from disrupting the network. How the
GDN deals with hardware and software faults (the other threat to availability)
is discussed in Section 5.

To prevent external attackers from interrupting operations we enforce a role-
based access control model [Sandhu et al. 1996]. The access-control model iden-
tifies principals and defines a number of roles and associated rights and how
these roles are assigned. For example, for each distributed shared object, there
is a role named replica that can be assigned to an object server. This role en-
ables an object server to host a replica of the DSO and advertise this replica as
a representative of the object in the Globe Location Service (the service which
clients use to locate replicas). The replica role is assigned to an object server by
another replica.

The GDN prototype uses the Globe security framework to implement this
access-control model [Popeseu et al. 2002, 2003a, 2003b]. In this framework,
each distributed shared object has a public/private key pair. This key pair is
linked to the object by including an SHA-1 digest of the public key in the object’s
unique object identifier (the object handle, see Section 2.1). The holder of this
key pair, known as the object owner, uses it to delegate specific permissions to
other key pairs by means of authorization and administrative certificates. An
authorization certificate specifies which methods of a distributed shared object
the holder of a key pair is allowed to invoke and which replication and security
control messages it is allowed to send. An administrative certificate specifies
what authorization certificates the holder is allowed to issue and serves as a
parent certificate for authorization certificates. The object’s public key is placed
in a self-certified administrative certificate that is at the root of the delegation
hierarchy from object owner to end-user authorization certificates that is cre-
ated by the administrative certificates.

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

A Wide-Area Distribution Network for Free Software • 273

In the GDN, when the object owner creates the core replicas of the object,
it creates a key pair, an authorization certificate, and an administrative cer-
tificate for each replica. The authorization certificate enables the core replicas
to, for example, disseminate updates to the state of the object to other (non-
core) replicas. The administrative certificate allows them to grant certificates
to noncore replicas that are created to handle increased client demand. A non-
core replica will also receive an authorization and an administrative certificate.
The former allows it to identity itself as a replica of the object to clients and
core replicas. The latter allows it to delegate similar rights to other noncore
replicas that it creates in the event of a flash crowd. End users, in general, will
also authorize their actions via certificates, in particular, if they are allowed to
modify the state of the object (e.g., upload software). Objects can, however, also
allow unauthorized (i.e., certificateless) users to invoke methods, for example,
just their read-only methods. The clients and replicas use various protocols for
authentication and secure communication. In our prototype, we currently use
TLS [Dierks and Allen 1999] and a newly designed protocol [Crispo et al. 2004].

The authorization certificate scheme can be linked to identity certificates
to allow access control based on identity. Concretely, for the GDN, a producer
will create a pedigree certificate chain for each object he creates, linking his
trace (identity) certificate to the root administrative certificate for the object.
When object servers are asked to create replicas for the producer’s object, the
pedigree chain is sent along in the request. This enables the object servers to
check if the object belongs to a producer that was certified by an access-granting
organization they are configured to trust.

In addition to external attackers, we expect that GDN participants may at-
tack the availability of the distribution network from the inside. This set of
internal attackers includes both producers (i.e., software publishers) and object-
server owners. Producers may abuse their rights to create objects and upload
content to allocate excessive amounts of resources at object servers, thus mak-
ing them unavailable to others. Object-server owners can stage a similar attack
by abusing the replica rights assigned to their object server. In addition, owners
may modify their object servers to act maliciously, for example, to serve other
content than requested content to downloaders or have them confirm operations
to clients and peers but not execute them.

The GDN supports a global and local (i.e., per-object server) resource manage-
ment system that impedes the overallocation of resources by internal attack-
ers. The global resource management system, called the GDN Quota Service
(GDNQS) limits the rate and annual number of distributed shared objects a
producer can create. It is based on an observation from the free-software do-
main, in particular, that the rate at which new versions of a software package
are published is fairly stable. It is rare for more than one new version to be pub-
lished per day. Each producer is therefore assigned an annual quota of DSOs
and cannot create more than a few DSOs per day. These quota are enforced by
the GDNQS and the object servers. To create a new DSO, the producer’s upload
tool first has to contact the GDNQS to obtain an object-creation ticket. Object
servers participating in the GDN will create a new DSO only if the request is
accompanied by such a ticket.

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

274 • A. Bakker et al.

As the GDNQS is an important service, it must be made highly available
which includes making it resistant to denial-of-service attacks. Countering
denial-of-service attacks, such as flooding network connections to servers, is
outside the scope of this article because they can only be dealt with at the
network/operating system level. Other types of DoS attacks by outsiders are
thwarted by the strong authentication of clients which is required for obtaining
object creation tickets. Lacking credentials, outsiders will not be able to request
any higher-level services from the GDNQS. Outsiders could only attack the au-
thentication protocol itself. Hence, we assume a DoS-resistant authentication
protocol is used [Dean and Stubblefield 2001].

We keep a producer from allocating too many resources on a particular object
server by introducing a local resource management system for object servers.
The local resource management system keeps track of how many resources
are used by each replica and to which producer this replica belongs, and it de-
nies allocation requests if a producer has already been allocated his fair share.
This policy should work fairly well; an analysis of the disk space requirements
of all 16,187 SourceForge projects in October 2002 shows that only 10.2% of
the projects used more than the average of 11.5MB. For large projects, AGOs
could hand out special trace certificates (i.e., the certificates used to identify
producers) that allow for more disk space usage at object servers. In addition,
we impose a limit on the size of the state of a distributed shared object (e.g.,
1 Gigabyte), enforced by the code of the object’s replica. The limit is set cen-
trally for the whole GDN and is adjustable to allow growth in maximum file
size. Furthermore, the local resource management system deletes replicas that
are not frequently used, thus providing protection against producers and mali-
cious object servers trying to reduce availability of the GDN by allocating use-
less additional replicas. An attacker could counter this measure by setting up
clients that access the superfluous malicious replicas, thus keeping up their
replicas’ usage, but this requires a sustained effort from the attacker and is
therefore assumed unlikely.

The most basic attack for a malicious object server is to serve downloaders
content other than what was requested. Doing so only hinders downloaders as
the integrity of the content is protected by the trace signature (see previous
section). However, if the content served is not what the user expects but still
traceable (i.e., a malicious object server could serve the user the content of
a totally different object), users will not notice a problem until they do the
end-to-end authenticity check. This makes the end-to-end authenticity check
absolutely vital to the secure downloading of software from the GDN.

Other attacks by malicious object servers, for example, attempts to modify
the state of the object as held by other replicas are frustrated by the GDN’s
access control model. Replicas accept updates originating only from the object’s
core replicas which run in trusted object servers (i.e., trusted by the GDN pro-
ducer owning the object). In general, noncore replicas depend only on the core
replicas (for state updates) and otherwise operate autonomously.

In addition to downloaders, object servers interact with two parties: produc-
ers (who request them to create new DSOs) and other object servers (which re-
quest them to create or delete replicas). To circumvent malicious object servers,

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

A Wide-Area Distribution Network for Free Software • 275

downloaders, producers, and object-server owners can specify which (other) ob-
ject servers they trust or do not trust. At present, approval and disapproval
of servers is specified via IP-address ranges and DNS domain names. In the
future, we hope to use a reputation system for object servers (see Section 3.3.2)
to aid with server selection.

5. FAULT TOLERANCE

In this section, we describe how the Globe Distribution Network is made fault
tolerant. Fault tolerance has three aspects: availability, reliability and failure
semantics. Availability indicates the probability that a system will be available
at any moment in time. The reliability of a system indicates how often it exhibits
failure. Failure semantics define the state of the system after a failure [Cristian
1991]. Ideally, a system has strong failure semantics, implying that the system
remains in a consistent state after the failure.

We first discuss the measures for ensuring availability and reliability of the
GDN, after which we discuss the GDN’s failure semantics. For a discussion of
the fault tolerance aspects of the Globe middleware services, see, for example,
Ballintijn et al. [1999].

5.1 Availability and Reliability

Making sure a distributed application is highly available and reliable starts, in
principle, at the host and network level. Hosts and network can be made highly
dependable using hardware redundancy, such as processors with a hot backup,
disk arrays [Chen et al. 1994], and multiple independent network connections.
However, given the free nature of the GDN, we cannot employ hardware solu-
tions to increase availability and reliability. We therefore start one level higher,
making sure object servers are up and running most of the time.

5.1.1 Recovering Object Servers. Object servers can be made highly avail-
able by enabling them to quickly recover after a crash with most of their state
intact. To this extent, Globe object servers currently support a simple check-
pointing mechanism. Periodically, the object server creates a checkpoint by halt-
ing the processing of incoming requests, waiting until current requests have
been processed, and then saving its state to disk. The state of an object server
consists of the states of the replicas it hosts and the administration the object
server maintains about these replicas. Once the object server’s state is stable
on disk, the previous checkpoint is deleted in an atomic disk operation. After a
crash, the new object server reads the last complete checkpoint back from disk,
recreates the replicas, and passes them their marshaled state. Each replica
then reinitializes itself and synchronizes with its peers in an application- or
even object-specific manner.

A GDN DSO’s replica recovers from a server crash by contacting one of the
DSO’s (other) core replicas to see if its state is still current. If this is the case,
the replica checks the integrity of the free software it stored on disk using the
trace signatures of the files (see Section 3.2). If the integrity check fails, the
replica deregisters itself with the rest of the object and destroys itself. A replica

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

276 • A. Bakker et al.

currently also destroys itself when its state turns out to be out of sync, which is
required to implement the GDN’s failure semantics, discussed in the following.

Checkpointing the state of an object server in this fashion negatively affects
the object server’s availability as it does not process requests during a check-
point. Fortunately, in the case of the GDN, checkpointing time is low. First, none
of the methods on a GDN DSO take much time to execute so the checkpointing
thread does not have to wait long before it can start checkpointing the server’s
state to disk after it has stopped the server from accepting new requests. Sec-
ond, although the state of an object server used for GDN can be large, most of it
is already stored on disk, in particular, the software encapsulated by the DSOs.
The checkpointing mechanism is such that this part of the object server’s state
need not be saved again which considerably decreases the time to checkpoint.
Our approach is also known as user-directed checkpointing [Plank et al. 1995].
This checkpointing scheme is implemented in our Globe prototype, see Bakker
et al. [2003] for some preliminary experiments.

5.1.2 Object Redundancy. As explained in Section 2, the distributed
shared objects of the GDN replicate themselves over the set of object servers
to make the software they encapsulate efficiently available to the clients. This
replication for performance naturally increases the availability of the DSOs in
the GDN. If the replica nearest to the client is down, the client will connect to
another nearby replica. Replica failures, if not reported by the replica’s operat-
ing system, can in this case be detected using response times. In general, it is
unclear how to accurately and securely detect the failure of components on the
Internet. There is evidence to suggest that failure detection is practically feasi-
ble with a sufficient degree of reliability [Stelling et al. 1998]. Other replicas are
found by querying the Globe Location Service. This natural redundancy does
not apply to all software packages, however. As the replication degree depends
on the number of clients, unpopular software packages may not have any extra
replicas. To provide a minimum level of fault tolerance, each DSO therefore
always has two or more core replicas.

5.2 Failure Semantics

To remain manageable, GDN should provide atomic with respect to exceptions
failure semantics, that is, an operation is carried out or it is not and the distribu-
tion network is returned to the state it was in before the start of the operation
[Cristian 1991]. Providing such semantics for downloads is easy since down-
loads in GDN are stateless (i.e., distributed shared objects do not keep track of
downloads) for scalability reasons. At present, we do not provide these failure
semantics for uploads as uploads are operations that consist of multiple method
invocations on a DSO (see Section 2.1), and the Globe middleware does not yet
provide a transaction mechanism to atomically execute such sequences.

Instead, GDN strives to make uploads succeed whenever possible. It sacri-
fices replicas that may be just temporarily disfunctional in order to prevent
having to report failure under the assumption that replicas will be recreated
by the object if client demand requires it. This solution is considered sufficient
for the time being. A failed upload will impact only a single DSO, not the whole

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

A Wide-Area Distribution Network for Free Software • 277

software collection. In addition, the number of uploads into a GDN DSO is low,
reducing the number of actual failures. The number of uploads is low due to
the limited amount of software that is placed in an individual DSO (i.e., we
place each new revision of a software package in a separate DSO). For a com-
plete discussion about the granularity of objects (e.g., how much software should
be placed in a single object) and the details of this ad-hoc solution, we refer the
reader to Bakker [2002].

We have described how the GDN relies on digital signatures to guaran-
tee the integrity of a file distributed through the GDN. This integrity check
also detects any data corruption that has occurred due to failures inside the
GDN that may have gone unnoticed. In this sense, the trace signatures on
files in the GDN provide end-to-end integrity protection, a desirable property
[Saltzer et al. 1984].

6. RELATED WORK

We describe three related systems: Netlib [Dongarra 2004], SourceForge [Open
Source Development Network 2004a] and Debian [Software in the Public In-
terest, Inc. 2004b].

Netlib is one of the earliest distribution networks of free software, in partic-
ular for scientific computing applications. Software can be retrieved using a va-
riety of methods (gopher, email, FTP, and HTTP) from a set of mirror sites. The
mirror sites are kept consistent using custom replication software. To enable
the verification of software downloaded from a mirror, there is a PGP-signed in-
dex file containing the MD5 checksums of all published files. Fail-over to other
mirrors is a manual procedure. Designed for the early and safer Internet, code
would be uploaded as a single text file, and “the managing editors and, in some
cases, an area editor will take at least a quick look to be sure the code seems
suitable for netlib.” [Grosse and Dongarra 1995].

At present, one of the primary sites for free software distribution is Source-
Forge. People submit requests for their projects to be hosted on SourceForge.
When granted, they get access to Web and CVS servers and to a replicated file
distribution service. The distribution service has a master/slave architecture.
Files uploaded to the master server are replicated to a number of slaves around
the world via the rsync protocol [Tridgell 2000] at 1 hour intervals. To down-
load software, a user will normally look up the latest release on the project’s
Web page hosted by SourceForge. Selecting the release for download redirects
the user to the distribution service. The service causes the user’s browser to
automatically initiate a download from one of the replicas, generally the one
specified as the preferred replica by the user in an earlier download session.
In case of replica failure, the user has to manually select another server to try.
In the GDN, replica selection and fail-over is all automatic, and replicas are
strongly consistent. The latter may help during flash crowds as all replicas can
deliver the content from the moment of publication, not just the master server.

According to the SourceForge’s usage terms and conditions, they do “not pre-
screen or review content”. Instead SourceForge “reserves the right to refuse
or delete any Content of which it becomes aware that it reasonably deems

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

278 • A. Bakker et al.

not to fulfill the Purpose[. . .] [or] that it reasonably considers to violate the
Terms or be otherwise illegal.” [Open Source Development Network 2004b]. In
sum, illegal distribution via SourceForge is combated by the application proce-
dure for project space and an unknown procedure for detecting illegal content.
The fact that all mirrors have the same content makes detecting a little eas-
ier since only one server has to be checked and cleaned. In the GDN, we do
not assume that each replica has sufficient capacity to host the complete col-
lection. This enables more organizations and private individuals to contribute
resources. Content traceability enables us to remove illegal content from such
a diverse hosting infrastructure.

An interesting project that prevents illegal distribution via their system is
the Debian Project. Debian aims to provide a free operating system based on
the Linux kernel. The system comes with over 8500 easy-to-install software
packages maintained by over 800 people and replicated across more than 300
machines worldwide [Software in the Public Interest, Inc. 2004b]. To ensure
the quality of the system and to prevent abuse, the publication of software
is tightly controlled. People wishing to publish their software via the official
Debian distribution system, which makes it conveniently available to Debian
end users, have two options. The easy option is to find a so called sponsor
among the ranks of the 800+ official Debian Developers. The sponsor will help
the publisher to package his software following the Debian standards and will
upload it to the distribution system on the producer’s behalf. Although the
software is listed under the producer’s name, it remains traceable to the sponsor
and is considered his responsibility. Illegal distribution is largely prevented as
the sponsor will spot the most obvious attempts.

The difficult option is to become an official Debian Developer. Becoming a De-
bian Developer is a five-step process. First, a candidate must have his OpenPGP
public key signed by an existing developer to establish the candidate’s identity.
To this extent, he has to preferably meet one of the developers in person and
provide “a passport, a driver’s license or some other ID” [Software in the Public
Interest, Inc. 2004a]. If this is not possible, there are alternative ways such as
sending a PGP-signed photo ID. Second, the candidate has to find a Debian
Developer who is willing to act as the advocate for the candidacy. The advocate
has to acknowledge that the candidate is ready to be a developer, that is, has the
required skills and has been involved with Debian for some time. In the third
step, the candidate has to pass an exam on the philosophy and procedures of the
Debian Project. In the fourth step, he has to demonstrate his practical skills in,
for example, package management or writing documentation. Finally, Debian’s
New Maintainer Committee will evaluate the results of the exams and grant
or reject the request. Rejected candidates can generally reapply for developer
status after a certain period.

Because becoming a developer is so difficult, only truly dedicated people who
have invested considerably in Debian will apply for access. The chances of de-
velopers misbehaving are therefore expected to be small. The Debian procedure
is considered a reputation-based scheme. For GDN’s purposes, establishing the
identity of the candidate is expected to be sufficient, and no extra testing of mo-
tivation is required. Cease-and-desist is thought to efficiently prevent illegal

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

A Wide-Area Distribution Network for Free Software • 279

distribution as long as the optimism is warranted and most producers are not
malicious.

It is encouraging for the Globe Distribution Network that more than 800 peo-
ple were willing to go through Debian’s five-step application process. It shows
that software producers will go through considerable effort to participate in
a convenient system and suggests people may also be willing to do the for-
mal identification step required for the GDN. Another important observation is
that developers as sponsors are actually willing to act on behalf of others. This
supports our idea for reporting illegal content via an intermediary in the case
where the GDN has to be self-regulatory regarding illegal distribution.

Debian uses a custom replication system based on a master FTP server that
pushes new releases out to the first tier of official mirrors once a day. Second-
tier servers remain consistent with an official mirror via the pull-based rsync
protocol. First-tier servers must mirror the complete master site. Second-tier
servers are allowed to mirror just parts, allowing more people to participate in
the distribution. The advantage of Debian is that the distribution system ties
into the local package management system. End users can configure the system
that manages the installation and deinstallation of software on their machine to
use multiple servers, including a geographically close one by default. The man-
agement system can handle partial, inconsistent, and unavailable mirrors. As
such, the Debian distribution system does not suffer the problems of Source-
Forge. Such a link to local package management is also possible with GDN,
which also has no mirror inconsistencies nor does it requires manual fail-over,
although this will require coordination among software producers regarding
software packaging.

7. CONCLUSIONS

The Globe Distribution Network (GDN) is an application for the efficient distri-
bution of freely redistributable software packages. It has been developed as a
test application for a new middleware platform called Globe which is designed to
facilitate the development of large-scale Internet applications. Distribution of
the free software is made efficient by encapsulating the software into Globe dis-
tributed shared objects and efficiently replicating the objects near to the clients
downloading the software. Replication of the software is automated because
distributed shared objects manage their replication themselves based on past
and present client demand. Our research into efficient wide-area replication is
continued in the Globule project [Pierre et al. 2002]. The GDN guarantees its
availability despite attacks by outsiders and insiders.

Instead of doing content moderation at upload time to prevent the illegal
distribution of copyrighted material or other illicit content, the Globe Distribu-
tion Network takes a novel approach where publishers are given unmediated
access to the network. In this optimistic approach, all content uploaded into
the network is made traceable to its publisher (by means of digital signatures)
allowing illicit material to be removed from the GDN shortly after it is found
and the publisher of this material to be banned from the GDN. The Globe
Distribution Network exploits the replication of the software to achieve high
availability and has well-defined failure semantics when failures can no longer

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

280 • A. Bakker et al.

be masked. The source code for both the Globe Distribution Network and the
Globe middleware platform are freely available under the BSD software license
at http://www.cs.vu.nl/globe/.

ACKNOWLEDGMENTS

We would like to thank Chandana Gamage, our staff programmers, Patrick
Verkaik and Egon Amade and our sponsor, Stichting NLNet, for their support
in the development of Globe and the Globe Distribution Network.

REFERENCES

AGHA, G., ED. 2002. Comm. ACM (Special Section on Adaptive Middleware) 45, 6 (June).

BAKKER, A. 2002. An object-based software distribution network. Ph.D. thesis, Division of

Mathematics and Computer Science, Faculty of Sciences, Vrije Universiteit, Amsterdam,

The Netherlands.

BAKKER, A., AMADE, E., BALLINTIJN, G., KUZ, I., VERKAIK, P., VAN DER WIJK, I., VAN STEEN, M., AND

TANENBAUM, A. 2000. The Globe Distribution Network. In Proceedings of the USENIX Annual
Technical Conference (FREENIX track). San Diego, CA. 141–152.

BAKKER, A., VAN STEEN, M., AND TANENBAUM, A. 2001. A law-abiding peer-to-peer network for

free-software distribution. In Proceedings of the IEEE Symposium on Network Computing and
Applications (NCA’01). Cambridge, MA, IEEE Computer Society, 60–67.

BAKKER, A., VAN STEEN, M., AND TANENBAUM, A. 2003. A wide-area distribution network for free

software. Tech. rep. IR-CS-002, Department of Computer Science, Vrije Universiteit Amsterdam.

The Netherlands.

BAKKER, A., VAN STEEN, M., TANENBAUM, A., AND VERKAIK, P. 2003. Design and implementation of

the Globe middleware. Tech. rep. IR-CS-003, Department of Computer Science, Vrije Universiteit

Amsterdam, The Netherlands.

BALLINTIJN, G., VAN STEEN, M., AND TANENBAUM, A. 1999. Simple crash recovery in a wide-area

location service. In Proceedings of the 12th International Conference on Parallel and Distributed
Computing Systems. Fort Lauderdale, FL. 87–93.

BALLINTIJN, G., VAN STEEN, M., AND TANENBAUM, A. 2001. Scalable user-friendly resource names.

IEEE Internet Comput. 5, 5 (Sept.), 20–27.

BURK, D. 2001. Copyrightable functions and patentable speech. Comm. ACM 44, 2 (Feb.), 69–75.

CARMODY, P. 2002. The world’s first illegal prime number? http://www.utm.edu/research/

primes/curios/485...443.html.

CHEN, P., LEE, E., GIBSON, G., KATZ, R., AND PATTERSON, D. 1994. RAID: High-performance, reliable

secondary storage. ACM Comput. Surv. 26, 2 (June), 145–185.

CORNELLI, F., DAMIANI, E., DE CAPITANI DI VIMERCATI, S., PARABOSCHI, S., AND SAMARATI, P. 2002.

Choosing reputable servents in a P2P network. In Proceedings of the 11th International World
Wide Web Conference. Honolulu, HI.

CRISPO, B., POPESCU, B., AND TANENBAUM, A. 2004. Symmetric key authentication services revis-

ited. In Proceedings of the 9th Australasian Conference on Information Security and Privacy
(ACISP’04). Sydney, Australia.

CRISTIAN, F. 1991. Understanding fault-tolerant distributed systems. Comm. ACM 34, 2 (Feb.),

56–78.

DEAN, D. AND STUBBLEFIELD, A. 2001. Using client puzzles to protect TLS. In Proceedings of the
10th USENIX Security Symposium. Washington, DC.

DIERKS, T. AND ALLEN, C. 1999. The TLS Protocol Version 1.0. RFC 2246.

DONGARRA, J. 2004. The Netlib. http://www.netlib.org/.

FREE SOFTWARE FOUNDATION, INC. 1991. GNU General Public License Version 2. http://www.fsf.

org/licenses/gpl.txt.

GROSSE, E. AND DONGARRA, J. 1995. Subject: Notes to Netlib contributors. ftp://ftp.netlib.org/

misc/contrib.

KATZENBEISSER, S. AND PETITCOLAS, F., EDS. 1999. Information Hiding Techniques for Steganogra-
phy and Digital Watermarking. Artech House Publishers, Norwood, MA.

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

A Wide-Area Distribution Network for Free Software • 281

KUZ, I., VAN STEEN, M., AND SIPS, H. 2002. The Globe infrastructure directory service. Comput.
Comm. 25, 9 (June). Elsevier Science, Amsterdam, The Netherlands. 835–845.

LETHIN, R. 2001. Reputation. In Peer-to-Peer: Harnessing the Power of Disruptive Technologies.

A. Oram, Ed. O’Reilly and Associates, Sebastopol, CA. Chapter 17, 341–353.

NEUMAN, B. C. 1994. Scale in distributed systems. In Readings in Distributed Computing Sys-
tems. T. Casavant and M. Singhal, Eds. IEEE Computer. Society.

NIELSEN, J. 1995. Multimedia and Hypertext: The Internet and Beyond. AP Professional, Boston,

MA.

OPEN SOURCE DEVELOPMENT NETWORK. 2004a. SourceForge.net open source software development

Web site. http://www.sf.net/.

OPEN SOURCE DEVELOPMENT NETWORK. 2004b. SourceForge.net terms and conditions of use. http:

//sourceforge.net/docman/display_doc.php?docid=6048&group_id=1.

ORAM, A., ED. 2001. Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly and

Associates, Sebastopol, CA.

PIERRE, G., VAN STEEN, M., AND TANENBAUM, A. 2002. Dynamically selecting optimal distribution

strategies for Web documents. IEEE Trans. Comput. 51, 6 (June), 637–651.

PLANK, J., BECK, M., KINGSLEY, G., AND LI, K. 1995. Libckpt: Transparent checkpointing under

unix. In Proceedings of the USENIX Winter Technical Conference. New Orleans, LA. 213–223.

POPESCU, B., CRISPO, B., AND TANENBAUM, A. 2003a. A certificate revocation scheme for a large-scale

highly replicated distributed system. In Proceedings of the 8th IEEE International Symposium
on Computers and Communications (ISCC’03). Kemer-Antalya, Turkey, 225–232.

POPESCU, B., CRISPO, B., TANENBAUM, A., AND ZEEMAN, M. 2003b. Expressing security policies for

distributed objects applications. In Proceedings of the 11th Cambridge International Workshop
on Security Protocols. Cambridge, U.K.

POPESCU, B., VAN STEEN, M., AND TANENBAUM, A. 2002. A security architecture for object-based dis-

tributed systems. In Proceedings of the 18th Annual Computer Security Applications Conference.

Las Vegas, NV. 161–171.

SALTZER, J., REED, D., AND CLARK, D. 1984. End-to-end arguments in system design. ACM Trans.
Comput. Syst. 2, 4 (Nov.), 277–288.

SANDHU, R., COYNE, E., FEINSTEIN, H., AND YOUMAN, C. 1996. Role-based access control models.

IEEE Comput. 29, 2 (Feb.), 38–47.

SIMONS, B. 2000. From the President: To DVD or not to DVD. Comm. ACM 43, 5 (May), 31–32.

SIVASUBRAMANIAN, S., PIERRE, G., AND VAN STEEN, M. 2003. A case for dynamic selection of repli-

cation and caching strategies. In Proceedings of the 8th International Workshop on Web Content
Caching and Distribution (WCW’03). Hawthorne, NY.

SOFTWARE IN THE PUBLIC INTEREST, INC. 2004a. Debian GNU/Linux—Step 2: Identification. http:

//www.debian.org/devel/join/nm-step2.

SOFTWARE IN THE PUBLIC INTEREST, INC. 2004b. Debian GNU/Linux—The Universal Operating Sys-

tem. http://www.debian.org/.

STELLING, P., FOSTER, I., KESSELMAN, C., LEE, C., AND VON LASZEWSKI, G. 1998. A fault detection

service for wide area distributed computations. In Proceedings of the 7th IEEE Symposium on
High Performance Distributed Computing. Chicago, IL. 268–278.

TRIDGELL, A. 2000. Efficient algorithms for sorting and synchronization. Ph.D. thesis, Australian

National University, Canberra, Australia.

UNITED STATES GOVERNMENT. 1998. Digital Millennium Copyright Act. United States Public Law

No. 105-304.

VAN STEEN, M., HAUCK, F., AND TANENBAUM, A. 1998. Locating objects in wide-area systems. IEEE
Communications, 104–109.

VAN STEEN, M., HOMBURG, P., AND TANENBAUM, A. 1999. Globe: A wide-area distributed system.

IEEE Concurrency 7, 1 (Jan.), 70–78.

WORLD INTELLECTUAL PROPERTY ORGANIZATION. 1996. WIPO Copyright Treaty. In WIPO Diplo-
matic Conference on Certain Copyright and Neighbouring Rights Questions. Geneva, Switzer-

land. http://www.wipo.int/treaties/en/ip/wct/.

Received February 2003; revised September 2003 and July 2004; accepted March 2005

ACM Transactions on Internet Technology, Vol. 6, No. 3, August 2006.

